
ar
X

iv
:1

10
1.

53
76

v1
 [

cs
.D

S]
 2

7
Ja

n
20

11

Succincter Text Indexing with Wildcards

Chris Thachuk

Department of Computer Science, University of British Columbia, Vancouver, Canada
cthachuk@cs.ubc.ca

Abstract. We study the problem of indexing text with wildcard positions, motivated by the
challenge of aligning sequencing data to large genomes that contain millions of single nucleotide
polymorphisms (SNPs)—positions known to differ between individuals. SNPs modeled as wildcards
can lead to more informed and biologically relevant alignments. We improve the space complexity
of previous approaches by giving a succinct index requiring (2 + o(1))n log σ+O(n) +O(d log n) +
O(k log k) bits for a text of length n over an alphabet of size σ containing d groups of k wildcards.
A key to the space reduction is a result we give showing how any compressed suffix array can
be supplemented with auxiliary data structures occupying O(n) + O(d log n

d
) bits to also support

efficient dictionary matching queries. The query algorithm for our wildcard index is faster than
previous approaches using reasonable working space. More importantly our new algorithm greatly
reduces the query working space to O(dm + m log n) bits. We note that compared to previous
results this reduces the working space by two orders of magnitude when aligning short read data
to the Human genome.

1 Introduction

The study of strings, their properties, and associated algorithms has played a key role in ad-
vancing our understanding of problems in areas such as compression, text mining, information
retrieval, and pattern matching, amongst numerous others. A most basic and widely studied
question in stringolgy asks: given a string T (the text) does it contain a string P (the pattern)
as a substring? It is well known that this problem can be solved in time proportional to the
lengths of both strings [10]. However, it is often the case that we wish to repeat this question
for many different pattern strings and a fixed text T of length n over an alphabet of size σ.
The idea is to create a full-text index for T so that repeated queries can be answered in time
proportional to the length of P alone. It was first shown by Weiner [18] in 1973 that the suffix
tree data structure could be built in linear time for exactly this purpose. The ensuing years
have seen the versatility of the suffix tree as it has been demonstrated to solve numerous other
related problems.

While suffix trees use O(n) words of space in theory, this does not translate to a space
efficient data structure in practice. For this reason, Manber and Myers [12] proposed the suffix
array data structure (see Figure 1). Though a great practical improvement over suffix trees, the
Ω(n log n) bit space requirement is often prohibitive for larger texts. Building in part on the
pioneering work of Jacobson [9] into succinct data structures, two seminal papers helped usher
in the study of so-called succinct full-text indexes. Grossi and Vitter [7] proposed a compressed
suffix array that occupies O(n log σ) bits; the same space required to represent the original string
T . Soon after, Ferragina and Manzini [5] proposed the FM-index, a type of compressed suffix
array that can be inferred from the Burrows-Wheeler transform of the text and some auxiliary
structures, leading to a space occupancy proportional to nHk(T) bits, where Hk(T) denotes
the kth order empirical entropy of T . These and subsequent results have made it possible to
efficiently answer the substring question on texts as large, or larger, than the Human genome.

We are interested in designing a succinct index to answer a generalized version of the sub-
string question where the text T contains k wildcard positions that can match any character of
a pattern. Our motivation arises in the context of aligning short read data, produced by second
generation sequencing technology. Typically short reads are aligned against a so-called reference
genome; however, the quantity of positions known to differ between individuals due to single

http://arxiv.org/abs/1101.5376v1

2

nucleotide polymorphisms (SNPs) numbers in the millions [6]. Modeling SNPs as wildcards
would yield more informed, and by extension, more accurate alignment of short reads.

Cole, Gottlieb & Lewenstein [4] were one of the first to study the problem of indexing
text sequences containing wildcards and proposed an index using O(n logk n) words of space
capable of answering queries in O(m+logk n log log n+occ) time. This result was later improved
by Lam et al., [11] resulting in space usage of only O(n) words and a query time no longer
exponential in k. A key idea in their work was to build a type of dictionary of the text segments
of T = T1φ

k1T2φ
k2 . . . φkdTd+1 where each text segment Ti contains no wildcards and φki denotes

the ith wildcard group of size ki ≥ 1, for 1 ≤ i ≤ d ≤ k. The query time includes the term
γ =

∑
i,j prefix(P [i..|P |], Tj) where prefix(P [i..|P |], Tj) = 1 if Tj is a prefix of P [i..|P |] and 0

otherwise. The authors also give a more detailed bound on γ based on prefix complexity.

Despite this improvement, O(n) words of space is prohibitive for texts as large as the Hu-
man genome. Support for dictionary matching of text segments was also crucial in the approach
of Tam et al., [17] who proposed the first, and to our knowledge only, succinct index. They
designed a dictionary structure using (2 + o(1))n log σ bits, based on a compressed suffix ar-
ray, which therefore occupies most of the space required by their overall index. Very recently,
Belazzougui [1] proposed a succincter dictionary based on the Aho-Corasick automaton having
optimal query time. The compressed space occupancy was further improved by a slight mod-
ification given by Hon et al., [8]. While these results are impressive, the wildcard matching
problem benefits from an index that can report the text segments contained in P (dictionary
problem), as well as the text segments which are prefixed by P and also fully contain P . To
draw a distinction, we will refer to this latter type as a full-text dictionary. In our first main
contribution we show how a full-text dictionary can be built on top of any compressed suffix
array using an additional O(n) + O(d log n

d
) bits of space, and in turn how it can be used to

provide a succincter index for texts containing wildcards. We note that our dictionary does not
require any modification of the original string T .

In our view, the main challenge that must be overcome for successful wildcard matching is a
reduction of the query working space. The fastest solution of Tam et al., [17], matches our query
time, if modified to use the same orthogonal range query structure we use, but requires a query
working space of O(n log d+m log n) bits. Acknowledging that the first term is impractical for
large texts, they give a slower solution that reduces the working space to be proportional to
the index itself. This makes the solution feasible, but constraining considering the fact that p
parallel queries necessarily increases the working space by a factor of p. In our second main
contribution we give an algorithm that reduces the query working complexity significantly to
O(dm + m log n) bits. For our motivating problem, alignment of short reads (32-64 bases) to
the Human genome (3 billion bases with 1-2 million SNPs), this reduces the working space by
two orders of magnitude from gigabytes to tens of megabytes. Our result for indexing text with
wildcards is summarized and compared with existing results in Table 1.

2 Preliminaries

Let T [1, n] be a string over a finite alphabet Σ of size σ. We denote its jth character by T [j] and
a substring from the ith to the jth position by T [i..j]. We assume that an end-of-text sentinel
character $ /∈ Σ has been appended to T (T [n] = $) and $ is lexicographically smaller than any
character in Σ. For any substring X we use |X| to denote its length and X to denote its reverse
sequence. The suffix array SA of T is a permutation of the integers [1, n] giving the increasing
lexicographical order of the suffixes of T . Conceptually SA can be thought of as a matrix of all
suffixes of T that have been sorted lexicographically and where SA[i] = j means that the ith

lexicographically smallest suffix of T begins position j.

A string X has a suffix array (SA) range [a, b] with respect to SA if a − 1 (n − b) suffixes
of T are lexicographically smaller (larger) than X. If a > b the range is said to be empty and
X does not exist as a substring of T ; otherwise, X occurs as a prefix of the b − a + 1 suffixes

3

Index Space Query Time Query Working Space

O(n logk n) words O(m+ logk n log logn+ occ) - [4]
O(n) words O(m logn+ γ + occ) O(n) words [11]

(3 + o(1))n log σ
+ O(d logn) bits

O

(

m
(

log σ +min
(

m, d̂
)

log d
)

+occ1 logn+ occ2 log d+ γ

)

O(n log d+m logn) bits [17]

(3 + o(1))n log σ
+ O(d logn) bits

O

(

m
(

log σ +min
(

m, d̂
)

log d
)

+occ1 logn+ occ2 log d+ γ logσ d

)

O(n log σ +m logn) bits [17]

(2 + o(1))n log σ + O(n)
+O(d logn) + O(k log k) bits

O

(

m
(

log σ +min
(

m, d̂
)

log k

log log k

)

+occ1 logn+ occ2
log k

log log k
+ γ

)

O(dm +m logn) bits †

Table 1. A comparison of text indexes supporting wildcard characters. k, d, d̂ is the # of
wildcards, wildcard groups, and distinct wildcard group lengths, respectively; occ1, occ2, occ is
the # of Type 1, Type 2, and overall occurrences, respectively; γ =

∑
i,j prefix(P [i..|P |], Tj), †

= our result

of T denoted by its range. The SA range for X can be found in a compressed suffix array
by backwards search using the LF-mapping which relates SA to T BWT, the Burrows-Wheeler
transform of T . T BWT is also a string of length n where T BWT[i] = T [SA[i] − 1], if SA[i] 6= 1, and
T BWT[i] = $ otherwise. See Figure 1 for an example. For details of backwards search, the LF-
mapping, existing implementations, and related topics we refer the reader to the excellent review
by Navarro and Mäkinen [14]. In this work, we assume the availability of a compressed suffix
array meeting the following space and time requirements, of which there are many (c.f. [14]).

Lemma 1. A compressed suffix array SA for T can be represented in (1 + o(1))n log σ bits
of space, such that the suffix array range of every suffix of a string X can be computed in
O(|X| log σ) time, and each match of X in T can be reported in an additional O(log n) time.

In our dictionary construction, we also make use of the following well known data structures.

Lemma 2 (Raman et al., [16]). A bit vector B of length n containing d 1 bits can be repre-
sented in d log n

d
+O(d+ n log logn

logn) bits to support the operations rank1(B, i) giving the number

of 1 bits appearing in B[1..i] and select1(B, i) giving the position of the ith 1 in B in O(1) time.

Lemma 3 (Grossi & Vitter [7]). An array L of d integers where
∑d

i=1 L[i] = n can be
represented in d(⌈lg(n/d)⌉ + 2 + o(1)) bits to support O(1) time access to any element.

Lemma 4 (Munro & Raman [13]). A sequence BP of d balanced parentheses can be repre-
sented in (2+o(1))d bits of space to support the following operations in O(1) time: rank((BP, i),
select((BP, i), and similarly for right parentheses, as well as:

– findclose(BP, l): index of matching right parenthesis for left parenthesis at position l
– enclose(BP, i): indexes (l, r) of closest matching pair to enclose (i, findclose(BP, i)) if

such a pair exists and returns an undefined interval in BP otherwise

The matching statistics for a string X with respect to SA is an array ms of tuples such
that ms[i] = (q, [a, b]) states that the longest prefix of X[i..|X|] that matches anywhere in T
has length q and suffix array range [a, b]. Very recently Ohlebusch et al., [15] showed matching
statistics can be efficiently computed with backward search if SA is enhanced with auxiliary data
structures using O(n) bits to represent so-called longest common prefix intervals (c.f. [15]). We
leverage this result in the design of our succinct full-text dictionary and its search algorithm.

Lemma 5 (Ohlebusch et al., [15]). The matching statistics of a pattern X with respect to
text T over an alphabet of size σ can be computed in O(|X| log σ) time given a compressed
enhanced suffix array of T .

4

Finally, our wildcard matching algorithm makes use of an orthogonal range query data structure.

Lemma 6 (Bose et al., [2]). A set N of points from universe M = [1..k] × [1..k], where
k = |N |, can be represented in (1 + o(1))k log k bits to support orthogonal range reporting in
O(occ log k

log log k) time, where occ is the size of the output.

3 A succinct full-text dictionary

In the dictionary problem we are required to index a set of d text segments1 D = {T1, T2, . . . , Td}
so that we can efficiently match in any input string P all occurrences of text segments belonging
to D. We present a succinct full-text dictionary index that is also capable of efficiently identifying
all text segments that contain P as a prefix, or more generally as a substring. We demonstrate
the use of this additional functionality in our solution for wildcard matching.

3.1 A compressed suffix array representation of text segments

Let T = φT1φT2φT3φ . . . φTd$ be the concatenation of all d text segments, each prefixed by the
character φ, followed by the traditional end-of-text sentinel $, having total length n. Note that
n is necessarily larger than the total number of character in the dictionary. We define φ to be
lexicographically smaller than any c ∈ Σ and $ to be lexicographically smaller than φ. We first
build SA, the compressed suffix array for T . Consider any text segment Tj ∈ D. There will be a
contiguous range [c, d] of suffixes in SA that are prefixed by the string Tj . Lemma 7 summarizes
how we can use the SA range of Tj and its length to determine if it is prefix of a given text P
(and vice versa).

Lemma 7. Let SA be the compressed suffix array for T and let [a, b] and [c, d] be the non-empty
suffix array ranges in SA for a string P and a text segment Tj respectively. Then Tj is a prefix
of P if and only if c ≤ a ≤ b ≤ d and |P | ≥ |Tj |. Similarly, P is a prefix of Tj if and only if
a ≤ c ≤ d ≤ b.

3.2 Storing text segment lengths

For Lemma 7 to apply, we must know both the SA range of a given text segment and also its
length. By Lemma 3 we can store the lengths of all d text segments in a compressed integer
array L using d(⌈log(n/d)⌉+ 2+ o(1)) bits ensuring constant time access. We store the lengths
in L relative to the lexicographical order of text segments.

3.3 The text segment interval tree

The SA range of one text segment Ti will enclose the SA range of another Tj if Ti is a prefix of
Tj . For instance, in the example of Figure 1 the text segment aca has SA range [15, 15] and is
enclosed by the SA range of the text segment ac ([14, 16]) and by the text segment a ([8, 16]).
In general, it is also possible that many text segments begin at the same position, provided that
they are different occurrences of the same string (e.g., aa). This is by design since each text
segment is followed by a character not found in Σ (either φ or $). However, our construction
requires us to distinguish between different occurrences of the same text segment string and
we therefore introduce the concept of text segment intervals. When t > 1 text segments in the
dictionary share a common SA range we say that the text segment interval of occurrence a
encloses the text segment interval of occurrence b, 1 ≤ a 6= b ≤ t, if the suffix of T beginning
with occurrence a is lexicographically smaller than the suffix beginning with occurrence b. In
this way we are able to define a total order on all d text segment intervals based on their relative

1 To remain consistent with the section that follows we refer to dictionary entries (patterns) as text segments.

5

T BWT
SA B i

$ c 21 0 1
φaφaaφcaccφac$ a 8 0 2
φaaφacaφaφaaφcaccφac$ $ 1 0 3
φaaφcaccφac$ a 10 0 4
φac$ c 18 0 5
φacaφaφaaφcaccφac$ a 4 0 6
φcaccφac$ a 13 0 7
aφaφaaφcaccφac$ c 7 1 8
aφaaφcaccφac$ φ 9 0 9
aφacaφaφaaφcaccφac$ a 3 0 10
aφcaccφac$ a 12 0 11
aaφacaφaφaaφcaccφac$ φ 2 1 12
aaφcaccφac$ φ 11 0 13
ac$ φ 19 1 14
acaφaφaaφcaccφac$ φ 5 1 15
accφac$ c 15 1 16
c$ a 20 1 17
cφac$ c 17 0 18
caφaφaaφcaccφac$ a 6 0 19
caccφac$ φ 14 1 20
ccφac$ a 16 1 21

(1, a) (2, aa) (3, aa)

(4, ac) (5, aca)

(6, cacc)

BP ((()) (())) ()

L 1 2 2 2 3 4

R 0 0 2 2 3 5 5 6

i 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 1. A succinct full-text dictionary for the set of text segments {aa, aca, a, aa, cacc, ac}.
Shown are the sorted suffixes of the string T = φaaφacaφaφaaφcaccφac$ representing the text
segments. Text segment intervals are demarcated on the left and labeled by their lexicographical
order (lex id) and the text segment they represent.

lexicographical order in SA. We assign lex ids, a unique identifier for each text segment, based
on this lexicographical order. Consider again the example in Figure 1. The text segment aa

occurs as a prefix of T [2..n] and T [11..n]. Since the suffix T [2..n] is lexicographically smaller
than T [10..n], we say that the occurrence prefixing T [2..n] encloses the other. Consequently, the
text segment prefixing T [2..n] (T [11..n]) is assigned lex id 2 (3). We will refer to text segments
or text segment intervals interchangeably.

In general the text segment intervals form a set of nested, non-crossing intervals (an interval
tree) and can be represented by a sequence BP of d balanced parentheses; one pair for each text
segment (see Figure 1). Conceptually, if we can identify the text segment interval having the
largest lex id that is a prefix of P , referred to as the smallest enclosing text segment interval of
P , then we can immediately conclude that P is also prefixed by all intervals which enclose it.

Lemma 8. Given the index pair (l, r) in BP corresponding to the smallest enclosing text seg-
ment interval for a string P the occ number of text segments that are prefixes of P can be
counted in O(1) time and reported in an additional O(occ) time.

3.4 Finding the smallest enclosing text segment interval

We now describe how the smallest enclosing text segment interval can be determined given any
non-empty SA range [a, b] in SA for P . We wish to determine the pair (l, r) of indexes for the
left and right parentheses in BP corresponding to this interval (or an undefined index range
if P is not prefixed by any text segment). Unfortunately, we cannot directly infer where text
segment intervals begin and end based on T BWT alone. Therefore, we make use of a bit vector B
of length n and set B[k] = 1 if and only if one or more text segment intervals begin at position
k, or end at position k − 1. For the range [a, b], end cases occur when B[k] = 0, a < k ≤ n (all
text segment intervals end before position a) or when B[k] = 0, 1 ≤ k ≤ a (all text segment
intervals begin after position a). Suppose otherwise and let c = argmax1≤j≤a{B[j] = 1} and
d = argmina<j≤n{B[j] = 1}. Note that position c marks the largest position (up to a) when one
or more text segment intervals begin or end (at c− 1). Our algorithm considers two main cases:
either B[c] marks the beginning of one or more intervals, or it only marks the end of intervals.

6

Algorithm 1 Find smallest enclosing text segment interval
Input: a specifies the beginning of the non-empty suffix array interval for string P

Output: l, r where l (r) is the index of the left (right) parenthesis in BP corresponding to the smallest enclosing
text segment interval of P if it exists, and an undefined interval otherwise

1: c← select1(B, rank1(B, a))
2: d← select1(B, rank1(B, a) + 1)
3: if c or d is undefined then // handle end cases
4: return an undefined interval
5: lexid← rankφ(T

BWT, d− 1)
6: if lexid > rankφ(T

BWT, c) then // B[c] marks beginning of t.s. interval(s)
7: if L[lexid] > |P | then
8: lexid← rankφ(T

BWT, c− 1) + 1
9: l ← select((BP, lexid)
10: l, r ← enclose(BP, l)
11: else

12: l ← select((BP, lexid)
13: r ← findclose(BP, l)
14: else // B[c] marks end of t.s. interval(s)
15: r ← select)(BP,R[rank1(B, c)])
16: l ← findopen(BP, r)
17: l, r ← enclose(BP, l)
18: return l, r

Lemma 9. Given two positions c and d of B, where c < d, B[c] = B[d] = 1 and B[k] = 0,
c < k < d, then B[c] marks the beginning of t text segment intervals if and only if T BWT[c..d− 1]
contains t occurrences of the character φ.

Using Lemma 9 we are able to distinguish between the two main cases. If B[c] marks the
beginning of one or more text segment intervals, then Tj — the text segment interval with
the largest lex id beginning at position c — is the smallest enclosing text segment interval,
provided |Tj | ≤ |P | (by condition of Lemma 7). If |Tj | ≤ |P |, we can determine the largest lex id
beginning at position c by simply counting the occurrences of the character φ prior to position
d in T BWT. Conveniently and by construction, this corresponds to the rank of the left parenthesis
denoting Tj in BP. It is worth noting that when |Tj | > |P | special care is required to find the
smallest enclosing text segment interval in worst case constant time. Details are given in the
proof of Lemma 10, but the idea is to find the enclosing interval (if any) of the text segment
interval having the smallest lex id beginning at position c.

On the other hand, if B[c] only marks the end of one or more text segment intervals, we
can instead identify the right index for Tj′ — the last text segment interval (smallest lex id)
to end at position c − 1. The smallest enclosing text segment interval, if any, is therefore the
one enclosing Tj′ . Unfortunately, in this case we cannot infer how many intervals close prior to
position c directly from T BWT. For this reason, we will employ another compressed integer array
R to record the count of intervals that close prior to position k, for all B[k] = 1. We determine
the appropriate index for R by simply counting the number of 1’s up to position c in B. The
corresponding entry in R gives us the rank of the right parenthesis for the last interval to close
prior to position c, from which we can find the enclosing interval (if any). The entire procedure,
including end cases, is summarized in Algorithm 1 and shown correct in Lemma 10.

Lemma 10. Let SA be the compressed suffix array for T and let [a, b] be the non-empty suffix
array range in SA for a string P . In O(1) time, Algorithm 1 either correctly identifies the
indexes in BP corresponding to the smallest enclosing text segment interval of P if one exists,
or it returns an undefined interval when it does not.

7

3.5 The overall dictionary and its full-text capabilities

We have shown how all text segments occurring as a prefix of a string P having a non-empty
SA range in SA can be reported efficiently. By enhancing SA with lcp-interval information using
O(n) bits, we can find the matching statistics for P in order to repeat the previous procedure for
1 ≤ i ≤ |P | (see Lemma 5). Importantly for our results on wildcard matching, we note that with
a very minor modification, this same construction works when text segments are separated by
more than one φ character and also when the first text segment is not preceded by a φ character.
Note that the text segment interval tree can be built in a similar manner as an lcp-interval tree.
Details are left for the full version. We have our first main result.

Theorem 1. Given a set of d text segments over an alphabet of size σ we can construct a
succinct full-text dictionary, based on an enhanced compressed suffix array, using at most (1 +
o(1))n log σ + O(n) + O(d log n

d
) bits where n is the length of T , the text representation of the

dictionary including φ characters, such that the γ text segments contained in a string P can
be counted in O(|P | log σ) time and reported in an additional O(γ) time. Furthermore, all text
segments prefixed by P can be reported in O(|P | log σ + occ) time, and all locations in T where
P occurs as a substring can be reported in O(|P | log σ + occ log n) time.

4 Matching wildcards in succinct texts

Let T be a string over an alphabet Σ ∪ {φ} of size σ where φ /∈ Σ and T [i] = φ if and only
if position i is a wildcard position in T . In particular, we denote the structure of the input
string as T = T1φ

k1T2φ
k2 . . . φkdTd+1 where each text segment Ti contains no wildcards and φki

denotes the ith wildcard group of size ki ≥ 1, for 1 ≤ i ≤ d. Our goal is to create an index
for the purpose of identifying all the locations in T that exactly match any query pattern P ,
modulo wildcard positions. Similar to previous approaches [11,17], we classify the match into
one of three cases: X contains no wildcard group (Type 1), X contains exactly one wildcard
group (Type 2), and X contains more than one wildcard group (Type 3).

4.1 Overall design of the index

We first build the succinct full-text dictionary of Section 3. By design, the dictionary reports
the match of a text segment Tj based on its lexicographical order (its lex id) relative to other
text segments; however, in the wildcard problem we are required to report the match based on
Tj ’s position in T . Therefore, we store a permutation Π mapping the lex ids of text segments
to their relative position order in T . For instance, if Tj has lex id k, then Π[k] = j. We find it
convenient to store the following information for each text segment, in auxiliary arrays, indexed
by this relative position order: length, SA range in SA (referenced as RSA), beginning position in
T , and the size of the preceding wildcard group. Note that array L of the dictionary construction
can be adapted to store lengths in this relative order with the use of Π. We also construct a
compressed suffix array SA for T , the reverse of T , and store the SA range of each Tj with
respect to SA (referenced as RSA). Note that SA does not need to support location reporting.
We use simple arrays to store SA ranges resulting in O(d log n) bits combined space usage to
store auxiliary information supporting constant time access. To support Type 2 matching we
employ a range query data structure occupying (1 + o(1))k log k bits (see next section).

Lemma 11. Given a text T of length n containing d groups of k wildcards the combined space
required of the above indexes is (2 + o(1))n log σ +O(n) +O(d log n) +O(k log k) bits.

All three matching types make use of the matching statistics of P with respect to SA. Types
2 and 3 matching also make use of the SA ranges of P with respect to SA. Both can be computed
in O(m log σ) time (by Lemmas 1 and 5) and require O(m log n) bits to store. We incorporate
these times and working space into the results for each type. Type 1 matching is handled by
the application of Lemma 1.

8

4.2 Type 2 matching

A Type 2 match occurs when the alignment of P to T contains exactly (a portion of) one
wildcard group. Specifically, we seek a pair of neighbouring text segments Tj and Tj+1, separated
by a wildcard group of size kj , where P [i..|P |] aligns to the first |P |− i+1 characters of Tj+1 —
referred to as the suffix match (of P) — and P [1..i−1−kj] aligns to the last i−1−kj characters
of Tj — referred to as the prefix match. Let αj (ωj) be the the first (last) φ character of the jth

wildcard group in T . End cases occur when the match begins or ends in T [α′
j ..ω

′
j], where α

′
j (ω

′
j)

is the position of αj (ωj) in T . For now, suppose this is not the case. For a fixed suffix P [i..|P |]
and wildcard group length kj our strategy will be to (i) find all potential suffix matches, (ii)
record the lex id of the candidate text segments, (iii) find all potential prefix matches, and (iv)
determine which candidate prefix matches are compatible with a lex id recorded in step (ii).

· · · φ φ · · ·Tj · · · Tj+1

αj ωj

Lemma 12. Given a non-empty SA range [a, b] in SA for a string X, the lex ids (based on their
lexicographical order) of text segments in T that contain X as a prefix will form a contiguous
(possibly empty) range [id1, id2] that can be reported in O(1) time.

By Lemma 12, we can identify the range [id1, id2] of lex ids corresponding to text segments
that P [i..|P |] is a prefix of in constant time using its stored SA range with respect to SA,
completing steps (i)-(ii). Determining a range [id3, id4] of lex ids corresponding to text segments
that P [1..i−kj −1] is a suffix of is equivalent to determining all Tt that contain P [1..i − kj − 1]
as a prefix. Again, using a stored SA range with respect to SA this can be determined in constant
time, completing step (iii). Now consider that the lex id with respect to SA of a text segment
Tj+1 is relative to the rank of ωj in T BWT, the character which precedes it. Similarly, the relative
rank of αj in T BWT determines the lex id of Tj , but in this case relative to T . We make use of
a permutation H to relate these lex ids (α and ω values). Specifically, we set H[αj] = ωj, for
1 ≤ j ≤ k. Therefore, we need to determine the entries in H[id3..id4] that have a value in the
range [id1, id2]. This is an orthogonal range query and by Lemma 6, H can be represented in
(1 + o(1))k log k bits to report all occ matches in O(occ log k

log log k) time. Once a lex id ωj has been
verified, a match position can be reported in O(1) time as the location of Tj+1 with respect to
T is known in addition to the length of the prefix match. This completes step (iv).

In general, we can repeat the above procedure for every combination of suffix length and
wildcard group length bound by m. However, as pointed out by Tam et al., [17] the number of
distinct wildcard group sizes d̂ is often a small constant, particularly in genomic sequences. We
therefore only consider at most d̂ lengths, provided they are not larger than m.

Now, consider the case when P [i..|P |] aligns to a prefix of a wildcard group. To contain
P [i..|P |] as a prefix, the wildcard group must have a length l ≥ |P | − i + 1. Let a be the
first entry in SA denoting a suffix of T prefixed by at least l − 1 φ characters and let b be
the last entry prefixed by any φ character. Then, similar to Lemma 12, T BWT[a..b] will contain
a range [id1, id2] giving ranks of φ characters in that interval. Some sub-sequence of [id1, id2]
will correspond to ω wildcards that begin groups having length l or longer. Therefore, Type 2
matches can be determined by reporting entries in H[id3..id4] having a value in [id1, id2], where
[id3, id4] is defined as before. The case when a prefix of P aligns as a suffix of a wildcard group
can be handled similarly. Note that the SA ranges of the at most m wildcard group lengths we
are interested in can be determined in O(m log σ) time and stored in O(m log n) bits.

Lemma 13. All Type 2 matches can be reported using O(m log n) bits of working space in
O(m(log σ +min(m, d̂) log k

log log k) + occ2
log k

log log k) time.

9

Algorithm 2 Report Type 3 matches

Input: a string P of length m, its matching statistics w.r.t. SA, SA ranges for all suffixes of P w.r.t. SA
Output: positions in T matching P , modulo wildcard positions
1: for i = 1 to m do

2: let (q, [a, b]) be the matching statistics for P [i..m]
3: use Algorithm 1 to find indexes (l, r) in BP denoting smallest enclosing text segment interval for SA range

[a, b]
4: while (l, r) is a defined interval in BP do

5: lexid← rank((BP, l)
6: j ← Π [lexid]
7: [ap, bp], [as, bs]← SA range of P [1..i − 1− kj−1] w.r.t SA, SA range of P [i+ lj + kj ..m] w.r.t SA
8: [cs, ds], [cp, dp]← RSA[j − 1], RSA[j + 1]
9: if i ≤ lj−1 + kj−1 then // Case 1: P does not contain Tj−1

10: if kj−1 ≥ i− 1 or [ap, bp] encloses [cp, dp] then // Case 1: prefix condition satisfied
11: if m− i+ 1 < lj + kj + lj+1 − 1 then // Case 1a: P does not contain Tj+1

12: if m− i ≤ lj + kj or [as, bs] encloses [cs, ds] then // Case 1a: suffix condition satisfied
13: print match at position xj − i+ 1
14: else // Case 1b: P must contain Tj+1

15: set (i+ lj + kj)
th bit of W[j + 1] to 1

16: else // Case 2: P must contain Tj−1

17: if ith bit of W[j] is set to 1 then // Case 2: prefix condition is satisfied
18: if m− i+ 1 < lj + kj + lj+1 − 1 then // Case 2a: P does not contain Tj+1

19: if m− i ≤ lj + kj or [as, bs] encloses [cs, ds] then // Case 2a: suffix condition satisfied
20: print match at position xj − i+ 1
21: else // Case 2b: P must contain Tj+1

22: set (i+ lj + kj)
th bit of W[j + 1] to 1

23: (l, r)← enclose(BP, l)

Notation: xj , lj , kj denotes the position, length and wildcard group length (which follows) the text segment Tj

4.3 Type 3 matching

Type 3 matches contain at least (portions of) two wildcard groups and therefore must fully
contain at least one text segment. The general idea in previous approaches and in this paper is to
consider this case as an extension of the dictionary matching problem: text segments contained
within P are candidate positions, but we must verify if they can be extended to a full match of
P . However, we execute this idea in an altogether novel manner that greatly reduces the working
space over existing approaches. The complete details of our approach are given in Algorithm 2.
We now highlight the main idea and give the intuition behind the correctness but note that a
formal proof is given in the appendix.

First, suppose that text segment Tj matches P starting at position i. Consider the conditions
that must be satisfied to confirm that this match can be extended to a complete match of P in
T . We must verify that (i) P [1..i− 1] can be matched to the text preceding Tj in T — referred
to as the prefix condition — and (ii) P [i+ |Tj |..|P |] can be matched to the text following Tj in
T — referred to as the suffix condition. If both conditions are verified, we can report that P
matches T at position xj − i+ 1, where xj is the start position of Tj in T .

· · · φ φ · · · φ φ · · · φ φ · · ·Tj−1 Tj Tj+1

xj−1 xj xj+1

For working space, we make use of an array W containing d + 1 entries (one for each text
segment) ofm bits, with all entries set to zero using the constant time initialization technique [3].
During the course of the algorithm the ith bit of W[j] is set to 1 if the prefix condition is true
for P [1..i − 1] with respect to Tj . There are exactly m stages of the algorithm (i = 1, . . . ,m)
corresponding to the suffixes of P . In a given stage i we consider each text segment Tj found
to be a prefix of the ith suffix of P . To verify the prefix and suffix conditions for Tj we first

10

consider (line 9 of Algorithm 2): will P [1..i− 1] need to fully contain the previous text segment
Tj−1 in order to match in T ? This breaks our algorithm into the two main cases. If not (Case 1),
we check the prefix condition by checking whether P [1..i − 1] is compatible with the wildcard
group to its left and the suffix of Tj−1 to which it must align (line 10). If the prefix condition
is satisfied, we consider (line 11): will P [i+ |Tj |..m] need to fully contain the next text segment
Tj+1 in order to match in T ? If not (Case 1a), we check whether the suffix condition is satisfied
by checking that P [i+ |Tj |..m] is compatible with the wildcard group to its right and the prefix
of Tj+1 to which it must align (line 12). If indeed the suffix condition is satisfied, we output a
match (line 13). If yes (Case 1b), we set the (i+ lj + kj)

th bit of entry W[j+1] to 1, to indicate
that a prefix condition holds for P [1..i + lj + kj − 1] with respect to Tj+1 (line 15). The key
idea here is that we only attempt to verify the suffix condition when Tj would be the last text
segment to occur in P (i.e., Case 1a) and if not (Case 1b), we record information in W stating
that we currently have a partial match, but for it to remain viable, Tj+1 should be a prefix of
P [i+ lj + kj..m]. Case 2 occurs when P must contain the previous text segment Tj−1 to satisfy
the prefix condition (lines 16–22). Since stages of the algorithm proceed with increasing values
of i, then the prefix condition would have been previously checked and, if satisfied, the ith bit
of W[j] would be set to 1. The remaining questions are answered as before: the suffix condition
is verified if possible, and otherwise successful partial matches are again recorded in W.

Lemma 14. All Type 3 matches can be reported in O(m log σ+ γ) time using O(dm+m log n)
bits of working space.

Combining the results for the 3 types of matching we arrive at our second main result.

Theorem 2. Given a text T of length n containing d groups of k wildcards all matches of a
pattern P of length m can be reported using O(dm+m log n) bits of working space in O(m(log σ+
min(m, d̂) log k

log log k)+occ1 log n+occ2
log k

log log k +γ) time with an index occupying (2+o(1))n log σ+
O(n) +O(d log n) +O(k log k) bits of space.

Acknowledgments. The author would like to thank Anne Condon for helpful discussions,
detailed feedback and suggestions on this manuscript.

References

1. Belazzougui, D.: Succinct dictionary matching with no slowdown. In: CPM. pp. 88–100. Springer (2010)
2. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search structures on a grid with

applications to text indexing. Algorithms and Data Structures pp. 98–109 (2009)
3. Briggs, P., Torczon, L.: An efficient representation for sparse sets. ACM Lett. Program. Lang. Syst. 2, 59–69

(1993)
4. Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and indexing with errors and don’t cares. In:

Thirty-sixth annual ACM symposium on Theory of computing. pp. 91–100. STOC ’04, ACM (2004)
5. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: Foundations of Computer

Science, 2000. Proceedings. 41st Annual Symposium on. pp. 390–398. IEEE (2002)
6. Frazer, K., Ballinger, D., Cox, D., Hinds, D., Stuve, L., Gibbs, R., et al.: A second generation human haplotype

map of over 3.1 million SNPs. Nature 449(7164), 851–861 (2007)
7. Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees with applications to text indexing and string

matching. In: Thirty-second annual ACM Symposium on Theory of Computing. pp. 397–406. ACM (2000)
8. Hon, W., Ku, T., Shah, R., Thankachan, S., Vitter, J.: Faster Compressed Dictionary Matching. In: String

Processing and Information Retrieval. pp. 191–200. Springer (2010)
9. Jacobson, G.: Succinct static data structures. Ph.D. thesis, Carnegie Mellon University (1989)

10. Knuth, D., Morris Jr, J., Pratt, V.: Fast pattern matching in strings. SIAM J. on Computing 6, 323 (1977)
11. Lam, T.W., Sung, W.K., Tam, S.L., Yiu, S.M.: Space efficient indexes for string matching with don’t cares.

In: Proceedings of the 18th international conference on Algorithms and computation. pp. 846–857 (2007)
12. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. In: SODA ’90: Proceedings

of the first annual ACM-SIAM symposium on Discrete algorithms. pp. 319–327. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (1990)

11

13. Munro, J., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM Journal on
Computing 31(3), 762–776 (2002)

14. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys (CSUR) 39(1), 2 (2007)
15. Ohlebusch, E., Gog, S., Kügel, A.: Computing matching statistics and maximal exact matches on compressed

full-text indexes. In: SPIRE, vol. 6393, pp. 347–358. Springer (2010)
16. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications to encoding k-ary trees

and multisets. In: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms. pp.
233–242. Society for Industrial and Applied Mathematics Philadelphia, PA, USA (2002)

17. Tam, A., Wu, E., Lam, T.W., Yiu, S.M.: Succinct text indexing with wildcards. In: String Processing and
Information Retrieval, vol. 5721, pp. 39–50. Springer (2009)

18. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on Switching and Automata
Theory. pp. 1–11. IEEE (1973)

12

A Supporting Proofs

Proof of Lemma 7

Proof. We first consider the case for determining if Tj is a prefix of P . Suppose that Tj is a
prefix of P . Then it must be the case that |Tj | ≤ |P |. By definition T [SA[c]..|T |] (T [SA[d]..|T |])
is lexicographically smaller (greater) than any other suffix of T prefixed by the string Tj; thus,
[c, d] must enclose [a, b] and we have c ≤ a ≤ b ≤ d.

Next consider the case when c ≤ a ≤ b ≤ d and |Tj| ≤ |P |. Since [c, d] encloses [a, b] they
must share a common prefix of length min(|P |, |Tj |). If [a, b] = [c, d] it could be the case that P
is a proper prefix of Tj; however, since |P | ≥ |Tj | then P and Tj must share a common prefix
of length at least |Tj |. Thus, Tj is a prefix of T .

The other case is symmetric, but it is not necessary to compare the lengths of P and Tj . ⊓⊔

Proof of Lemma 12

Proof. This follows from the proof of Lemma 7 and by the definition of lex ids since they
correspond to φ characters (which prefix text segment occurrences only) in T BWT that must
necessarily be contained within the SA range for those text segment occurrences. ⊓⊔

Proof of Lemma 8

Proof. We let I1 denote the interval in BP specified by (l, r). If I1 is an undefined interval then
P is not prefixed by any text segment (occ = 0) and we are done. Suppose I1 is defined. This
interval is enclosed by another interval I2 = (p, q) if and only if p < l and q > r. Since text
segment intervals cannot cross, if I2 opens before I1 (p < l) it is either the case that I2 closes
before I1 opens (q < l) or I2 closes after I1 closes (q > r); it is the latter case we are interested in.
We count the number of intervals that begin (opening parentheses), up to index l, and subtract
the number which also end (closing parentheses), up to index l. The difference is exactly the
number of enclosing intervals for I1. Specifically, occ = rank((BP, l) − rank)(BP, l) and can be
computed in O(1) time.

Reporting the text segment match for interval I1 consists of outputting a tuple containing
(start, end, lexid). The lexid is the lexicographical order of the text segment (relative to others)
and is determined in O(1) time as lexid = rank((BP, l). Since we report text segments that are
prefixes of T , then start = 1 and end = start + L[lexid] − 1 (as lengths of text segments are
stored in L according to their lex id). After reporting the match for I1, we can determine the
next enclosing interval by setting (l, r) = enclose(BP, l) and repeating the above procedure
until all occ occurrences have been reported. ⊓⊔

Proof of Lemma 9

Proof. Suppose t text segment intervals begin at position c. As previously stated, if two or
more text segment intervals begin at the same position then they are different occurrences of
the same text segment string ω. By definition of B, no other text segment interval can begin
before position d in SA. If B[d] marks the beginning of another text segment interval, it must
be lexicographically larger than ω and therefore all t occurrences of ω appear before position
d. If B[d] instead marks the end of one or more text segment intervals (at position d − 1), it
must be for the t occurrences of ω since text segment intervals cannot cross. In either case, all
occurrences of the text segment ω must appear in SA in the range [c..d−1] (possibly in addition
to other suffixes of T prefixed by the string ω). Since only text segment instances are prefixed
by the character φ in T , then T BWT[c..d − 1] must contain exactly t occurrences of φ.

Suppose T BWT[c..d − 1] contains t occurrences of the character φ. Since each text segment
occurrence is prefixed by the character φ in T , then t suffixes of T in the range [c..d− 1] of SA

13

are prefixed by text segment occurrences. Each text segment occurrence corresponds to one text
segment interval. Text segment intervals only begin in positions k where B[k] = 1. Therefore t
text segment intervals begin at position c as no other text segment intervals can begin before
position d, by definition of B. ⊓⊔

Proof of Lemma 10 (Algorithm 1 - Find smallest enclosing text segment interval)

Proof. Algorithm 1 begins by identifying the last entry in B up to position a and the first entry
after position a equal to 1 denoting the opening or closing of text segment intervals. If either of
these are undefined, then a text segment interval cannot enclose [a, b] and an empty interval is
returned (lines 3–4).

If T BWT[c..d−1] contains one or more φ characters then by Lemma 9, B[c] marks the beginning
of some number of text segment intervals (lines 6–13). Since text segment interval lex ids are
based on their lexicographical order in SA, then the lex id of the last text segment interval to
open at position c is lexid, given by the count of φ characters up to position d − 1 in T BWT.
Let Tk be this text segment interval. By Lemma 7, we must also ensure that |P | ≥ |Tk| by
checking the text segment length in L (line 7). If P is shorter than Tk (lines 8–10), then it is also
shorter than all text segment intervals beginning at position c since they represent the same
text segment string. However, it is possible that there exists a text segment interval Tj that is a
longest proper prefix of Tk. Note that |P | > |Tj |, since it must be lexicographically larger than
Tj ; otherwise B[c] would correspond to this interval instead of Tk. If Tj exists, it would enclose
the first text segment interval that begins at position c. We can find the lex id for the first text
segment interval opening at position c (smallest lex id) similarly to Tk, but instead we count
the occurrences of φ prior to position c and then add one. The lex id will correspond to the
rank of the left parenthesis in BP and the index l is easily determined by a select operation.
Note that the enclose operation will return an undefined interval if Tj does not exist. If instead
|Tk| ≤ |P | (lines 12–13), we can simply determine the index for the left parenthesis denoting
the text segment interval Tk.

Otherwise, B[c] only marks the end of some text segment interval(s) (lines 15–17). In this
case, we use the number of occurrences of 1’s in B up to position c as an index into the array
R which stores the number of text segment intervals that close prior to the position denoted by
that entry. This allows us to identify Tk, the last text segment interval to close prior to position
a (the one having the smallest lex id). If another text segment interval Tj encloses Tk, then it
must be the case that Tj encloses [a, b] and |Tj | < |P |, otherwise Tj would also close prior to
position a.

At this point, the pair (l, r) either correctly identifies the smallest enclosing text segment
interval for the SA range [a, b], or it is an undefined interval if none exists. Overall, a constant
number of operations are required and all can be computed in O(1) time. ⊓⊔

Proof of Lemma 11 (Space analysis of our succinct wildcard index)

Proof. The succinct full-text dictionary requires (1 + o(1))n log σ + O(n) + O(d log n
d
) bits by

Theorem 1, which in turn is based on a combination of Lemmas 1–4, and the additional O(n) bits
required to enhance SA with lcp-interval information and to store the LCP array. The wildcard
index also requires a suffix array of the reverse of string T which occupies (1 + o(1))n log σ
bits by Lemma 1. The most space dominant auxiliary array is used to store suffix array ranges
in O(d log n) bits. The range query data structure requires O(k log k) bits by Lemma 6. Thus,
overall we have a space complexity of (2+ o(1))n log σ+O(n)+O(d log n)+O(k log k) bits. ⊓⊔

Proof of Lemma 14 (Algorithm 2 - Type 3 Matching)

Proof. Recall that the algorithm proceeds in m stages for increasing i = 1, . . . ,m for each suffix
of P . It is clear in the algorithm description that verification of a match of Tj proceeds by first

14

ensuring the prefix condition can be satisfied (Case 1: if P does not contain Tj−1) or ensuring it
was previously satisfied (Case 2: P must contain Tj−1), and then verifying the suffix condition in
the cases where P does not contain Tj+1 (Cases 1a, 2a) (and reporting a match when verified),
or by instead marking W to signify a partial match, expecting the match to be continued by a
match of Tj+1 at the time step i+ lj + kj (Cases 1b, 2b). The correctness relies on showing that
W is set correctly to confirm the satisfaction of the prefix condition for the next text segment
(Tj+1) for a future time step. We show correctness by induction on i. Consider the base case
(i = 1). All candidate text segments Tj fall into Case 1 which (importantly) does not rely on
the correctness of previous steps of the algorithm. The prefix condition is trivially true. Thus,
if a successful match of P [1..m] to T [xj..n] will not fully contain Tj+1 we can simply check if
P [lj + kj + 1..m] is a prefix of Tj+1 by Lemma 7. If it is, both conditions have been satisfied
and we have a match, otherwise, we record in W[j + 1] that Tj+1 must appear as a prefix of
P [lj + kj + 1..m] to form a successful match. Now assume we are in step i and the algorithm
is correct up to step i− 1. Case 1 is handled as before and does not rely on the correctness of
previous steps, so assume we are in Case 2 (P must contain Tj−1). Then, if the prefix condition
is satisfied the ith bit of W[j] should be set to 1. Since this would have been set at some step
t < i, and we have assumed the algorithm is correct up to step i − 1, then it must be the case
that the prefix condition for Tj is satisfied if and only if W[j] has bit i set to 1. Similarly to
before, if the prefix condition is satisfied, we can attempt to verify the suffix condition using
Lemma 7 when P does not contain Tj+1 or by recording the partial match in W as before. This
completes the correctness proof.

We now consider the additional runtime and work space incurred for Type 3 matching. There
are γ candidate positions overall that can be reported in O(m log σ+γ) time by Theorem 1. Each
candidate is processed once, in O(1) time. The array W occupies O(dm) bits as working space.
Thus, the overall time complexity is O(m log σ + γ) and working space is O(dm+m log n). ⊓⊔

	Succincter Text Indexing with Wildcards
	Chris Thachuk

