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Abstract. Data centric languages, such as recursive rule based lan-
guages, have been proposed to program distributed applications over
networks. They simplify greatly the code, which is orders of magnitude
shorter, much more declarative, while still admitting efficient distributed
execution. We show that they also provide a promising approach to the
verification of distributed protocols, thanks to their data centric orien-
tation, which allows to explicitly handle global structures, such as the
topology of the network, routing tables, trees, etc, as well as their prop-
erties.
We consider a framework using an original formalization in the Coq proof
assistant of a distributed computation model based on message passing
with either synchronous or asynchronous behavior. The declarative rules
of the Netlog language for specifying distributed protocols, as well as
the virtual machines for evaluating these rules, are encoded in Coq as
well. We consider as a case study tree protocols, and show how this
framework enables us to formally verify them in both the asynchronous
and synchronous setting.

1 Introduction

Up to now, most efforts to formalize protocols or distributed algorithms and
automate their verification relied on control-oriented paradigms. It is the case
for instance of the “Formal Description Techniques” developed by telecom labs
at the beginning of the 1980s in order to specify and verify protocols to be
standardized at ITU and ISO. Two of the languages developed, Estelle and
SDL, are based on asynchronous communicating automata, while LOTOS is a
process algebra based on CCS and CSP extended with algebraic data types [35].
Several verification tools, ranging from simulation to model checking, have been
developed and applied to different case studies [38, 18, 34, 39, 31, 33, 17, 9, 12].

For the verification of communication protocols based on process algebras,
the idea has been to model both the implementation and the specification of a
protocol as processes in a process algebra, and then to use automatic tools to
check whether the former is a refinement of the latter or if they are behaviorally
equivalent [5, 32]. Examples include the Concurrency Workbench [5], which is a
verification tool based on CCS, FDR [32] which is based on CSP [16], ProVerif
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[2] which is based on the applied pi calculus [1]. Other approaches include in-
put/output automata [26], or Unity and TLA, which combine temporal logic
and transition-based specification [3, 19], and may rely as well on proof assistant
technology [30, 15, 4, 20].

The common feature of all these approaches is their focus on control, in par-
ticular on how to deal with behaviors in a distributed framework. Typical issues
include non-determinism, deadlock freedom, stuttering, fairness, distributed con-
sensus and, more recently, mobility. Data is generally considered as an abstract
object not really related to the behavior. If this is relevant for many low-level
protocols, such as transport protocols, it does not suit the needs of applications
which aim at building up distributed global information, such as topological in-
formation on the network (in a physical or a virtual sense), e.g. routing tables.
Such protocols are qualified as data-centric in the sequel. Correctness proofs
of data-centric protocols are even more complex than those for control-centric
protocols.

Data-centric rule-based languages have been recently proposed to program
network protocols and distributed applications [24, 23, 22]. This approach ben-
efits from reasonably efficient implementations, by using methods developed in
the field of databases for recursive languages à la Datalog. Programs are ex-
pressed at a very high level, typically two orders of magnitude shorter than code
written in usual imperative languages.

Our claim is that this framework is promising not only for the design of
distributed algorithms, but for their verification as well. Up to now, only a few
partial results have been demonstrated. In [36], a declarative network verifier
(DNV) was presented. Specifications written in the Network Datalog query lan-
guage are mapped into logical axioms, which can be used in theorem provers
like PVS to validate protocol correctness. The reasoning based on DNV is for
Datalog specifications of (eventually distributed) algorithms, but not for dis-
tributed versions of Datalog such as the one proposed in this paper. In other
words, only the highly abstract centralized behaviour of a network is considered.
Therefore, deep subtleties on message passing, derivation of local facts and their
relationship with the intended global behaviour are absent in [36].

In the present paper, we go one essential step further. We show that it is
indeed feasible to reason about the distributed behaviour of individual nodes
which together yield some expected global behaviour of the whole network. We
consider the Netlog language [13], which relies on deductive rules of the form
head ← body, which are installed on each node of the distributed system. The
rules allow to derive new facts of the form “head”, if their body is satisfied locally
on the node. The facts derived might then be stored locally on the node or sent
to other nodes in the network depending upon the rule.

Netlog admits a fixpoint semantics which interleaves local computation on
the nodes and communication between neighboring nodes. On each node, a local
round consists of a computation phase followed by a communication phase. Dur-
ing the computation phase, the program updates the local data and produces
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messages to be sent. During the communication phase, messages are transmitted
and become available to the destination node.

Our objective is to develop a framework to formally verify properties of
Netlog programs. As to formal verification, there are roughly two kinds of ap-
proaches: model checking and theorem proving. Model checking explores the state
space of a system model exhaustively to see if a desirable property is satisfied.
It is largely automated and generates a counterexample if the property does
not hold. The state explosion problem limits the potential of model checkers
for large systems. The basic idea of theorem proving is to translate a system’s
specification into a mathematical theory and then construct a proof of a theo-
rem by generating the intermediate proof steps. Theorem proving can deal with
large or even infinite state spaces by using proof principles such as induction and
co-induction.

We use the proof assistant, Coq, which is an interactive theorem prover,
in which high level proof search commands construct formal proofs behind the
scene, which are then mechanically verified. Coq has been successfully applied
to ensure reliability of hardware and software systems in various fields, such as
multiplier circuits [29], concurrent communication protocols [11], self-stabilizing
population protocols [8], devices for broadband protocols [27], and compilers
[21], to name a few.

We develop a Coq library necessary for our purposes, including (i) the for-
malization of the distributed system; (ii) the modeling of the embedded machine
evaluating the Netlog programs; (iii) the translation of the Netlog programs; as
well as (iv) a formalization of graphs and trees suitable to our needs.

As a proof of concept, we experimented the proposed framework on concrete
protocols for constructing spanning trees over connected graphs. Such protocols
have been shown to be correct on theoretical models. This is the case for instance
of the well-known distributed algorithm for computing a minimum-weight span-
ning tree due to Gallager, Humblet and Spira [10]. The rigorous proofs made
between 1987 and 2006 [37, 14, 28] are all intricate and very long (100 to 170
pages). Only [14] has been mechanically proof-checked.

Our objective is to carry on proofs for protocols written in a programming
language (Netlog) which is implemented and runs on real distributed systems,
and not only in theoretical models, and to concentrate on a data-centric ap-
proach. The protocols proceed in rounds, where one node (in the asynchronous
model) or all nodes (in the synchronous model) perform some local computa-
tion, update their local data and then exchange data with their neighbors before
entering the next round.

We have proven an initial simple protocol for defining spanning trees. Fur-
thermore, in the synchronous message passing model, we show that we obtain a
distributed version of the classical breadth-first search (BFS) algorithm. To show
its correctness, the crucial ingredient is to formally prove the validity of the in-
variant that states the relationship between the centralized and the distributed
version of the protocol, as well as the propagation of information on the dis-
tributed version. This is non trivial and requires modeling how distributed tasks
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cooperate together to form the invariant. We claim that the proposed techniques
establish foundations for proving more complex tree protocols such as GHS [10]

The paper is organized as follows. In Section 2, the distributed computation
as formalized in Coq is presented. Section 3 is devoted to the presentation of the
Netlog language. Section 4 contains the sketches of the proofs of the correctness
of the tree protocol (more details are provided in the appendix and a complete
Coq script is available in [6]).

2 Distributed Computation Model of Netlog

In this section we introduce a distributed computation model based on the
message passing mechanism, which is suitable both for synchronous and asyn-
chronous execution. Corresponding formal definitions in Coq can be found in
[6, 7]. The distributed computation model described below does not depend on
Netlog. In our formalization, we just assume that the states at nodes have a type
local data which can evolve using simple set-theoretic operations such as union.

A distributed system relies on a communication network whose topology is
given by a directed connected graph G = (VG , G), where VG is the set of nodes, and
G denotes the set of communication links between nodes. For many applications,
we can also assume that the graph is symmetric, that is G(α, β)⇔ G(β, α).

Each node has a unique identifier, Id, taken from 1, 2, · · · , n, where n is the
number of nodes, and distinct local ports for distinct links incident to it. The
control is fully distributed in the network, and there is no shared memory. In
this high-level computation model, we abstract away detailed factors like node
failures and lossy channels; if we were to formalize a more precise model, most
of the data structures defined below would have to be refined.

All the nodes have the same architecture and the same behavior. Each node
consists of three main components: (i) a router, handling the communication
with the network; (ii) an engine, executing the local programs; and (iii) a local
data store to maintain the information (data and programs) local to the node. It
contains in particular the fragment of G, which relates a node to its neighbors.
The router queues the incoming messages on the reception queue and the message
to push produced by the engine on the emission queue.

We distinguish between computation events, performed in a node, and com-
munication events, performed by nodes which cast their messages to their neigh-
bors. On one node, a computation phase followed by a communication phase is
called a local round of the distributed computation.

An execution is a sequence of alternating global configurations and rounds
occurring on one node, in the case of an asynchronous system, or a sequence of
alternating global configurations and rounds occurring simultaneously on each
node, in the case of a synchronous system. In the latter case, the computation
phase runs in parallel on all nodes, immediately followed by a parallel execution
on all nodes of the corresponding communication phase.

The contents of node loc (the database of facts stored at loc) for a config-

uration cnf is denoted by |loc|cnf , or just |loc| when the configuration is clear
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from the context. Similarly, the set of messages arriving a node y from node x
is denoted by |x→y|cnf or |x→y|.

A local round at node loc relates an actual configuration pre to a new config-
uration mid and a list out of messages emitted from loc. Furthermore, incoming
edges are cleared – intuitively, this represents the consumption of messages, once
their contents has been used to elaborate mid and out . The new data d to be
stored on loc is defined by a relation new stores given as a parameter, and we
assume that d depends only on the data available at loc in pre, that is, |loc|pre
and all the |x→loc|pre such that there is an edge from x to loc. Intuitively, the
relation new stores expresses that d consists of new facts derived from facts avail-
able at loc. Similarly, out is defined by a relation new push and satisfies similar
requirements. Formally, a local round is defined by the following conjunction.

local round(loc, pre,mid , out) def
==∃d,new stores(pre, loc, d) ∧ |loc|mid

= |loc|pre ∪ d
new push(pre, loc, out)

∀ x ∈ neighbors(loc), |x→loc|mid
= ∅

For modeling asynchronous behaviors, we also need the notion of a trivial
local round at loc, where the local data does not change and moreover incoming
edges are not cleared either.

no change at(loc, pre,mid) def
=={
|loc|mid

= |loc|pre

∀ x ∈ neighbors(loc), |x→loc|mid
= |x→loc|pre

A communication event at node loc specifies that the local data at loc does
not change and that facts from out are appended on edges according to their
destinations.

communication(loc,mid , post , out) def
=={

|loc|post = |loc|mid

∀ y ∈ neighbors(loc), |loc→y|post = find(y, out) ∪ |loc→y|mid

The function find returns the fact in out whose destination is y . Note that
none of the previous three definitions specifies completely the next configuration
in function of the previous one. They rather constrain a relation between two
consecutive configurations by specifying what should happen at a given loca-
tion. Combining these definitions in various ways allows us to define a complete
transition relation between two configurations, with either a synchronous or an
asynchronous behavior.

async round(pre, post) def
==

∃ loc mid out


local round(loc, pre,mid , out)
∀ loc′, loc 6= loc′ ⇒ no change at(loc′, pre,mid)
communication(loc,mid , post , out)
∀ loc′, loc 6= loc′ ⇒ communication(loc′,mid , post , ∅)
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An asynchronous round between two configurations pre and post is given by a
node Id loc, an intermediate configuration mid and a list of messages out such
that there is a local round relating pre, mid and out on loc while no change
occurs on loc′ different from loc, and a communication relates mid and out to
post on loc while nothing is communicated on loc′ different from loc.

sync round(pre, post) def
==

∃mid , ∀ loc, ∃ out

{
local round(loc, pre,mid , out)
communication(loc,mid , post , out)

A synchronous round between two configurations pre and post is given by an
intermediate configuration mid such that for all node Id loc, there exists a list
of messages out such that there is a local round relating pre, mid and out on
loc and a communication relating mid and out to post on loc.

Now, given an arbitrary trans relation, which can be of the form sync round ,
or async round , or even of some alternative form, we can co-inductively define a
run starting from a configuration. We have two cases: either there is a transition
from configuration pre to configuration post , then any run from post yields a run
from pre; or, in the opposite case, we have an empty run from pre. Altogether, a
run from pre is either a finite sequence of transitions ended up with a configura-
tion where no transition is available, or an infinite sequence of transitions, where
consecutive configurations are related using trans. In order to prove properties
on run, we define some temporal logic operators. In the examples considered
below we need a very simple version of always, which is parametrized by a
property P of configurations. In a more general setting, the parameter would be
a property of runs. It is well known that a property which holds initially and
is invariant is always satisfied on a run. This fact is easily proved in the very
general setting provided by Coq.

3 Data Centric Protocols

In this section, we introduce the Netlog language through examples of simple
protocols for defining trees. Only the main constructs of the language are pre-
sented. A more thorough presentation can be found in [13]. Netlog relies on
Datalog-like recursive rules, of the form head← body, which allow to derive the
fact “head” whenever the “body” is satisfied.

We first recall classical Datalog, whose programs run in a centralized setting
over relational structures, and which allow to define invariants that will be used
as well in the proofs in the distributed setting. We assume that the language
contains negation as well as aggregation functions, which can be used in the
head of rules to aggregate over all values satisfying the body of the rule. For
instance, the function min will be used in the next example.

Let us start with the program, BFS-seq, which computes BFS trees. It runs
on an instance of a graph represented by a binary relation E, and a unique node
satisfying root(x). The derived relations onST , and ST , are such that onST (α)
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holds for a node α already on the tree, and ST (α, β) holds for an edge (α, β)
already in the BFS tree.

BFS-seq in Datalog

onST (x) ← Root(x). (1)

ST (min(x), y)
onST (y)

}
← E(x, y); onST (x);¬onST (y). (2)

The evaluation of the program is iterated in a inflationary manner, by ac-
cumulating the results till a fixpoint, which defines its semantics, is reached. At
the first step, the root node is included in the relation onST using the first rule.
At the nth step, nodes at distance n− 1 from the root are added in onST , and
an arc of the tree is added in ST for each of them, by choosing the parent with
minimal Id. The fixpoint is reached when all nodes are on the tree.

Minimum spanning trees can be defined in Datalog with arithmetic. Let us
consider first the definition corresponding to Prim’s algorithm [25]. We assume
weighted graphs, G = (V,E, ω), where the weight ω : E → R+, satisfies ω(u, v) =
ω(v, u) for every edge (u, v) ∈ E. As usual, to simplify the algorithm, we assume
that ω is a 1-1 mapping, so the weights of any pair of edges are distinct. Prim’s
algorithm starts from a (root) node, and construct successive fragments of the
MST, by adding the minimal outgoing edge to the fragment at each step.

The sequential Datalog program can be written with three rules as follows.
The symbol ”!” denotes the consumption of the fact used in the body of the rule,
which is deleted after the application of the rule.

MST-Prim-seq in Datalog

onST (x)
MWOE(min(m))

}
← Root(x);E(x, y,m). (3)

ST (x, y)
onST (y)

}
← onST (x);¬onST (y);E(x, y,m); !MWOE(m). (4)

MWOE(min(m)) ← onST (x);¬onST (y);E(x, y,m);¬MWOE(m). (5)

The evaluation of this program alternates two phases, (i) computation of the
minimal outgoing edge’s weight, MWOE, and when it is obtained, (ii) addition
of the corresponding unique edge.

Let us consider now, Netlog programs, which are installed on each node,
where they run concurrently. The rules of a program are applied in parallel, and
the results are computed by iterating the rules over the local instance of the
node, using facts either stored on the node or pushed by a neighbor. In contrast
with other approaches to concurrency, the focus is not primarily on monitoring
events, but data (i.e. Datalog facts) contained in nodes.

The facts deduced from rules can be stored on the node, on which the rules
run, or sent to other nodes. The symbol in the head of the rules means that the
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result has to be either stored on the local data store (↓), sent to neighbor nodes
(↑), or both (l). The facts received on a node are used to trigger the rules, but
do not get stored on that node.

The evaluation of the body of a rule is always performed on a given node. A
fact is then considered to hold if and only if it occurs on this node. The negation
of a fact holds if the fact does not occur on the node where the computation is
performed.

The following program, which constructs a spanning tree over a distributed
system, relies as above on three relation symbols: E, onST , and ST ; E represents
the edge relation; and at any stage of the computation, onST (α) (respectively
ST (α, β)) hold iff the node α (respectively the edge (α, β)) is already on the
intended tree.

Spanning Tree Protocol in Netlog

l onST (x) ← @x = 0. (6)

l onST (y)
↓ ST (min(x), y)

}
← E(x,@y); onST (x);¬onST (y). (7)

Rule (6) runs on the unique (rrot) node, say ρ, which satisfies the relation ρ = 0.
It derives a fact onST (ρ), which is stored on ρ and sent to its neighbors. Rule (7)
runs on the nodes (@y) at the border of the already computed tree. It chooses one
parent (the one with minimal Id) to join the tree. Two facts are derived, which
are both locally stored. The fact onST (y) is pushed to all neighbors. Each fact
E(x, y) is assumed to be initially stored on node y. As no new fact E(x, y) can
be derived from Rules (6) and (7), the consistency of E with the physical edge
relation holds forever. This algorithm aims at constructing suitable distributed
relations onST and ST . In Section 4, we will prove that they actually define a
tree; moreover, in the synchronous setting they define a BFS tree.

The translation of the sequential Datalog program defining a spanning tree, to
a distributed program is almost trivial. It suffices to add communication instruc-
tions since the program runs locally. The translation to a distributed program
is more complex for the Minimal Spanning tree protocol. Indeed, rules (4)
and (5) are not local, and require communication between remote nodes. In a
network, the root can orchestrate the distributed computation, by alternating
phases of (i) computation of the MWOE by a convergecast into the current
spanning tree, and (ii) addition of the new edge with minimal weight to the tree.

The next program (together with two simple rule modules for the converge-
cast and the edge addition) defines the minimal spanning tree in Netlog.

Minimum Spanning Tree Protocol in Netlog

onST (x)
UpMWOE(x,min(m))

GetMWOE(x)

}
← Root(x);E(x, y,m). (8)

↓ AddEdge(x,m) ← Root(x); !GetMWOE(x); !UpMWOE(x,m). (9)

↓ GetMWOE(x) ← Root(x); !AddEdge(x,m); !UpEdge(x,m). (10)
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The facts AddEdge(x,m) and GetMWOE(x) are triggering rule modules
(of half a dozen rules) that perform respectively a traversal of the tree to add
the edge with minimal outgoing weight, and a convergecast to obtain the new
minimal outgoing weight. These rule modules (omitted for space reason) can
be used in other protocols requiring non local actions. We have tested them in
particular in a concurrent version of the Minimal Spanning Tree, the GHS, where
there is no initial root and all nodes concurrently start building MST fragments.

4 Verifying Tree Protocols

We conduct the verification in two settings. In the asynchronous case, we prove
that the previous protocol for spanning tree eventually constructs a spanning
tree, while in the synchronous case, we prove that this protocol constructs actu-
ally a spanning tree by doing a breadth-first search in the network. We briefly
sketch the first case study and then give a more detailed discussion for the second
one which involves a much more difficult proof.

In both cases we expect to show that the relation ST determines a spanning
tree. However, this relation is distributed on the nodes and the Netlog protocol
reacts only to a locally visible part of relations ST , onST and E. The expected
property is then stated in terms of the union of all ST facts available on the
network.

4.1 Spanning Tree in the Asynchronous Case

We have to check that when adding a new fact ST (x, y) at some node loc then
x is already on the tree while y is not yet. This is basically entailed by the body
of the last rule, but additional properties are needed in order to ensure this
rigorously. We use the following ones:

1. The E relation corresponds exactly to the edges.
2. An onST (z) fact arriving at a node y is already stored on the sender x.
3. If an onST (x) fact is stored on a node loc, then x = loc.
4. The onST relation grows consistently with ST (onST is actually the engine

of the algorithm), and these two relations define a tree.

The first three properties are separately proved to be invariant. The last property
is included in a predicate is tree(o, s), which intuitively means that the union
of all onST facts o and the union of all ST facts s are consistent and they define
a tree. We prove that if at the beginning of a round the first three properties
together with is tree(o, s) hold, then at the end of the round is tree(o, s) still
holds. The conjunction of all the four properties then constitutes an invariant of
the protocol.

We check that the initial configuration generates a tree, then we have that in
all configurations of any asynchronous run starting from the initial configuration,
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ST has the shape of a tree. This safety property is formalized in Coq (the script
is available online [6]).

Liveness, i.e. each node is eventually a member of onST , can be easily proved,
provided the graph is finite and connected, and a fairness property is assumed in
order to discard uninteresting runs where an inactive node is continuously chosen
for each local round, instead of another node having an enabled rule. The proof
is by induction on the finite cardinality of the set onST of nodes which do not
satisfy onST . If at some point of a run this set is non-empty, then at least one of
its members is a neighbor of the current tree due to connectivity. By fairness, this
node eventually performs a local round and is no longer in onST . Formalizing
such arguments involving liveness and fairness properties of infinite behaviors of
distributed systems has already been done in Coq [8]. The issue of termination
is simpler in the synchronous setting, since fairness is no more needed to remove
fake stuttering steps.

4.2 BFS in the Synchronous Case

For our second case study, the correctness proof of the BFS protocol, we prove
that in the synchronous setting, the union of ST facts is the same as the one
which would be computed by a centralized algorithm O (the oracle) running
rules (1) and (2) on a reference version of the global relations onST and ST .
This is subtler than one may expect at first sight, because decisions taken on
a given node do not depend on the global relations onST and ST , but only on
the visible part, which is made of the locally stored facts and of the arriving
messages. Moreover, the information contained in an arriving onST (x) fact is
ephemeral: this fact is not itself stored locally (only its consequences onST (y)
and ST (m, y) are stored) and it will never be sent again. Indeed this information
is available exactly at the right time. We therefore make a precise reasoning on
the consistency of stored and transmitted facts with the computation that would
be performed by the oracle O.

We denote by C the database of facts managed byO. Our main theorem states
that a synchronous round in the distributed synchronous version corresponds to
a step of computation performed by O on C. The proof relies necessarily on a
suitable characterization of the body of rule (7), which depends on the presence
and the absence of facts onST . Therefore we need first to prove that facts onST ,
as computed by distributed rules (6) and (7), are the ones computed by O and
conversely – this is respectively called correctness and completeness of onST
(definitions 3 and 6).

The first direction is not very hard (proposition 5). Completeness requires
more attention. The issue is to ensure that, given an edge from x to y, such
that onST (x) ∈ C but onST (y) 6∈ C, the body of rule (7) holds at y in order to
ensure that rule (7) will derive onST (y) as expected by rule (2) at the next step.
If we just assume correctness and completeness of onST , we get onST (x) only
on x, while we need it on y. Therefore a stronger invariant is needed. The key
is the introduction of the notion of a good edge (definition 7) which says that
if onST (x) is stored at x, then onST (y) is stored at y or onST (x) is arriving
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at y (both things can happen simultaneously as well). Here are the main steps.
Proofs are given in more detail in the appendix. Additional properties, such as
the establishment of the invariant in the initial configuration (actually: after one
synchronous round) are available in [7, 6].

Notation Let ϕ be a fact; here ϕ can have the shape E(x, y) or onST (x)
or ST (x, y). The presence of a fact ϕ in a database d is denoted by ϕ ∈ d.
The set of facts ST (x, y) in d is denoted by dST , and use a similar convention
for onST end E. The database of facts stored at node loc is denoted by |loc|.
Similarly, the database of facts arriving a node y from node x is denoted by
|x→y|. Statements such as onST (z) ∈ |loc| are about a given configuration
cnf or even an extended configuration 〈cnf , C〉, and should be written cnf , C 
onST (z) ∈ |loc|. In general cnf is clear from the context and we just write P
instead of cnf , C  P . When we consider a synchronous round, i.e., a transition
between two consecutive configurations pre and post, we write P

sr−−−→ Q for
pre  P ⇒ post  Q. Similarly, for oracle transitions and transitions between
extended configurations, we write respectively P

o−−→ Q for C  P ⇒ C′  Q
and P

sro−−−→ Q for pre, C  P ⇒ post, C′  Q.

Definition 1 A configuration satisfies received-onST-already-stored if and only
if for all edges x→y, if onST (z) ∈ |x→y|, then z = x and onST (z) ∈ |x|.

Proposition 2 After a transition, a configuration always satisfies received-
onST-already-stored.

Proof. By inspection of store and push rules (6) and (7).

Correctness of onST

Definition 3 An extended configuration 〈cnf , C〉 satisfies correct-onST if and
only if for all location loc of cnf , if some fact onST (z) is visible at loc, then
onST (z) ∈ C.

Proposition 4 onST (0) ∈ C o−−−→ onST (0) ∈ C.

Proof. By inspection of oracle rules (1) and (2).

Proposition 5 onST (0) ∈ C, correct-onST
sro−−−→ correct-onST.

Proof. By inspection of the consequences of rule (7) and using proposition 2, see
details in appendix.
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Completeness of onST The notion of completeness needed is much more
precise than the converse of correct-onST: the location where onST (z) is stored
has to be known. This is especially clear in the proof of lemma 10.

Definition 6 An extended configuration 〈cnf , C〉 satisfies complete-onST-node
if and only if for all x, if onST (x) ∈ C, then onST (x) is stored at x.

Definition 7 An edge x→y is good in a given configuration if and only if,
if onST (x) ∈ |x|, then onST (y) ∈ |y| or onST (x) ∈ |x→y|. A configuration
satisfies all-good if and only if all its edges are good.

The following proposition is about non-extended configurations, i.e. it is
purely about the distributed aspect of the BFS algorithm.

Proposition 8 received-onST-already-stored, all-good
sr−−−→ all-good

The main use of goodness is the completeness of the evaluation of the body
of rule (7).

Definition 9 We say that an extended configuration 〈cnf , C〉 is ready if and
only if (i) it satisfies correct-onST, complete-onST-node and (ii) cnf satisfies
all-good.

Lemma 10 Given an extended configuration satisfying ready, and an edge x→y
such that onST (x) ∈ C but onST (y) 6∈ C, the body of rule (7) holds at y.

The propagation of the completeness of onST follows.

Proposition 11 ready
sro−−−→ complete-onST-node.

Correctness and completeness of ST

Definition 12 Let cnf be a given configuration. We say that 〈cnf , C〉 satisfies
same-ST if and only if the union of all ST facts contained in some node of cnf
is the same as set of facts ST in C.

Proposition 13 ready, same-ST
sro−−−→ same-ST.

Main theorem Our invariant is the following conjunction.

Definition 14 An extended configuration 〈cnf , C〉 satisfies invar if and only if
it satisfies onST (0) ∈ C, received-onST-already-stored, ready and same-ST.

Theorem 15 invar
sro−−−→ invar.

Proof. Immediate use of propositions 2, 4, 5, 11 and 13.
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Distributed computation model 180
Netlog 1300
Tree definitions and properties 80
Translation of rules 50
Proofs on centralized ST algorithm (Rules (1) and (2)) 360
Proofs on (asynchronous) ST (Rules (6) and (7)) 1100
Proofs on (synchronous) BFS (Rules (6) and (7)) 1300

Table 1. Size of coq scripts

Finally, we observe that invar is established after one synchronous round from
the initial configuration, and that same-ST holds in the initial configuration. As
a consequence, same-ST holds forever, as expected.

Besides this global property, one may wonder whether ST (x, y) facts are
located on relevant nodes, i.e. child nodes y in our case, so that this information
could be used by a higher layer protocol for transmitting data towards the root.
This is actually a simple consequence of Rules (6) and (7), since they ensure
that ST (x, y) can only be stored on y. This is formally proved in our framework.

5 Conclusion

We developed a framework for verifying data-centric protocols expressed in a
rule-based language. We have shown that both the synchronous and the asyn-
chronous models of communication can be formalized in very similar ways from
common building blocks, that can be easily adapted to other communication
models.

Our framework has been implemented as a Coq library, which includes the
formalization of the distributed computation environment with the communica-
tion network, as well as the embedded machine which evaluates the Netlog pro-
grams on each node. The Netlog programs are translated into straightforward
Coq definitions. The proofs, sketched in the paper have been fully formalized in
Coq [7]. As a preliminary result we proved a topological property of a distributed
data structure – a tree – constructed by a simple but subtle program.

Figures on the size of our current Coq development are given in Table 1. The
detail of justifications such as “by inspection of rules (6) and (7)” requires in
general many bureaucratic proofs steps. From previous experience with Coq, we
know that most of them can be automated using dedicated tactics, so that the
user can focus entirely on the interesting part of the proof. The representation
of Netlog rules was obtained in a systematical way and could be automated as
well, using a deep embedding.

The distributed algorithm considered here as a case study was not as trivial
as it may appear at first sight, though it can be expressed in a few lines of Netlog.
It was sufficient to cover essential issues of a data-centric distributed algorithm,
in particular the relationship between local transformations and global proper-
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ties. Such properties are difficult to handle and even to state in event-centric
approaches to the verification of distributed programs.

The advantage of the techniques we have developed is that they constitute a
natural and promising open framework to handle other distributed data-centric
algorithms. We are currently working on proofs for minimum spanning trees,
and plan to further verify protocols for routing, election, naming, and other
fundamental distributed problems.
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A Details on the Proof of BFS

Definition 16 A fact ϕ is visible at a location loc if and only if ϕ is stored at
loc or ϕ is arriving on loc through an edge: ϕ ∈ |loc| or ϕ ∈ |x→loc| for some
node x. Notation: ϕ ∈ |loc|.

A.1 Correctness of onST

Fact 17 Given an extended configuration 〈cnf , C〉 which satisfies correct-onST,
let ∆loc be the set of facts computed by rule (7) at node loc. Then for all z,

onST (z) ∈ |∆loc|
sro−−−→ onST (z) ∈ C.

Proof. By inspection of ∆loc, we get z = loc and an edge x→loc with onST (x) ∈
|loc|, hence onST (x) ∈ C by correct-onST. If onST (loc) ∈ C holds, it still holds
after the transition. Otherwise, we can apply rule (2), the centralized version of
rule (7).

Lemma 18 From any extended configuration which satisfies correct-onST and
such that onST (0) ∈ C, running an synchronous round provides an extended
configuration such that all facts onST (z) stored at any location are contained

in C: onST (0) ∈ C, correct-onST
sro−−−→ ∀loc z, onST (z) ∈ |loc| ⇒ onST (z) ∈ C.

Proof. By inspection of store rules (6) and (7). For (6) we use onST (0) ∈ C. For
(7) we apply fact 17.

Remark that onST (0) ∈ C is harmless because it is a trivial invariant of oracle
transitions (proposition 4).

Proof of proposition 5 onST (0) ∈ C, correct-onST
sro−−−→ correct-onST.

Proof. If onST (z) is visible at loc, either it is stored at loc or it is arriving from
some node x. In the first case apply lemma 18 at loc. In the second case, by
lemma 2 onST (z) is stored at node x, then apply lemma 18 at x.

Lemma 19 In a configuration satisfying received-onST-already-stored, if a fact
onST (loc) is visible at location loc, then this it is stored on loc.

Proof. The interesting case is when onST (loc) arrives through an edge, then the
definition of received-onST-already-stored applies.

Lemma 20 From an extended configuration which satisfies received-onST-already-
stored and contains an edge x→y such that onST (x) ∈ |x→y|, running an syn-
chronous round provides an extended configuration such that onST (y) is stored
at y.

Proof. By inspection of store rules (6) and (7). If onST (y) was not already stored
at y, it was not visible at y by the contraposition of lemma 19, then rule (7) is
fired at y.
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Lemma 21 Given two consecutive configurations pre and post, and an edge
x→y, if onST (x) is stored at x in post, then onST (x) was already stored at x
in pre or onST (x) arrives at y in post:
post  onST (x) ∈ |x| ⇒ pre  onST (x) ∈ |x| ∨ post  onST (x) ∈ |x→y| .

Proof. By inspection of store and push rules (6) and (7).

Proof of proposition 8 received-onST-already-stored, all-good
sr−−−→ all-good.

Proof. Let pre and post be two consecutive configurations satisfying the assump-
tions of the lemma, and an edge x→y such that onST (x) ∈ |x| in post. By lemma
21, we have onST (x) ∈ |x| in pre or onST (x) ∈ |x→y| in post. In the second
case we are done. In the first case, since x→y is good in pre, we get onST (y) ∈ |y|
in pre and then in post by stability of onST or onST (x) ∈ |x→y| at pre, hence
onST (y) ∈ |y| in post by lemma 20.

Proof of proposition 10 Given an extended configuration satisfying ready,
and an edge x→y such that onST (x) ∈ C but onST (y) 6∈ C, the body of rule (7)
holds at y.

Proof. We have to prove that at y, onST (x) ∈ |y| and onST (y) 6∈ |y|. The
latter is a direct consequence of correct-onST and onST (y) 6∈ C On the other
hand, by complete-onST-node and onST (x) ∈ C, we get onST (x) ∈ |x|, then
onST (y) ∈ |y| or onST (x) ∈ |x→y| by all-good. The first case is absurd because
onST (y) 6∈ |y| and the second case yields onST (x) ∈ |y|.

Remark. Note that, without all-good, we would be stuck because, from onST (x) ∈
C, the completeness of onST yields only onST (x) ∈ |x| and nothing at y.

Proof of proposition 11 ready
sro−−−→ complete-onST-node.

Proof. By inspection of store rules (6) and (7), using lemma 10 for new facts
onST (y) coming from the execution of rule (2).

A.2 Correctness an completeness of ST

Lemma 22 Given an extended configuration satisfying ready, running the body
of (7) in the distributed version of BFS yields the same value as the oracle.

Proof. Suppose that there is an edge x→y such that the body of rule (7) holds
at y. Let m be the minimum of such x. Then onST (m) ∈ C and onST (y) 6∈ C
hold respectively by assumptions correct-onST and complete-onST-node. We
still must be careful that m is also the minimum neighbor as given by the ora-
cle, that is, all relevant facts onST (x) are visible at y. This holds because the
hypotheses we assume (in particular all-good) allow us to apply lemma 10.
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Definition 23 (More precise version of definition 12). Let cnf be a given
configuration. Its global contents G(cnf ) is the union of facts ϕ such that in
ϕ ∈ |x| for some node x of cnf . We say that 〈cnf , C〉 satisfies correct-ST if and
only if GST (cnf ) is included in CST , that 〈cnf , C〉 satisfies complete-ST if and
only if CST is included in GST (cnf ), and that 〈cnf , C〉 satisfies same-ST if and
only if it satisfies correct-ST and complete-ST.

Proof of proposition 13 ready, same-ST
sro−−−→ same-ST.

Proof. We prove ready, correct-ST
sro−−−→ correct-ST and

ready, complete-ST
sro−−−→ complete-ST by inspection of store rules (6) and (7),

using lemmas 10, 22 and stability of ST .

A.3 Main theorem

We have invar
sro−−−→ invar by an immediate use of propositions 2, 4, 5, 11

and 13.


