N

N
N

HAL

open science

Easing Model Transformation Learning with
Automatically Aligned Examples

Xavier Dolques, Aymen Dogui, Jean-Rémy Falleri, Marianne Huchard,

Clémentine Nebut, Francois Pfister

» To cite this version:

Xavier Dolques, Aymen Dogui, Jean-Rémy Falleri, Marianne Huchard, Clémentine Nebut, et al.. Eas-
ing Model Transformation Learning with Automatically Aligned Examples. ECMFA’11: 7th Euro-
pean Conference Modelling - Foundation and Applications, Jun 2011, Birmingham, United Kingdom.
pp.189-204, 10.1007/978-3-642-21470-7_14 . lirmm-00616271

HAL Id: lirmm-00616271
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00616271

Submitted on 21 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00616271
https://hal.archives-ouvertes.fr

Easing Model Transformation Learning with
Automatically Aligned Examples*

Xavier Dolques', Aymen Dogui?, Jean-Rémy Falleri®, Marianne Huchard?,
Clémentine Nebut?*, and Francois Pfister®

! INRIA, Centre Inria Rennes - Bretagne Atlantique, Campus universitaire de
Beaulieu, 35042 Rennes, France, xavier.dolques@inria.fr
2 Supélec Paris, France, aymen.dogui@supelec.fr
3 Université de Bordeaux, France, falleri@labri.fr
4 LIRMM, Université de Montpellier 2 et CNRS, Montpellier, France,
first.last@lirmm.fr
5 LGI2P, Ecole des Mines d’Alés, Nimes, France, francois.pfister@mines-ales.fr

Abstract. Model Based Transformation Example (MTBE) is a recent
track of research aiming at learning a transformation from examples. In
most MTBE processes, a transformation example is given in the form of
a source model, a transformed model and links between source elements
and the corresponding transformed elements. Building the links is done
manually, which is a tedious task, while in many cases, they can be de-
duced from the examination of the source and transformed models, by
using relevant attributes, like names or identifiers. We exploit this char-
acteristic by proposing a semi-automatic matching operation, suitable
for discovering matches between the source model and the transformed
model. Our technique is inspired by and extends the Anchor-Prompt ap-
proach, and is based on the automatic discovery of pairs of anchors (pairs
of elements for which there is a strong assumption of matching) to sup-
port the whole matching discovery. An implementation of the approach
is provided for validation on a case study.

1 Introduction

Model transformations are the operational, often automated, part of Model
Driven Engineering (MDE), and several transformation languages have been
proposed to introduce useful concepts to develop transformations. The QVT
standard [1] has been proposed by the OMG to unify the field.

Writing a transformation requires two important skills: firstly a strong knowl-
edge in transformation languages and metamodeling and secondly a good com-
prehension of the semantics of the source and target domains. While transfor-
mation developers have the first skill, the second one is usually owned by the
domain experts. This fact makes the development of a model transformation
difficult and time-consuming, because the transformation developers have to in-
teract, on abstract concepts of a specific domain, with the domain experts, so
as to obtain a correct transformation.

* This research was partially supported by the european project OPEES

Two kinds of approaches have recently been introduced to assist the devel-
opment of model transformations. The first kind of approach operates at the
metamodel level [2,3] and exploits an alignment between the source and target
metamodels. It assumes (thus is efficient when) the source and target metamod-
els are very similar in their structure and terminology. The second approach,
Model Transformation By Example (MTBE), uses metamodels and models. It
aims at inferring either the transformation [4,5,6], or the result of a transforma-
tion [7], by using a set of transformation examples. In this paper we focus on
this second kind of approaches.

Applying MTBE requires to have transformation examples: a source model,
a transformed model and the links between source and transformed elements.
While having a source and a target model is quite easy (a domain expert can
create them), retrieving the links between the elements of these models is tedious
and time-consuming, because no mainstream metamodeling environment is ca-
pable of creating them when models are manually edited. Therefore, these links
are usually manually looked for and added. We believe that the major part of
these links can be automatically retrieved. Indeed, when the transformed model
is created, the names of the transformed elements are usually equal or very
similar to the ones of the source elements, maybe using different naming conven-
tions. Also, the underlying metamodels are different but often neighbors of an
element in the source model (understood as the instantiation of the metamodel)
are transformed into neighbors of the transformed element.

In this paper, after the context description (Section 2), we propose an ap-
proach (Section 3), that combines string similarity and schema matching tech-
niques to automatically retrieve the links going from the elements of a source
model to their corresponding elements in the transformed model. This approach
helps the transformation developers to gather transformation examples, allow-
ing them to benefit from the MTBE approaches. We describe our tool and case
study in Section 4. Related work is discussed in Section 5, and we conclude in
Section 6.

2 Problem Statement

The MTBE process aims at inferring a rule-based transformation from trans-
formation examples. A classical version of the process is presented in the lLh.s
of Figure 1. The input of the process is a transformation example, defined by
a source model, a transformed (target) model and matching links between the
two models. It results into transformation rules, deduced from the example, that
can transform any model conforming to the source metamodel to a model con-
forming to the target metamodel. Several proposals for the MTBE engine can
be used, e.g. [4,5,6].

We illustrate this section and the rest of the paper with a classical example of
transformation from UML class model to entity-relationship model. The input
is thus an example of a UML model, and the corresponding transformed entity-

weeeeeeee> cONformsTo

Icons: free.fr/ hup: om/

Source Matching Target Source Target Matching
MetaModeI MetaModel | | MetaModel MetaModel | [MetaModel MetaModel
) 1 /.\ 1 Ed
Sourc - links —[Target Solirce Target Candidate Valldated Matching Model
._. . oel Model Model Matching Model { p

v

Matching Engine

Transformation
rules

Simple MTBE process

MTBE process including automated matching of examples

Fig. 1. The MTBE process: a simple view (L.h.s) and including assistance for matching

(r-h.s)

relationship model. Figures 2 and 3 give the used metamodels (in ecore format)
for UML class diagrams and entity-relationship models.

5 Model 5 NamedElement

packagedElements = name

0..* [PackageableElement
5 GeneralizationSet E Property
= isCovering ownedAttribute, = lowerBound
= isDisjoint = upperBound
0.*
powertypeExtent
memberEnd ownedEnd
generalizationSet 2% X
0.%
type
powertype X
0.1/ Class E Association
generalization
0.* generalization
H Generalization ¢ x*
Og?neral [AssociationClass

Fig. 2. A metamodel for UML class diagrams (drastic simplification of the UML meta-
model)

The chosen example models literary texts (novels or poetry), written by
(and with a foreword from) authors. Each text has one or several styles. The
examples are given with concrete syntax in Figures 4 and 5, and an excerpt is
given with abstract syntax in Figures 6 and 7 (in the form of an instance of
the metamodels). Though less readable, the abstract syntax is the one actually

H Model mOdel%Ignents

E NamedElement E Containers
= name

0.1 [l Relationship

E Entity refersTo H Rolé role

2.%
0.F role
. *
attribute 0.. 0..1 \cardinality
H Attribute H Cardinality
= min
= max

attribute
0..*

Fig. 3. A metamodel for Entity-Relationship models

handled by the tools. The presented excerpts show the authors writing texts but
hide the poetry, the style, and the fact that authors write a foreword for texts.

Writes
year
author work
Author | = .
firstName writes foreword for
lastName| 0..1 forewordWrittén
forewordAuthor

Fig. 4. An example UML model for the UML2ER transformation

The examples are quite easy to build, moreover they will be useful for testing
or documentation purposes. However, to feed the MTBE process, the transfor-
mation links have to be given. For example, one has to specify that the Author
class from Figure 4 has to be transformed into the Author entity from Figure
5, and that the inheritance link from Novel to Text has to be transformed into
an is_a relationship (and in fact using the abstract syntax shown in Figures 6
and 7: the generalization element has to be transformed into the is_a relation-
ship and the two linked roles). This is a tedious task, and only dedicated to the
MTBE process. Our purpose is to use string similarity and alignment methods
to generate part of those links. The resulting architecture for the MTBE process
is presented in the r.h.s of Figure 1. The links from the source model to the
transformed model are partly generated by a matching engine. The generated

writes foreword for

(1.1)

(1.1)
work

(0.1),

Text

(0.1)

(1.1)

Novel Poetry

(1.1) @ (O.N)

Style

Fig. 5. An example of Entity-relation model for the UML2ER transformation

Author:Class

writes:AssociationClass

text:Property

has a:Association ‘

name="text"
lowerBound=0

author:Property

year:Property

upperBound=-1

work:Property

name="author"
lowerBound=1
upperBound=-1

name="year"
lowerBound=1
upperBound=1

name="has a"

style:Property

name="work"
lowerBound=0
upperBound=-1

Text:Class

name="Text"

lastName:Property

firstName:Property

name="lastName"
lowerBound=1
upperBound=1

lowerBound=1
upperBound=1

name="firstName"

title:Property

g1:Generalization

name="title"
lowerBound=1
upperBound=1

Novel:Class
name="Novel"

name="work"
lowerBound=1
upperBound=1

Style:Class

Fig. 6. Excerpt of the UML example with abstract syntax

authorC:Cardinality || year:Afiribute workG:Cardinally | ™ iie:Atiribute has a:Relationship Style:Entity
m|n=11 name="year" rmn!\x—_(l1 name="title" name="has a" name="Style"
max=- =
autho‘r:RoIe writes:Relationship work:Role Text:Entity style:Role
[name="author" | name="Writes" name="work" [[name="Text" -
Author-Entit ‘ FreiName-Atbute ‘ text1C:Cardinality text1:Role textC:Cardinality styleC:Cardinality
y y“ P] |min=1 name="text" min=0 min=1
name="Author ﬂ name="firstName ‘ max=1 max=-1 max=1

lastName:Attribute

Novel:Entity

name="lastName"

name="Novel"

novelC:Cardinality

min=0
max=1

novel:Role

name="novel"

isA1:Relationship

name="is a"

Fig. 7. Excerpt of the ER example with abstract syntax

links are checked by an expert. The matching engine takes source models and
target (transformed) models, and provides a candidate matching model (match-
ing links). This candidate matching model is proposed to an expert who validates
and fixes the matching model, producing the validated matching model which
composes (together with the source and target model) the transformation ex-
ample. Our aim is to assist the domain expert as far as possible, providing him
with an initial matching solution where nearly obvious matches are included.
For example, with the example of the literary texts, we discover all the “obvi-
ous” matchings (the class Text maps to the entity Text, the firstName property

maps to the firstName attribute, ...) and also more sophisticated mappings such
that: the generalization from Novel to Text maps to an is_a relationship and
the two roles text and novel. Even if the complete mappings are not discovered
(as explained in the case study, we have for the UML2ER, example a precision
of 1.0 and a recall of 0.7), the generation of a partial mapping is a valuable help
in a MTBE process.

To sum up, we study a matching problem that considers two models that
on one hand come from two different metamodels (maybe very divergent), with
relations differently named and organized; and on the other hand contain a large
set of common underlying entities and a large set of similarly named entities,
due to the common underlying natural semantics.

3 The model matching Approach

The literature offers several approaches to build a matching between two struc-
tures [8,9]. Due to the specificities of our problem, we propose a tool inspired by
the Anchor-Prompt approach [10]. The original approach is a two-step process
designed to match ontologies. The first step is the discovery of matches with a
high confidence rate (anchors), while the second one propagates those anchors
so as to discover other matchings. Our approach follows the same two steps and
improves the second, they are described below.

3.1 Anchor discovery

This first step consists in finding pairs of anchors, i.e. initial matchings. The
original Anchor-Prompt approach does not specify a process to discover pairs
of anchors. In our case, the target model is the result of the transformation of
the source model, and the entities and their values, are very close. Although the
source and target metamodels are different, it is common that model entities
have an identifying attribute (such as the name) and that this attribute value
does not change much during the transformation. In values, we can have slight
variations due to naming conventions: prefixes or suffixes can often be added,
but it is mostly improbable that both a prefix and a suffix is added so we assume
that they are not very different. A high confidence rate is needed for this subset
since the next step strongly depends on the quality of those pairs of elements.
Those matchings cannot be detected using types, as the two models may be
instances of different metamodels, thus we need to rely on some attribute values
of those elements, e.g. the attribute name of the UML metaclass NamedElement,
that we assume to remain nearly unchanged after transformation.

Let Atty.. and Att;, be the sets of all the attributes of all the elements
respectively in the source and target models. Let P = Atts,. X Attig:. We want
to extract M C P, a set of attribute pairs validating a matching test. From this
set M we generate a set of pairs of anchors A by replacing each attribute value
in the pairs of M by the entity containing this value. A general algorithm for
the anchor discovery is given in Listing 8.

We tested several matching operations and we present here the most relevant:

proc Anchor—Discovery (In: AttSrc set of Attribute values,
AttTgt set of Attribute values,
Out: A set of Entity pairs)

M := AttSrc x AttTgt;
P := empty set;

A := empty set;

for air in M do

if match(pair.source, pair.target)
then P.add(pair);
for pair in P do
A.add((pair.source.entity ,pair.target.entity));

Fig. 8. General process of anchor discovery

— equality: the most obvious matching operation is the equality. If two el-
ements share exactly the same value, then they are likely to be matched.
But this test is worthless if we do not check the occurrence frequency of the
values matched. Indeed it appears in our tests that some values are not rel-
evant, such as stereotypes or cardinalities in class diagrams. Thus, another
condition for two attributes to be matched is that their value appears once
and only once in the source and target models. This matching operation
appears to be reliable as it brings a precision of 1 in most of our tests.

— substring: the drawback of the previous operation is that it may pass
through simple renaming transformations, that may add or delete a pre-
fix or a suffix. To tackle this issue after the equality test we check, if the
values are character strings, if one value is a substring of the other. As with
the previous operation, we must be cautious on the obtained results, and
check if the substring exists as an attribute value in the model that contains
the longest string value of the couple. This method is once again reliable in
most of the cases, and in our tests it always gave a precision of 1.

We also experimented with other matching operations that use the longest
common substring or the Levenshtein distance, but our context implies that
values in the target model remain really close to values from the source model,
even capital or lowercase letters are important. To find highly reliable matchings
we cannot afford to use distance methods that may lower the precision of the
matchings.

At the end of this step, for our example, A includes, among others, the pairs of
anchors (Text:Class, Text:Entity) or (has a:Association,has a:Relationship).

3.2 Anchor propagation

Considering the anchors as a nearly correct match, we propagate this informa-
tion on paths outgoing from an anchor and leading to another close anchor to
discover other potential matches. Indeed, we assume that on a path between two
anchors, even if the metamodels are different, when an entity e is close to another
entity f in the source model, it is likely that the entity which results from the
transformation of e is close to the entity which results from the transformation

of f. Due to the differences between the metamodels, the path between the two
entities is likely to be differently labeled. The process cannot be correct in all
the cases, because during the transformation some elements can be removed or
added, but it is likely to produce many correct matches.

Source and target models may be seen as two labeled graphs G, and Gyge,
in which a node represents an instance of a class from the metamodel, and an
edge represents an association between class instances (cf. graphs in Figures 6
and 7). We enumerate from the two graphs all the paths connecting two anchors
and whose length is less than a constant «.

We align the nodes from a path between two anchors a; and as of Ggpc
with the nodes from a path between the anchors o} and a) if (a1,d]) € A and
(az,a%) € A. For example we will align a path between Text:Class and has
a:Association with a path between Text:Entity and has a:Relationship.
One difference from the original Anchor-Prompt approach is in the alignment of
paths with different lengths, for which Anchor-Prompt only aligns pairs of paths
of identical length. This way the original approach leads to match elements that
are on the same position on the path. More generally, in our approach, when
aligning two paths, we consider each pair of nodes as shown in Figure 9, but not
with the same weight: we are giving the maximum weight to pairs of nodes that
are in the same position relatively to each node’s path length.

Let X and Y be two lists of nodes, respectively from Gg,. and G4 and
representing two paths to be aligned. X and Y are starting by two anchors that
are matched together. Let € X and y € Y. index(x) and index(y) are the
position of the nodes in the list starting from 1. The weight of the pair (x,y) is
defined by:

index(x) index(y)

W(z,y) =1 -
(z.9) length(X)+1 length(Y)+1

For instance, W (z1,y1) = 1—|§ — 1| = 0.92 and W (xz1,52) = 1—|§ — 3| = 0.67,

showing that z1 is more likely to match with y1 rather than with y2.

length : 7

d 00020208 K

Y a m @\ @ E'z Gtgt
N N N

length : 5

Fig. 9. Aligning two paths

We align each pair of paths whose extremities are anchors, incrementing the
similarity coefficient of a pair of elements each time the elements appear in two
paths to be aligned. The increment is computed depending on the weight of the
pair.

At the end of the process we have a set of node pairs with similarity coef-
ficients. The similarity coefficients have no meaning if compared globally. If a
node appears only in one path between two anchors, then all the pairs contain-
ing this node will have a similarity coefficient that may be lower than ones with
nodes appearing in many paths between two anchors, making difficult to decide
which pairs are important. However, comparing the similarity coefficients of all
the pairs containing one node is more meaningful. Indeed, the pair with the
highest similarity coefficient is more likely to be a matching, so all the similarity
coefficients of this node should be compared relative to it.

Figure 10 shows in the case of the object of name “text” and type Property
in our example how it is deduced that its matching element in the target model
is the object of name “text” of type Role attached to the RelationShip named
“hasa”. We see that for all the matching links containing the Property “text”,
the highest similarity coefficient is obtained with the Role “text”, and none of
the other matching links pass over a threshold that, after some experiments, we
fixed at 80% of the highest value for an object. The same principle can be used
symmetrically for the Role “text” that validates the choice of this matching.

Property s
"text”

1.5

Property
"forewordWritten",

Relationship
"Hasa"

Property Role
"style" a N "style"

1425, °.10.25
g "~/ Relationship
"Hasa"

Fig. 10. Filtering of the similarity coefficient

4 Case study

This section presents the experimental results obtained with our approach. We
present the implementation used to run the experimentation, then the experi-
mental protocol and data, and the obtained results with their interpretation.

4.1 Tool implementation

A tool called MANDARINE® has been developed based on the approach de-
scribed above, with the objective of improving MTBE processes. It has been
designed to be efficiently integrated with the approach described in [11] by using
a part of its metamodel but it can also be used as a standalone tool for an inte-
gration with another approach. It is based on the Eclipse Modeling Framework,
as it is a modeling facility widely adopted by the MDE community, and has been
implemented in JAVA.

The tool takes as input the source and target example models of the trans-
formation and returns the computed matchings between the models as a model
conforming to Matching Model, the metamodel described in Figure 12. This
metamodel is also used to describe the input of the MTBE process from [11].
Technically, the only requirement for the input models is that they must be
recognized by EMF as instances of an Ecore Model.

An informal representation of the architecture of the tool is provided in
Figure 11. The process of matching is split in two distinct steps: the first one
implements the anchor discovery process from section 3.1 with the ability to
choose the matching operation between attributes. This step returns a Matching
Model as a result. The second part implements our adaptation of Anchor-Prompt
from section 3.2, where the maximum length of the considered paths and the
threshold for filtering the similarity coefficients may be passed as input with a
Matching Model. Although the two processes are designed to be launched one
after another, they are independently implemented to allow flexibility of use and
further evolution.

The Matching Evaluation tool is the infrastructure to evaluate the discovered
matchings against an expert matchings, it will be discussed in Section 4.

4.2 Testing protocol and metrics

As an extension of the tool previously described, we designed a testing platform
presented on the right hand side of Figure 11. This platform takes as input two
matching models, one created by an expert that gives a reference result and
that we will refer to as Aczpert, and another one automatically computed that
will be called Aguto and of which we want to measure the quality. Those two
models are then automatically compared according to several metrics. Model
matching being similar with schema matching or ontology matching, we propose
here to use metrics from those last two domains. We will especially refer to the
metrics described in [12]: precision, recall and overall. In the following we will
use Apositives = Aauto N Aexpert as the set of matching links that are present in
both expert and automatically obtained matchings (see Figure 13).

Precision The precision calculates the ratio of correct matchings in A,y Over
the size of Agyt0. Therefore this metric depends on the quantity of bad matchings

5 Model AligNement Disseminating AttRibute INstances Equivalences

10

Source Matching
MetaModel MetaModel MetaModel
i) g =T
Source Target . ’
Model Model
7~ —={ Anchor list |~ J
R Model 1059
= Anchor Discovery Anchor Propagation%
Matching Engine

Icons: http://cathycreatif.free.fr/ http://www.mecaniqueindustrielle.com/

—_—

Fig.11. An architecture for the anchor-based matching tool

[MatchingModel

@ getAllMatchedObjects() : EObject
@& contains(MatchingLink) : EBoolean

0..* matches

conformsTo
input/output

Fig. 12. Metamodel describing the matching used in our tool

Fig. 13. Schematic illustration of matching comparison

A

auto

H MatchingLink target
= name : EString 0.1
= weight : EDouble source
& sameAs(MatchingLink) : EBoolean 0.1

A

positives }

H EObject [
(from ecore)

expert

introduced by the approach. It is a rational number going from 0 (if all the
obtained matchings are wrong) to 1 (if there are no wrong matchings at all i.e.

Aguto € Aezpert). It is calculated by the formula: precision =

|A

positives |

‘Aautol

Recall The recall calculates the ratio of correct matchings in A,y over the num-
ber of correct matchings, i.e. the size of Acypert. Therefore this metric depends

11

on the quantity of matchings from A¢zp,er+ missed by the approach. It is a ratio-
nal number going from 0 (if there are no matchings from Aczpers in Aguto) to 1
(if all the matchings from Aegper+ have been discovered, i.e if Acyppert € Aquto)-
Apositives|

It is calculated with the following formula: recall = | P v—

Owerall The overall combines precision and recall to quantify the needed effort
to go from Aguio t0 Aczpert, relatively to the size of the expert model. It is a
rational number bounded between —oo and 1. Overall is 1 if precision = recall,
and 0 if the number of wrong matchings in Ay, added to the number of missing
matchings is equal to the size of Aczpere. If this number is greater than the size

of Aczpert then overall is a negative number. It is calculated with the following
(‘Aautol_lApositives‘)"l‘(‘Aezpert‘_‘Apositi'ues|)

expert

formula: overall =1 —

4.3 Data

We propose here to validate our approach by applying it on 22 model transfor-
mations”. The data used for this case study comes from several sources: home
made transformations, UML refactorings [13] and transformations from the ATL
zoo of transformations [14]. In the latter case, the models used as examples are
given with the transformation.

4.4 Results

0.8 - 1

0.6 - 1

04 - 1

0.2 1

% %, . % & O & A G G 4 4 % % >
S, 720, 7, o, s, %, 0,5, %%, o Ty, 2 % g % %Q‘o, ‘9&@4—"{9 S5, s S
o, U, %o, 0, P S, o, e B 0, Yo S, T & o 0y %, 81, %y, R,
0, s, Co By, X %, % 78, 7, () %, s R
%, %, % e, R e s % %, S, 20 %, Y,
e Y 2 % %, % % O
3, % 4, 2 7% % S
(g <, %, < ® 2
© Y %, %, N 2
K5 s %,
%, %, %
” %,
0@ //‘o
2

mmmmm precision anchor discovery)
—1 precision anchor discovery + propagation

Fig. 14. Precision measured on the case study

12

08 n - g

y . . A [va [
%n, 2, e, O, %0, 0, 5, %, % 2 P o s 4—%‘9‘& o
s, %, %, SO . O, Yy R, 0, Kox, g S Sy S G KD R
% %, Yy, o R oy, i Qo 0, Ty iy S & %o 0, & %, R, 1,
%y 2, 0,05, B Uy e By B, %, 0 S, o, 0 %, 08, O
4 9/9 % % '8, R G, S Yy % . " 5, Sy Q@ 5. %,
’5’/7 2 % % %, %, %, 7[9 O, ?
S, % % % % (A G, s
% e, <, Y %, ® N
+ %, . > 25
%, S5, 4‘47
% %, %
Y, (%
%o %,

mmmmm recall anchor discovery .
—— recall anchor discovery + propagation

Fig. 15. Recall measured on the case study

0.8 - |
0.6 |
0.4 |
0.2 ” ﬂ |
0 D Dy %, Q. & A ¢, %
B 71, 1, e, O, %t S, %0 O, o0, 0, I O O O g S, 0, %, 0,
09”//- %o-%o O@/ //)s, ‘96,/ /LQ/ N % '('v",o ’/@& % % & % '@eoq)x%) OC}(9 _c’,or eﬁb
%\, %, s,% ’ 639@, s,% o’e %, % 63%’ A e,% LN 3 % % K78 f/% o%]
%/r% o %, s, 6y O, %, %, 2, 06,
S, Y %, %, % % %, (S
S, 2 % .
N3 %) 2, s
Y, % 'fl,
% % >
/)C‘@ Ry,
%

= overall anchor discovery
—1 overall anchor discovery + propagation

Fig. 16. Overall measured on the case study

The evaluation program has been applied twice for each transformation, first
to evaluate the anchor discovery result and then the whole process result. Pre-
cision and recall have been measured in each case, and the overall has been
calculated from them. Figures 14, 15, and 16 present the obtained results. For
the anchor discovery step, we only show the results obtained with the substring

" The detail of all the transformations is given at:

http://www.lirmm.fr/%7Enebut/Publications/ArticleSupplements/ECMFA2011/examples-casestudy.html .

13

similarity metrics, since it is the one giving the best results. We can see in Fig-
ure 14 that the precision obtained is good, with a value of 1 in many cases,
especially for the anchor discovery process. It enforces our hypothesis that the
anchor discovery result can be considered as reliable. On the other hand, the
recall values are not as good, but this was expected as our approach intends to
assist the matching creation and not to completely automate it. It sometimes
occurs that for a same transformation, the propagation of the anchors degrades
the precision, while not increasing the recall. That shows that this step could
be enhanced; ways to enhance this step are given in conclusion. It can also be
seen that one of the transformation is giving no results at all. This transforma-
tion, named JavaSource2Table is an extraction of statistics from a Java program
and therefore does not keep the structure of the source model at all during the
transformation.

The overall values are all positives, meaning that if we consider adding or
removing a match as an atomic operation with the same cost, then in each case
our approach is decreasing the cost of matching two models completely by hand,
in many cases by half or more. However, with the good results obtained for the
precision, the correction operations of the matching model are mainly adding
operations.

5 Related work

Automating the discovery of mappings between database and XML schemas,
ontologies, or (meta)models has been thoroughly investigated. We encourage
the reader to refer to [8] or [9] for an in-depth description of the existing work.
Most of the main approaches such as [15,16,17,18,19] make the assumption that
the relations between the two models being compared are identical. The basic
idea exploited by these approaches is to compute first a similarity between the
elements using their names, and to compute then a similarity using the struc-
ture. To compute this second kind of similarity, they assume that the relations
between the elements have the same kind in the two compared models. In the
MDE terminology, it could be translated as: the models being compared have the
same meta-model. In our case the models being compared conform to two dif-
ferent meta-models. Therefore, a straightforward use of one of these techniques
may not exploit all the potential of those approaches. In [20], they use (among
other similarity calculations) the similarity flooding ([15]) and they construct
adequate propagation models that capture the semantics of the relationships.
These propagation models are nevertheless specific to the studied meta-models
(and their meta-meta-model(s)) and are designed by an expert.

Moreover, our alignment problem has two characteristics to exploit: since
the source and target models are supposed to be written by the same person,
the identifiers and names are very likely to be nearly identical. Second, since the
target model results from a transformation from the source model (this is a main
difference with approaches that study the meta-model matching), the structures
of the two models are supposed not to be radically different one from the other.

14

That is why we adapted another kind of approach [10]. Indeed, due to the first
characteristic of the problem, the anchors should be easy to detect, and due to
the second characteristic, the mapping algorithm exploiting the anchors should
be efficient.

Concerning the context of application of our matching approach (model
transformation by example), several proposals [21,5,6,7] aim at inferring the rules
of a transformation or its result using a set of examples. In all these approaches,
an example consists at least of a source model, a transformed model, and the
links between the elements of these two models. None of those approaches in-
clude an assistance to build those last links, and all of them would benefit from
the approach proposed in this paper.

In [22], a By-Demonstration approach is proposed to generate model trans-
formations. It consists in building step by step examples of transformations, fol-
lowing strong naming constraints. Thus examples are incrementally built, and
both the increments and the naming constraints allow links to be deduced and
rules to be inferred.

6 Conclusion

Model transformation by example (MTBE) is a promising approach to ease the
development of model transformations. Several proposals have been developed to
make MTBE feasible. Those approaches take as input examples of a transforma-
tion, that is: source models, target (transformed) models, and the transformation
links from source model elements to target model elements. While designing the
source and target models is a simple and valuable task (those models can later
on be used for documentation or testing purpose), making explicit the trans-
formation links is a tedious and error-prone task. In this paper, we detailed an
approach and a tool using text analysis and alignment techniques to partly gen-
erate those links. Such a mapping engine provides valuable help to the expert in
charge of designing an example for an MTBE process. In order to validate the
proposed approach, we performed experiments on a set of model transformations,
and compared, based on metrics such as precision and recall, the matchings gen-
erated by our matching tool to reference (manually built) matchings. The results
obtained are promising: we obtain very good precision results and fairly good
recall results. The experiments also show that the propagation step could be
more efficient (loss of precision, for sometimes no gain in recall), while the step
of discovery of the anchors is sufficiently efficient (precision of 1, and sufficient
recall). Future work will consist in enhancing the propagation step, first inte-
grating in it the similarity metrics between the values of elements computed in
the first step, and secondly taking into account attributes that are not of String
type, like cardinalities.

References

1. OMG: MOF QVT Final Adopted Specification. Object Modeling Group. (2005)

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Lopes, D., Hammoudi, S., Bézivin, J., Jouault, F.: Generating transformation
definition from mapping specification: Application to web service platform. In:
CAIiSE’05, LNCS 3520. (2005) 309-325

Falleri, J.R., Huchard, M., Lafourcade, M., Nebut, C.: Meta-model Matching
for Automatic Model Transformation Generation. In: MODELS’08, LNCS 5301,
Springer (2008) 326-340

Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transfor-
mation generation by-example. In: HICSS ’'07: Proc. of the 40th Annual Hawaii
International Conf. on System Sciences, IEEE Computer Society (2007) 285b
Balogh, Z., Varro, D.: Model transformation by example using inductive logic
programming. Software and Systems Modeling (2008) Appeared online.

Dolques, X., Huchard, M., Nebut, C.: From transformation traces to transfor-
mation rules: Assisting model driven engineering approach with formal concept
analysis. In: Supplementary Proceedings of ICCS’09. (2009) 15-29

Kessentini, M., Sahraoui, H., Boukadoum, M.: Model Transformation as an Opti-
mization Problem. In: MODELS’08, LNCS 5301, Springer (2008) 159-173

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4) (2001) 334-350

Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: J.
Data Semantics IV, Volume 3730 of LNCS. (2005) 146-171

Noy, N.F., Musen, M.A.: Anchor-prompt: Using non-local context for semantic
matching. In: Proc. of the Workshop on Ontologies and Information Sharing at
IJCAI-2001, Seattle (USA) (2001) 63-70

Dolques, X., Huchard, M., Nebut, C., Reitz, P.: Learning transformation rules
from transformation examples: An approach based on relational concept analysis.
In: 14th IEEE International Enterprise Distributed Object Computing Conference
Workshops of EDOC’10, IEEE Computer Society Press (2010) 27-32

Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:
Web, Web-Services, and Database Systems. (2002) 221-237

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley (2000)

ATL transformation zoo: http://www.eclipse.org/m2m/atl/atlTransformations/
Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: ICDE, IEEE
Computer Society (2002) 117-128

Do, H.H., Rahm, E.: Coma - a system for flexible combination of schema matching
approaches. In: VLDB, Morgan Kaufmann (2002) 610-621

Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: VLDB, Morgan Kaufmann (2001) 49-58

Ehrig, M., Staab, S.: Qom - quick ontology mapping. In: International Semantic
Web Conference. LNCS 3298, Springer (2004) 683-697

Euzenat, J., Loup, D., Touzani, M., Valtchev, P.: Ontology Alignment with OLA.
In: Proc. of the 3rd EON Workshop, 3rd Int. Semantic Web Conf. (2004) 333-337
Fabro, M.D.D., Valduriez, P.: Towards the efficient development of model transfor-
mations using model weaving and matching transformations. Software and System
Modeling 8(3) (2009) 305-324

Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transforma-
tion generation by-example. In: HICSS, IEEE Computer Society (2007) 285
Langer, P., Wimmer, M., Kappel, G.: Model-to-model transformations by demon-
stration. In Tratt, L., Gogolla, M., eds.: ICMT. Volume 6142 of Lecture Notes in
Computer Science., Springer (2010) 153-167

16

