Skip to main content

What Can Be Inferred from Multiple-task Psychophysical Studies about the Mechanisms for Temporal Processing?

  • Chapter
Multidisciplinary Aspects of Time and Time Perception

Abstract

We used different tools from experimental psychology to obtain a broad picture of the possible neural underpinnings of temporal processing in the range of milliseconds. The temporal variability of human subjects was measured in timing tasks that differed in terms of: explicit-implicit timing, perception-production, single-multiple intervals, and auditory-visual interval markers. The results showed a dissociation between implicit and explicit timing. Inside explicit timing, we found a complex interaction in the temporal variability between tasks. These findings do not support neither a unique nor a ubiquitous mechanism for explicit timing, but support the notion of a partially distributed timing mechanism, integrated by main core structures such as the cortico-thalamic-basal ganglia circuit, and areas that are selectively engaged depending on the specific behavioral requirement of a task. A learning-generalization study of motor timing also supports this hypothesis and suggests that neurons of the timing circuit should be tuned to interval durations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zelaznik, H.N., Spencer, R.M.C., Ivry, R.B.: Dissociation of Explicit and Implicit Timing in Repetitive Tapping and Drawing Movements. J. Exp. Psychol: Human Percept Perform 28, 575–588 (2002)

    Google Scholar 

  2. Boring, E.G.: Sensation and perception in the history of experimental psychology. Appleton-Century-Crofts, New York (1942)

    Google Scholar 

  3. Nenadic, I., Gaser, C., Volz, H.P., Rammsayer, T., Hager, F., Sauer, H.: Processing of temporal information and the basal ganglia: new evidence from fMRI. Exp. Brain Res. 148, 238–246 (2003)

    Article  Google Scholar 

  4. Coull, J.T., Vidal, F., Nazarian, B., Macar, F.: Functional Anatomy of the Attentional Modulation of Time Estimation. Science 303, 1506–1508 (2004)

    Article  Google Scholar 

  5. Rao, S.M., Harrington, D.L., Haaland, K.Y., Bobholz, J.A., Cox, R.W., Binder, J.R.: Distributed Neural Systems Underlying the Timing of Movements. J. Neurosci. 17, 5528–5535 (1997)

    Google Scholar 

  6. Rao, S.M., Mayer, A.R., Harrington, D.L.: The evolution of brain activation during temporal processing. Nat. Neurosci. 4, 317–323 (2001)

    Article  Google Scholar 

  7. Ferrandez, A.M., Hugueville, L., Lehericy, S., Poline, J.B., Marsault, C., Pouthas, V.: Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. Neuroimage 19, 1532–1544 (2003)

    Article  Google Scholar 

  8. Harrington, D.L., Boyd, L.A., Mayer, A.R., Sheltraw, D.M., Lee, R.R., Mingxiong, H., Rao, S.M.: Neural representation of interval encoding and decision making. Cogn. Brain Res. 21, 193–205 (2004)

    Article  Google Scholar 

  9. Lewis, P., Miall, C.: Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr. Opin. Neurobiol. 13, 250–255 (2003)

    Article  Google Scholar 

  10. Macar, F., Lejeune, H., Bonnet, M., Ferrara, A., Pouthas, V., Vidal, F., Maquet, P.: Activation of the supplementary motor area and of attentional networks during temporal processing. Exp. Brain Res. 142, 475–485 (2002)

    Article  Google Scholar 

  11. Schubotz, R.I., Friederici, A.D., von Cramon, D.Y.: Time Perception and Motor Timing: A Common Cortical and Subcortical Basis Revealed by fMRI. Neuroimage 11, 1–12 (2000)

    Article  Google Scholar 

  12. Wiener, M., Turkeltaub, P., Coslett, H.H.: The image of time: A voxel-wise meta-analysis. Neuroimage 49, 1728–1740 (2010)

    Article  Google Scholar 

  13. Smith, A., Taylor, E., Lidzba, K., Rubia, K.: A right hemispheric frontocerebellar network for time discrimination of several hundreds of milliseconds. Neuroimage 20, 344–350 (2003)

    Article  Google Scholar 

  14. Bueti, D., Walsh, V., Frith, C., Rees, G.: Different Brain Circuits Underlie Motor and Perceptual Representations of Temporal Intervals. J. Cogn. Neurosci. 20, 204–214 (2008)

    Article  Google Scholar 

  15. Onoe, H., Komori, M., Onoe, K., Takechi, H., Tsukada, H., Watanabe, Y.: Cortical Networks Recruited for Time Perception: A Monkey Positron Emission Tomography (PET) Study. Neuroimage 13, 37–45 (2001)

    Article  Google Scholar 

  16. Ivry, R.B., Keele, S.W., Diener, H.C.: Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp. Brain Res. 73, 167–180 (1988)

    Article  Google Scholar 

  17. Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S., Simmons, A., Andrew, C., Bullmore, E.: Prefrontal involvement in ”temporal bridging” and timing movement. Neuropsychologia 36, 1283–1293 (1998)

    Article  Google Scholar 

  18. Buonomano, D.V.: Decoding temporal information: A model based on short-term synaptic plasticity. J. Neurosci. 20, 1129–1141 (2000)

    Google Scholar 

  19. Karmarkar, U.R., Buonomano, D.V.: Timing in the absence of clocks: encoding time in neural network states. Neuron 53, 427–438 (2007)

    Article  Google Scholar 

  20. Ivry, R.B., Schlerf, J.E.: Dedicated and intrinsic models of time perception. Trends Cogn. Sci. 12, 273–280 (2008)

    Article  Google Scholar 

  21. Merchant, H., Zarco, W., Prado, L.: Do We Have a Common Mechanism for Measuring Time in the Hundreds of Millisecond Range? Evidence From Multiple-Interval Timing Tasks. J. Neurophysiol. 99, 939–949 (2008)

    Article  Google Scholar 

  22. Merchant, H., Zarco, W., Bartolo, R., Prado, L.: The Context of Temporal Processing Is Represented in the Multidemensional Relationships between Timing Tasks. PLoS One 3, e3169 (2008)

    Article  Google Scholar 

  23. Gibbon, J., Malapani, C., Dale, C.L., Gallistel, C.R.: Toward a neurobiology of temporal cognition: advances and challenges. Curr. Opin. Neurobiol. 7, 170–184 (1997)

    Article  Google Scholar 

  24. Wing, A.M., Kristofferson, A.B.: Response delays and the timing of discrete motor responses. Percept. Psychophys. 14, 5–12 (1973)

    Article  Google Scholar 

  25. Ivry, R.B., Hazeltine, R.E.: Perception and production of temporal intervals across a range of durations: evidence of a common timing mechanism. J. Exp. Psychol. Hum. Percept. Perform. 21, 3–18 (1995)

    Article  Google Scholar 

  26. Keele, S., Nicoletti, R., Ivry, R., Pokorny, R.: Do perception and motor production share common timing mechanisms? A correlational analysis. Acta Psychol. 60, 173–191 (1985)

    Article  Google Scholar 

  27. Robertson, S.D., Zelaznik, H.N., Lantero, D.A., Bojczyk, K.G., Spencer, R.M., Doffin, J.G., Schneidt, T.: Correlations for timing consistency among tapping and drawing tasks: evidence against a single timing process for motor control. J. Exp. Psychol. Hum. Percept. Perform. 25, 1316–1330 (1999)

    Article  Google Scholar 

  28. Zelaznik, H.N., Spencer, R.M., Ivry, R.B., Baria, A., Bloom, M., Dolansky, L., Justice, S., Patterson, K., Whetter, E.: Timing variability in circle drawing and tapping: probing the relationship between event and emergent timing. J. Mot. Behav. 3, 395–403 (2005)

    Article  Google Scholar 

  29. Spencer, R.M., Zelaznik, H.N.: Weber (slope) analyses of timing variability in tapping and drawing tasks. J. Mot. Behav. 35, 371–381 (2003)

    Article  Google Scholar 

  30. Grondin, S.: Discriminating time intervals presented in sequences marked by visual signals. Percep. Psychophys. 63, 1214–1228 (2001)

    Article  Google Scholar 

  31. Wearden, J.H., Edwards, H., Fakhri, M., Percival, A.: Why ”sounds are judged longer than lights”: application of a model of the internal clock in humans. Q. J. Exp. Psychol. 51B, 97–120 (1998)

    Google Scholar 

  32. Repp, B.H., Penel, A.: Auditory dominance in temporal processing: New evidence from synchronization with simultaneous visual and auditory sequences. J. Exp. Psychol. Hum. Perfor. 28, 1085–1099 (2002)

    Article  Google Scholar 

  33. Leon, M.I., Shadlen, M.N.: Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38, 317–327 (2003)

    Article  Google Scholar 

  34. Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y., Tanji, J.: Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat. Neurosci. 12, 502–507 (2009)

    Article  Google Scholar 

  35. Zarco, W., Merchant, H., Prado, L., Mendez, J.C.: Subsecond timing in primates: comparison of interval production between human subjects and Rhesus monkeys. J. Neurophysiol. 102, 3191–3202 (2009)

    Article  Google Scholar 

  36. Wright, B.A., Buonomano, D.V., Mahncke, H.W., Merzenich, M.M.: Learning and generalization of auditory temporal-interval discrimination in humans. J. Neurosci. 17, 3956–3963 (1997)

    Google Scholar 

  37. Nagarajan, S.S., Blake, D.T., Wright, B.A., Byl, N., Merzenich, M.: Practice related improvements in somatosensory interval discrimination are temporally specific but generalize across skin location, hemisphere, and modality. J. Neurosci. 18, 1559–1570 (1998)

    Google Scholar 

  38. Westheimer, G.: Discrimination of short time intervals by the human observer. Exp. Brain. Res. 129, 121–126 (1999)

    Article  Google Scholar 

  39. Meegan, D.V., Aslin, R.N., Jacobs, R.A.: Motor timing learned without motor training. Nat. Neurosci. 3, 860–862 (2000)

    Article  Google Scholar 

  40. Karmarkar, U.R., Buonomano, D.V.: Temporal specificity of perceptual learning in an auditory discrimination task. Learn. Mem. 10, 141–147 (2003)

    Article  Google Scholar 

  41. Planetta, P., Servos, P.: Somatosensory temporal discrimination learning generalizes to motor interval production. Brain Res. 1233, 51–57 (2008)

    Article  Google Scholar 

  42. Wassenhove, V., Nagarajan, S.S.: Auditory Cortical Plasticity in Learning to Discriminate Modulation Rate. J. Neurosci. 27, 2663–2672 (2007)

    Article  Google Scholar 

  43. Kanai, R., Lloyd, H., Bueti, D., Walsh, V.: Modality-independent role of the primary auditory cortex in time estimation. Exp. Brain. Res. 209, 465–471 (2011)

    Article  Google Scholar 

  44. Bartolo, R., Merchant, H.: Learning and generalization of time production in humans: rules of transfer across modalities and interval durations. Exp. Brain Res. 197, 91–100 (2009)

    Article  Google Scholar 

  45. Kristofferson, A.B.: A quantal step function in duration discrimination. Percept. Psychophys. 27, 300–306 (1980)

    Article  Google Scholar 

  46. Grondin, S.: From physical time to the first and second moments of psychological time. Psychol. Bull. 127, 22–44 (2001)

    Article  Google Scholar 

  47. Ivry, R.: The representation of temporal information in perception and motor control. Curr. Opin. Neurobiol. 6, 851–857 (1996)

    Article  Google Scholar 

  48. Gamache, P.L., Grondin, S.: Sensory-specific clock components and memory mechanisms: investigation with parallel timing. Eur. J. Neurosci. 31, 1908–1914 (2010)

    Article  Google Scholar 

  49. Collyer, C.E., Broadbent, H.A., Church, R.M.: Categorical time production: evidence for discrete timing in motor control. Percept. Psychophys. 51, 134–144 (1992)

    Article  Google Scholar 

  50. Collyer, C.E., Broadbent, H.A., Church, R.M.: Preferred rates of repetitive tapping and categorical time production. Percept. Psychophys. 55, 443–453 (1994)

    Article  Google Scholar 

  51. Fant, G., Kruckenberg, A.: On the quantal nature of speech timing. In: Proceedings of ICSLP 1996, Philadelphia, pp. 2044–2047 (1996)

    Google Scholar 

  52. Durstewitz, D.: Self-organizing neural integrator predicts interval times through climbing activity. J. Neurosci. 23, 5342–5353 (2003)

    Google Scholar 

  53. Dayan, P., Abbott, L.F.: Theoretical Neuroscience. In: Computational and Mathematical Modeling of Neural Systems, p. 460. MIT Press, Cambridge Mass (2001)

    Google Scholar 

  54. Buonomano, D.V., Laje, R.: Population clocks: motor timing with neural dynamics. Trends Cogn. Sci. 14, 520–527 (2010)

    Article  Google Scholar 

  55. Matell, M.S., Meck, W.H.: Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn. Brain Res. 21, 139–170 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Merchant, H., Bartolo, R., Méndez, J.C., Pérez, O., Zarco, W., Mendoza, G. (2011). What Can Be Inferred from Multiple-task Psychophysical Studies about the Mechanisms for Temporal Processing?. In: Vatakis, A., Esposito, A., Giagkou, M., Cummins, F., Papadelis, G. (eds) Multidisciplinary Aspects of Time and Time Perception. Lecture Notes in Computer Science(), vol 6789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21478-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21478-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21477-6

  • Online ISBN: 978-3-642-21478-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics