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1 Introduction

From the mid-1970s until the emergence of Chomsky’s Minimalist Program (MP,
Chomsky 1995) in the 1990s, the mainstream of research on natural-language
syntax in much of the world embraced a theoretical architecture for syntactic
derivations that came to be known as the T-model. According to this model,
which underlay Chomsky’s (1976, 1977) Extended Standard Theory (EST) of
the 1970s and its successor, the Government-Binding (GB) Theory [Chomsky
1981) of the 1980s and early 1990s, a tree called a deep structure (DS) is
generated from lexical entries by essentially context-free base rules. The DS is
then converted into a surface structure (SS) by transformations, destruc-
tive structural operations that can delete, copy, or (most significantly for us)
move subtrees. From SS, the derivation branches (the two arms of the T): in
one direction the SS is further transformed into a phonetic form (PF), which
determines what the expression being analyzed sounds like, and in the other di-
rection the SS is transformed into a logical form (LF), which determines what
the expression means.
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In the T-model, the tranformations that convert DS to SS are called overt,
because their effects are (at least potentially) audible (since the branch of the
derivation that leads to PF is yet to come). The prototypical case of overt move-
ment is overt wh-movement in languages like English, where constituent ques-
tions are formed (so the theory goes) by moving a wh-expression (or, in so-called
pied-piping constructions, an expression properly containing a wh-expression)
to the left periphery of a clause. Since both PF and LF are derived from SS, this
movement is subsequently reflected in both how the sentence sounds, and what
it means:

(1) Overt Wh-Movement in the T-Model

a. I wonder who Chris thinks Kim likes.
b. DS: (I wonder (Chris thinks (Kim likes who)))
c. SS: (I wonder (whot (Chris thinks (Kim likes t))))
d. LF: (I wonder (whox (Chris thinks (Kim likes x))))

Here, the wh-operator who occupies an argument (A) position at DS.
After overt movement, it occupies a nonargument (Ā) position in SS on the
left periphery of one of the clauses that contained it; in this sentence, the only
clause it can move to is the middle one (with subject Chris), because the verb
wonder is the kind of verb that requires an interrogative complement clause.
When who moves, it leaves behind a trace or syntactic variable (here, t),
which it binds at SS; this is essentially the same position it will occupy at LF.
Now since derivations branch to PF (and LF) after SS, the movement of who has
an audible reflex (you hear it in the position it moved to). And finally, during
the SS-to-LF derivation, a rule of construal replaces t with a logical variable
(here, x), which is bound by who at LF.

Now nobody with even a rudimentary knowledge of lambda calculus or pred-
icate logic could fail to notice that the SS in (1c) and the LF in (1d) look a
lot like formal terms containing operators that bind variables. But, at least as
far as I know, no logician has ever suggested that λ’s, or ∃’s, or ∀’s, actually
start out in the position of the variables they bind, and then move to the left.
So one might well ask why transformational grammarians, right down to the
present day, believe that binding operators in NL do. At least 30 years ago,
practicioners of categorial grammar (CG) (e.g. David Dowty, Emmon Bach)
and phrase structure grammar (PSG)(e.g. Gerald Gazdar, Geoff Pullum)
started asking this very question, and in the intervening decades researchers in
these frameworks have proposed a wealth of carefully thought out theories in
which NL binding operators do not move. We will come back to this.

By contrast with overt movement ( within the T-model), transformations
that convert SS to LF are called covert because they take place too late in the
derivation—after the SS branch point—to have a reflex at PF. One standardly
assumed covert movement is quantifier raising (QR, May 1977 and 1985),
which moves a quantificational NP (QNP) to a position in LF (reflective of its
semantic scope) higher than the one it occupied at SS.



(2) Covert Wh-Movement in the T-Model: QR

a. I know Chris thinks Kim likes everyone.

b. DS: (I know (Chris thinks (Kim likes everyone)))

c. SS: (I know (Chris thinks (Kim likes everyone))) [no change ]

d. LF (narrow scope reading): (I know (Chris thinks (everyonex (Kim likes
x))))

e. LF (medium scope reading): (I know (everyonex (Chris thinks (Kim
likes x))))

f. LF (wide scope reading): (everyonex (I know (Chris thinks (Kim likes
x))))

Here, the QNP everyone occupies an argument (A) position at DS, and
nothing happens to it between DS and SS (no overt movement). But after covert
movement, it occupies a nonargument (Ā) position in LF on the left periphery
of one of the clauses that contained it. Now when everyone moves, it leaves
behind a logical variable (here, x), which it binds at LF. But since derivations
branch after SS to PF and LF, and the movement of everyone is on the the SS-
to-LF branch, it has no audible reflex (you hear it in its pre-movement position).

Another standardly assumed covert movement is covert wh-movement in
languages like Chinese (Huang 1982, Pesetsky 1987)1. Covert wh-movement is
supposed to be essentially the same as overt wh-movement, except that, since—
like QR— it takes place after the SS branch point, it is heard just as if it had
never moved (or, to use the syntactician’s term of art, it remains in situ).

(3) Covert Wh-Movement in the T-Model: Wh-in-Situ

a. Zhangsan xiang-zhidao shei mai-le shenme. [Chinese]

b. Zhangsan wonder who bought what [English word-for-word gloss]

c. DS: (Zhangsan xiang-zhidao (shei mai-le shenme))

d. SS: (Zhangsan xiang-zhidao (shei mai-le shenme)) [no change]

e. LF (shei and shenme both narrow):
(Zhangsan xiang-zhidao (sheix shenmey (x mai-le y)))
‘Zhangsan wonders who bought what’

f. LF (shenme narrow, shei wide):
(sheix(Zhangsan xiang-zhidao (shenmey (x mai-le y))))
‘Who does Zhangsan wonder what (s/he) bought?’

g. LF (shenme wide, shei narrow):
(shenmey(Zhangsan xiang-zhidao (sheix (x mai-le y))))
‘What does Zhangsan wonder who bought?’

1 But see Aoun and Li 1993 for a dissenting view (that Chinese wh-movement is overt
movement of an inaudible operator, with the wh-expressions as bindees, not binders.)



Here, as with QR, there is no change between DS and SS. Each of the wh- (or,
in Chinese, sh-)operators can scope to any of the clauses containing it. However,
in this example, at least one of them must scope to the lower clause, since the
clausal complement of the verb xiang-xhidao ‘wonder’ has to be a question.

In fact, even languages like English with overt wh-movement also have in situ
wh, in two different respects. First, in multiple constituent questions, all but
the leftmost wh-expression remain in situ. And second, in cases of pied piping,
the wh-expression that is properly contained within the moved constituent re-
mains in situ, relative to the displaced constituent that contains it. In this paper,
however, we will limit our attention henceforth to phenomena that transforma-
tional grammar (TG) has analyzed purely in terms of covert movements.

In the rest of the paper, we sketch an approach to so-called covert phenomena
in which (as in logic) binding operators never move. (For the extension of this
approach to so-called overt movement phenomena, see Pollard 2008b.)

2 Toward a New, Nontransformational Synthesis

The T-model has long since been abandoned. Within the Chomskyan syntactic
tradition, the Minimalist Programm (MP, Chomsky 1995) provides much more
flexibility than EST or GB did, by discarding the notions of DS and SS. Instead,
merges (corresponding to EST/GB base rules) need not all take place before any
moves do. And the possibility of multiple branch points in a single derivation
(‘Spell-outs’) means that not all overt moves must occur ‘lower’ in the derivation
than any of the covert ones. These are not exactly negative developments; but it
is well worth noting that, had transformational grammarians followed the lead
of CG and PSG practicioners from the 1970s on in informing their theory by
ideas from logic (as opposed to logic metaphors), the architectural problems of
EST/GB that the MP has sought to repair could have been addressed much
early, or even avoided altogether. Here are a few examples.

First, in EST/GB, as noted above, LF is derived from SS. But an LF looks
a lot like a semantic lambda-term, and so, in light of the Curry-Howard (types
as formulas, terms as proofs) conception (Curry 1958, Howard 1980), we should
be able to think of it as an (intuitionistic) proof in its own right. So there is no
reason why it has to be derived from SS (or anything else).

Second, also as noted above, an EST/GB labelled bracketing, which typi-
cally contains traces (syntactic variables) and inaudible operators which bind
them, also looks a lot like a lambda term. But by then (1970s to early 1980s),
Lambek (1958) had already long since proposed that NL syntax be formulated
in terms of a substructural proof theory. Moroever the idea of extending the
Curry-Howard conception to substructural logics was continually being redis-
covered2; so, in hindsight at least, it is easy perceive these labelled bracketings
as Curry-Howard terms for some resource-sensitive logic or other. But in that
case, linguists should think of NL syntactic trees as proof trees, as Moortgat
2 E.g. Mints 1977, van Benthem 1983, Buszkowski 1987, Jay 1989, Benton et al. 1992,

Wansing 1992, Gabbay and de Queiroz 1992, Mackie et al. 1993).



(1988) and other categorial grammarians had already realized in the mid-to-late
1980s, not as structures whose subtrees can be deleted, copied, or moved by
transformations (and whose internal structural configurations could be relevant
in the formulation of linguistically significant generalizations).

Third (given the preceding), there is no need to stipulate a Strict Cycle
Condition (Chomsky 1976) on rule application (roughly, that once a rule has
applied to a given tree, it is already too late for any rule to apply solely to one
of that tree’s proper subtrees), for the simple reason that a proof cannot go back
and change earlier parts of itself!

And fourth, also in hindsight, it is clear that the notion of SS is not only
unnecessary but pernicious. That is because SS is the stage of the derivation
at which all base rule applications (merges) have taken place but none of the
transformational rule applications (moves). In proof theoretic terms, what SS
amounts to is a point in a proof subsequent to which only instances of Hypo-
thetical Proof (but not Modus Ponens) are admitted! But there is no requirement
on proofs that all instances of Modus Ponens appear lower in the proof tree than
all instances of Hypothetical Proof, just as there is no well-formedness condition
on lambda terms that all the abstractions occur on the left periphery of the
term.

If these observations are on the right track, then the syntax and semantics
of NL expressions are both proofs in their own right. But then, a grammar
should not be in the business of tranforming syntax into semantics; rather, it
should be specifying which syntax-semantics pairs of proofs3 go together. To
put it another way, the syntax-semantics interface should be at once purely
derivational and parallel. Here, by purely derivational, we mean simply that
derivations are proofs, as opposed to nondeterministic algorithms that build
arboreal structures via successive destructive modification. And by parallel, we
mean that there are separate proofs theories that provide, respectively, candidate
syntactic and semantic proofs; whereas it is the job of the syntax-semantics
interface to recursively define the set of proof pairs that belong to the language
in question.

The pure derivationality of the proposed approach comes straight out of CG,
and the syntactic proof theory we will adopt below will be readily taken for
what it is, a variant of (multimodal) applicative categorial grammar. However,
the mainstream of CG4 has eschewed parallelism, in favor of the functional
approach to semantic interpretation bequeathed by Montague, which mandates
that there can never be a purely semantic ambiguity. Rather, on the functional
approach, there must be a function from syntactic proofs/terms5 to semantic

3 Or triples, if phonology is also taken into account.
4 E.g.van Benthem 1983, Lambek 1988, Morrill 1994, Steedman 1996, Moortgat 1997,

Carpenter 1997, Jacobson 1999, de Groote 2001b, Ranta 2002, Muskens 2003, Pollard
2004, Anoun and Lecomte 2007, Bernardi and Moortgat 2007.

5 Or, in the case of Montague, analysis trees.



proofs/terms; or, to put it another way, all meaning differences must be disam-
biguated in the syntax.6

But I am not aware of any scientific basis for requiring that the relation
between syntactic derivations and semantic ones be a function. Indeed, there is
a long tradition7 which rejects the premise that the syntax-semantics relation
is a function from the former to the latter. I will refer to this tradition as the
parallel approach to the syntax-semantics interface. The framework I will be
using below, called Convergent Grammar (CVG), while purely derivational,
also lies squarely within this parallel tradition.8

In fact, the idea of a purely derivational parallel grammar architecture has
already been proposed independently and considerably earlier in this decade by
Lecomte and Retoré (Lecomte and Retoré 2002, Lecomte 2005), and there are
numerous points of similarity between their approach and CVG. However, un-
like their approach, which is part of a larger intellectual enterprise (categorial
minimalism) which seeks to bring about a marriage of CG and MP, the in-
tellectual tradition to which CVG belongs is one that parted company with (to
use Culicover and Jackendoff’s term) mainstream generative grammar (MGG)
more than three decades ago. As will be made clear shortly, CVG is really a
proof-theoretic embodiment not of minimalism but rather of the storage and
retrieval technology proposed by Cooper (1975, 1983) as an alternative to the
then-current EST/GB.

The kinds of ambiguities associated with the so-called covert-movement phe-
nomena, illustrated above in (2) and (3), bear directly on the functional vs. paral-
lel issue. Indeed, on parallel approaches, they readily lend themselves to analyses
that locate the ambiguities wholly in the semantics, rather than complicating
the syntax for the mere sake of preserving the (putative) functionality of the
syntax-semantics interface at any cost. To put it simply, it is entirely permissi-
ble, at a certain point in a pair of simultaneous derivations (one syntactic; one
semantic), to do something on the semantic side while doing nothing at all on
the syntactic side. And as we will see shortly, the Cooper-inspired storage and

6 There is a trivial respect in which any relational syntax-semantics interface can be
rendered functional by allowing sets of usual meanings to serve as ‘meanings’, since
there is a canonical correspondence between binary relations and functions from the
domain of the relation to the powerset of the codomain (the category of relations is
the Kleisli category of the powerset monad on sets). But linguists generally require
of meanings, however they are modelled, that they provide a deterministic interpre-
tation for contextualized utterances. Thus, we rule out as meanings nondetermistic
(or underspecified) representations (as in the MRS (minimal recursion semantics)
employed in some versions of head-driven phrase structure grammar (HPSG)) that
have to be postprocessed to resolve scopal ambiguities.

7 See, e.g. Cooper 1975 and 1983, Bach and Partee 1980, Hendriks 1993, Pollard and
Sag 1994, Lecomte and Retoré 2002, Lecomte 2005, and Culicover and Jackendoff
2005.

8 This is scarcely surprising, since it originated as an effort to reformulate HPSG along
type-theoretic lines (Pollard 2004).



retrieval rules in terms of which we analyze covert movement are of this precise
character.

3 Syntax, Semantics, and their Interface

For present purposes, we take a CVG to consist of three things: (1) a syntax,
(2) a semantics, and (3) a syntax-semantics interface (hereafter, interface
simpliciter).9 For the fragment developed here, we can take the syntax to be a
proof theory for a simple multi-applicative categorial grammar.10 The semantics
will be another proof theory closely related to the familiar typed lambda calculus
(TLC). And the interface will recursively define a set of pairs of proofs. The
two proof theories are both presented in the Gentzen-sequent style of natural
deduction with Curry-Howard proof terms (see e.g. Mitchell and Scott 1989),
because this style of proof theory is visually easy to relate to EST/GB-style or
HPSG-style linguistic analyses.

3.1 Semantics

Rather than the familiar TLC, we employ a new semantic calculus RC (the
calculus of Responsibility and Commitment11 which, we argue, is better
adapted to expressing the semantic compositionality of natural language. (But
we will also provide a simple algorithm for transforming RC semantic terms into
TLC, more specifically, into Ty2.) Here we present only the fragment of RC
needed to analyze covert movement; the full calculus, with the two additional
schemata needed to analyze overt movement, is presented in Pollard 2008b.

Like TLC, RC has types, terms, and typing judgments. One important dif-
ference is that in TLC, the variable context of a typing judgment is just a
set of variable/type pairs, written to the left of the turnstile. But an RC typ-
ing judgment has a Cooper store, written to the right and demarcated by a
co-turnstile a :

(4) Format for RC Typing Judgments

` a : A a ∆

The Cooper store is also called the variable co-context12; the ‘co-’ here is
mnemonic not only for ‘Cooper’; but also for ‘Commitment’ (for reasons to
9 For the simple fragment developed here, it is easy to read the word order off of the

syntactic analyses (proof terms). But to do serious linguistics, we also will require a
phonology and a syntax-phonology interface. Thus CVG is syntactocentric,
in the sense that syntax has interfaces to phonology and semantics, but only weakly
so, in the sense that the relations defined by the two interfaces need not be functions.

10 But in order to extend the theory to cover so-called overt movement phenomena, we
will need to add some form of hypothetical reasoning to the syntactic proof theory
(Pollard 2008b).

11 See Pollard 2008a and references cited there for background and discussion.
12 The full RC calculus, including the schemata for analyzing overt movement, also

employs ordinary variable contexts to the left of the turnstile.



be explained presently), for ‘Covert Movement’, and for ‘Continuation’ (since
the operators stored in them will scope over their own continuations). Thus a
judgment like (4) is read ‘the (semantic) term a is assigned the (semantic) type
A in the co-context ∆.’

(5) RC Semantic Types

a. There are some basic semantic types.
b. If A and B are types, then A → B is a functional semantic type with

argument type A and result type B.
c. If A, B, and C are types, then O[A,B, C], usually abbreviated (following

Shan 2004) to AC
B , is an operator semantic type with binding type

A, scope type B, and result type C.13

(6) Basic Semantic Types
For present purposes, we use three basic semantic types:
ι (individual concepts), π (propositions), and κ (polar questions).14

(7) Functional Semantic Types
We employ the following abbreviations for (necessarily curried) functional
types:

a. Where σ ranges over strings of types and ε is the null string:

i. Aε =def A

ii. ABσ =def B → Aσ (e.g. πιι = ι → ι → π)

b. For n ∈ ω, κn =def κσ where σ is the string of ι’s of length n.
For n-ary constituent questions where the constituents questioned all
have type ι. E.g. who likes what will get type κ2.

(8) Operator Types

a. These will be the semantic types for expressions which would be ana-
lyzed in TG as undergoing Ā-movement (either overt or covert).

b. The O-constructor is like Moortgat’s (1996) q-constructor, but it be-
longs to the semantic logic, not the syntactic one.

c. Thus, for example, while for Moortgat (1996) a QNP would have cate-
gory q[NP,S,S] and semantic type (ι → π) → π, for us it has category
(simply) NP and semantic type ιππ.15.

(9) RC Semantic Terms

a. There is a denumerable infinity of semantic variables of each type.

13 That is, a term a of type O[A, B, C] binds a variable x of type A in a term of type
B, resulting in a term axb of type C.

14 Here κ is mnemonic for ‘Karttunen’ because its transform (see below) into Ty2 will
be the Karttunen type for questions.

15 Actually QNPs have to be polymorphically typed. See Pollard 2008a fn. 4.



b. There are finitely many basic semantic constants of each type.
c. There are functional semantic terms of the form (f a), where f and a

are semantic terms.
d. There are binding semantic terms of the form (axb) where a and b are

semantic terms and x is a semantic variable.
e. But there is no λ!

(10) Cooper Stores

a. The Cooper stores (co-contexts) will contain semantic operators to be
scoped, each paired with the variable that it will eventually bind.

b. We call such stored pairs commitments, and write them in the form
ax, where the type of x is the binding type of a.

c. Then we call x a committed variable, and say that a is committed
to bind x.

Then the rule schemata of RC are the following:

(11) Semantic Schema A (Nonlogical Axioms)

` c : A a (c a basic semantic constant of type A)

The basic constants notate meanings of syntactic words (see (26).

(12) Semantic Schema M (Modus Ponens)

If ` f : A → B a ∆ and ` a : A a ∆′, then ` (f a) : B a ∆;∆′

a. This is the usual natural-deduction (ND) Modus Ponens, except that
co-contexts have to be propagated from premisses to conclusions.

b. Semicolons in co-contexts represent set union (necessarily disjoint, since
variables are always posited fresh).

(13) Semantic Schema C (Commitment)

If ` a : AC
B a ∆ then ` x : A a ax : AC

B ;∆ (x fresh)

a. This is a straightforward ND formulation of Cooper storage.
b. It generalizes Carpenter’s (1997) Introduction rule for Moortgat’s (1988)

⇑ (essentially the special case of q where the scope type and the result
type are the same), but in the semantics, not in the syntax.

(14) Semantic Schema R (Responsibility)

If ` b : B a ax : AC
B ;∆ then ` (axb) : C a ∆ (x free in b but not in ∆)

a. This is a straightforward ND formulation of Cooper retrieval.
b. It generalizes Carpenter’s (1997) Elimination rule for Moortgat’s ⇑, but,

again, in the semantics, not in the syntax.
c. It is called Responsibility because it is about fulfilling commitments.



To give the reader a familiar point of reference, we provide a transform of
RC into the standard higher-order semantic representation language Ty2 (Gallin
1975).16 We follow Carpenter (1997, section 11.2) in using individual concepts as
the basic type for NPs. But we use use the Gallin/Montague names for the basic
types e (entities, Carpenter’s individuals), t (truth values, Carpenter’s booleans),
and s (worlds), rather than Carpenter’s Ind, Bool, and World respectively. Hence
our (and Montague’s) type s → e for individual concepts corresponds to Car-
penter’s type World → Ind.17

We also follow Carpenter’s convention that functional meaning types take
their world argument last rather than first, e.g. the type for an intransitive verb
is (s → e) → s → t (the transform of RC type ι → π) rather than s → (s →
e) → t, so that the verb meaning combines with the subject meaning by ordinary
function application.

The price, well worth paying, is that, except for individual concepts and
propositions, our Ty2 meanings are technically not intensions (functions from
worlds). Consequently the extension at a world w of a Ty2 meaning is defined
by recursion on types as follows:

(15) Ty2 Meaning Types

a. s → e (individual concepts) is a Ty2 meaning type.
b. s → t (propositions) is a Ty2 meaning type.
c. If A and B are Ty2 meaning types, then so is A → B.

(16) Extensional Types Corresponding to Ty2 Meaning Types

These are defined as follows:

a. E(s → e) = e
b. E(s → t) = t
c. E(A → B) = A → E(B)

(17) Extensions of Ty2 Meanings

The relationship between Ty2 meanings and their extensions is axioma-
tized as follows, where the family of constants extA : s → A → E(A) is
parametrized by the Ty2 meaning types:18

a. ` ∀x∀w(extw(x) = x(w) (for x : s → e)
b. ` ∀p∀w(extw(p) = p(w) (for p : s → t)

16 This transform is not a proper part of our framework, but is provided in order to
show that familiar meaning representations can be algorithmically recovered from
the ones we employ. Readers who are not concerned with this issue can just ignore
this transform.

17 Types for Ty2 variables are as follows: x, y, z : s→ e (individual concepts); p, q : s→
t (propositions); w : s (worlds); and P, Q : (s→ e)→ s→ t (properties of individual
concepts).

18 We omit the type subscript A on extA when it is inferrable from context. Moreover
we abbreviate ext(w) as extw.



c. ` ∀f∀w(extw(f) = λxextw(f(x)) (for f : A → B, A and B Ty2 meaning
types.

(18) The Transform τ from RC Types to Ty2 Meaning Types

a. τ(ι) = s → e

b. τ(π) = s → t

c. τ(κ) = τ(π) → τ(π)

d. τ(A → B) = τ(A) → τ(B)

e. τ(AC
B) = (τ(A) → τ(B)) → τ(C)

(19) The Transform τ on Terms

a. Variables and basic constants are unchanged except for their types. (We
make abundant use of meaning postulates, e.g. (20) rather than giving
basic constants nonbasic transforms.)

b. τ((f a)) = τ(f)(τ(a))
The change in the parenthesization has no theoretical significance. It
just enables one to tell at a glance whether the term belongs to RC or
to Ty2, e.g. (walk’ Kim’) vs. walk’(Kim’).

c. τ((axb)) = τ(a)(λxτ(b))

(20) Ty2 Meaning Postulates for Generalized Quantifiers

` every’ = λQλP λw∀x(Q(x)(w) → P (x)(w))

` some’ = λQλP λw∃x(Q(x)(w) ∧ P (x)(w))

` everyone’ = every’(person’)

` someone’ = some’(person’)

3.2 Syntax

For the fragment developed here, our syntactic calculus is just a simple multi-
modal applicative CG.19 Again, there are types, now called (syntactic) cate-
gories, terms, and typing judgments, which have the form

(21) Format for CVG Syntactic Typing Judgments
` a : A

read ‘the (syntactic) term a is assigned the category A.’

(22) CVG Categories

a. There are some basic categories.

19 But to analyze overt movement, it will have to be extended with schemata for traces
and syntactic binding by ‘overtly moved’ syntactic operators (Pollard 2008b).



b. If A and B are categories, so are A (f B, where f belongs to a set
F of grammatical function names20; these are called functional
categories with argument category A and result category B.

(23) Basic Categories
For now, just S and NP.

(24) Functional Categories
We start off with the grammatical function names s (subject) and c (com-
plement).21 Others will be added as needed.

(25) CVG Syntactic Terms

a. There are finitely many (syntactic) words of each category.
b. There are syntactic functional terms of the forms (f a f) and (f f a)

(26) (Syntactic) Words

a. These correspond not just to Bloomfield’s “minimal free forms”, but
also to minimal syntactic units realized phonologically as phrasal affixes,
sentence particles, argument clitics, etc.

b. Some of these might be realized nonconcatenatively, e.g. by pitch ac-
cents, (partial) reduplication, phonological zero (inaudibility), etc.

(27) Syntactic Functional Terms

a. In principle these could always be written (f a f), but we write (f a c)
and (s a f) as a mnemonic that in English subjects are to the left and
complements to the right.

b. This enables us to read the word order off the syntactic terms, as in
EST/GB labelled bracketings.

The CVG syntactic rule schemata are as follows:

(28) Syntactic Schema W (Words)

` w : A (w a syntactic word of category A)

(29) Syntactic Schema Ms (Subject Modus Ponens)

If ` a : A and ` f : A (s B, then ` (s a f) : B

(30) Syntactic Schema Mc (Complement Modus Ponens)

If ` f : A (c B and ` a : A, then ` (f a c) : B

20 Thus grammatical functions are abstract tectogrammatical primitives, and not de-
fined in terms of word order, phonology, or the positions in which they occur in
proof trees. And so the role grammatical functions play in CVG is strongly anal-
ogous to the role that they play in such frameworks as HPSG, lexical-functional
grammar (LFG), and relational grammar (RG). Multiple modes of implication can
be replaced by a single linear implication (see de Groote et al. 2009 for details), at
the expense of considerably elaborating the set of basic types.

21 Here CVG betrays its HPSG pedigree.



3.3 The CVG Syntax-Semantics Interface

The interface recursively specifies which syntactic proofs are paired with which
semantics ones. Unsurprisingly, the recursion is grounded in the lexicon:

(31) Interface Schema L (Lexicon)

` w, c : A,B a (for certain pairs 〈w, c〉 where w is a word of category A
and c is a basic constant of type B)

The following two schemata are essentially ND reformulations of HPSG’s
Subject-Head and Head-Complement schemata:

(32) Interface Schema Ms (Subject Modus Ponens)

If ` a, c : A,C a ∆ and ` f, v : A (s B,C → D a ∆′

then ` (s a f), (v c) : B,D a ∆;∆′

(33) Interface Schema Mc (Complement Modus Ponens)

If ` f, v : A (c B,C → D a ∆ and ` a, c : A,C a ∆′

then ` (f a c), (v c) : B,D a ∆;∆′

And finally, the following two rules, both of which leave the syntax un-
changed, are ND reformulations of Cooper storage and retrieval, respectively.

(34) Interface Schema C (Commitment)

If ` a, b : A,BD
C a ∆, then ` a, x : A,B a bx : BD

C ;∆ (x fresh)

(35) Interface Schema R (Responsibility)

If ` e, c : E,C a bx : BD
C ;∆ then ` e, (bxc) : E,D a ∆

(x free in c but not in ∆)

It should be noted that, since co-contexts are sets, not lists, retrieval is nonde-
terministic not only with respect to which node in the proof tree it takes place
at, but also with respect to which of the stored operators is retrieved.

4 Analysis of Quantifier Raising in English

Our English fragment will employ the following lexicon. By convention, for any
lexical entry, the words and the semantic constants are presupposed to have
already been licensed, respectively, by the syntactic and semantic logics.

(36) Lexicon for English Fragment
` Chris,Chris’ : NP, ι a (likewise other names)

` everyone, everyone’ : NP, ιππ a
` someone, someone’ : NP, ιππ a
` likes, like’ : NP (c NP (s S, ι → ι → π a



` thinks, think’ : S (c NP (s S, π → ι → π a

(37) A Simple Sentence

a. Chris thinks Kim likes Dana.
b. ` (s Chris (thinks (s Kim (likes Dana c) c))) :

((think’ ((like’ Dana’) Kim’)) Chris’) : S, π a
c. Ty2: think’(like’(Dana’)(Kim’))(Chris’)

(38) Quantifier Scope Ambiguity

a. Chris thinks Kim likes everyone.
b. Syntax (both):

(s Chris (thinks (s Kim (likes everyone c) c))) : S
c. Semantics (scoped to lower clause):

RC: ((think’ (everyone’x((like’ x) Kim’))) Chris’) : π

Ty2: think’(λw(∀x(person′(x)(w) → like’(x)(Kim’)(w))))(Chris’) : s → t
d. Semantics (scoped to upper clause):

RC: (everyone’x((think’ ((like’ x) Kim’)) Chris’)) : π

Ty2: λw(∀x(person’(x)(w) → think’(like’(x)(Kim’))(Chris’)(w))) : s → t

(39) Raising of Two Quantifiers to Same Clause

a. Everyone likes someone.
b. Syntax (both): (s everyone (likes someone c) c) : S
c. ∀∃-reading (RC): (everyone’x(someone’y((like’ y) x))) : π

d. ∃∀-reading (RC): (someone’y(everyone’x((like’ y) x))) : π

e. These are possible because for generalized quantifiers, the result type is
the same as the scope type.

f. Things are not so straightforward in the case of multiple in-situ wh-
operators, as we will see in the next talk.

5 Background for the Analysis of Wh-in-Situ

In dealing with the semantics of (possibly multiple) in-situ constituent questions,
we take as our target (Ty2) semantics a variant (Pollard 2008c) of Karttunen’s
(1977) semantics of interrogatives, which analyzes interrogative denotations as
sets of propositions. We follow Karttunen in the case of polar questions; but for
n-place constituent questions, we take the denotation to be (the curried form
of) a function from n-tuples to propositions:22

22 A set of propositions can then be recovered as the range of this function. This set
differs from the Karttunen semantics in having both positive and negative ‘atomic
answers’ as members. Additionally, our interrogative meanings yield a refinement
of the Groenendijk-Stokhof partition semantics by taking the induced equivalence
relation on worlds. See Pollard 2008c for detailed discussion.



(40) Types for Polar Questions

a. RC meaning type: κ

b. Meaning type of Ty2 transform: (s → t) → s → t (property of proposi-
tions)

c. Type of Ty2 extension: (s → t) → t (characteristic function of) a (sin-
gleton) set of propositions)

d. Example: at w, Does Chris walk (or whether Chris walks) denotes the
singleton set whose member is whichever is true at w, the proposition
that Chris walks or the proposition that s/he doesn’t.

(41) Types for Unary Constituent Questions

a. RC meaning type: κ1

b. Meaning type of Ty2 transform: (s → e) → (s → t) → (s → t) (function
from individual concepts to properties of propositions).

c. Type of Ty2 extension: (s → e) → (s → t) → t (function from individual
concepts to sets of propositions). Technically, the curried version of the
characteristic function of a certain binary relation between individual
concepts and propositions.

d. Example: at w, who walks denotes the (functional) binary relation be-
tween individual concepts x and propositions p that obtains just in case
x is a w-person and and p is whichever proposition is a w-fact, that x
walks or that x does not walk.

(42) Types for Binary Constituent Questions

a. RC meaning type: κ2

b. Meaning type of Ty2 transform: (s → e) → (s → e) → (s → t) → (s →
t) (curried function from pairs of individual concepts to properties of
propositions).

c. Type of Ty2 extension: (s → t) → (s → e) → (s → t) → t (cur-
ried function from pairs of individual concepts to sets of propositions).
Technically, the curried version of the characteristic function of a cer-
tain ternary relation between individual concepts, individual concepts,
and propositions.

d. Example: at w, who likes what denotes the (functional) ternary relation
between individual concepts x and y and propositions p that obtains just
in case x is a w-person, y is a w-thing, and p is whichever proposition
is a w-fact, that x likes y or that x does not like y.

The fact that not all questions have the same type complicates the analysis of
in-situ multiple constituent questions as compared with the analysis of multiple
quantifier retrieval (39). For example, scoping one in-situ wh-operator at a propo-
sition produces a unary constituent question, so its type must be ικ1

π . Thus, if we
want to scope a second in-situ wh-operator over that unary constituent question
to form a binary constituent question, then its type must be ικ2

κ1
, and so forth. So



unlike QNPs, wh-operators must be (in principal infinitely) polymorphic. Note
that this polymorphism has nothing to do with the depth of embedding of the
sentences at which the operator is retrieved, but only with the operator’s scoping
order (in the sequence of all the wh-operators scoped within a given sentence).

Our analysis will make use of a number of Ty2 logical constants, defined by
the following meaning postulates:

(43) Ty2 Meaning Postulates for Some Useful Logical Constants

a. ` idn = λZZ (for Z : τ(κn))
b. ` and’ = λpλqλw(p(w) ∧ q(w))
c. ` or’ = λpλqλw(p(w) ∨ q(w))
d. ` not’ = λpλw¬p(w)
e. ` equals’A = λxλyλw(x = y)
f. ` whether’ = λqλp(p ∧ ((p equals’ q) ∨ (p equals’ not’(q))))
g. ` which0 = λQλP λxλp(Q(x) and’ whether’(P (x))(p))
h. ` whichn = λQλZλx0 . . . λxnλp(Q(x) and’ Z(x0) . . . (xn)(p)) (n > 0)

The last two are the Ty2 meanings of the interrogative determiner which. We do
not include determiners in this fragment, but these meanings are used to define
the following nonlogical constants:

(44) Ty2 Meaning Postulates for some Nonlogical Constants
For n ∈ ω:

a. ` whon = whichn(person’)
b. ` whatn = whichn(thing’)

6 Chinese Interrogatives

We turn now to the analysis of so-called covert wh-movement in Chinese.23

Our Chinese fragment uses the same types, categories, and (semantic, syn-
tactic, and interface) rule schemata as the English, but a different lexicon:

(45) Lexicon for Chinese Fragment

` Zhangsan,Zhangsan’ : NP, ι a
` xihuan, like’ : NP (c NP (s S, ι → ι → π a
` xi-bu-xihuan, like?’ : NP (c NP (s S, ι → ι → κ a
` xiang-zhidao,wonder’n : S (c NP (s S, κn → ι → π a
` shei,who0 : NP, ικ1

π a
` shei,whon : NP, ι

κn+1
κn a (for n > 0)

23 The analysis we will propose here improves on an earlier version (Pollard 2007a,b)
which required construction-specific rules for different in-situ operators.



` shenme,what0 : NP, ικ1
π a

` shenme,whatn : NP, ι
κn+1
κn a (for n > 0)

(46) Meaning Postulate for an Interrogative Verb Meaning

` like?’ = λyλxwhether’(like’(y)(x))

Note that xibuxihuan ‘like?’ is a partial-reduplicative interrogative verb form,
used for forming (both root and embedded) polar questions. The verb xiang-
zhidao ‘wonder’ has to be type-schematized according to the type of question
expressed by the sentential complement. And the sh-interrogative words have
to be type-schematized according by their scope type (and corresponding result
type). This fragment produces analyses such as the following:

(47) A Simple Chinese Sentence

a. Zhangsan xihuan Lisi.
b. Zhangsan like Lisi
c. Zhangsan likes Lisi.’
d. ` (s Zhangsan (xihuan Lisi c)) : S
e. Ty2: ` like’(Lisi’)(Zhangsan’) : τ(π)

(48) A Chinese Polar Question

a. Zhangsan xi-bu-xihuan Lisi?
b. Zhangsan like? Lisi
c. ‘Does Zhangsan like Lisi?’
d. ` (s Zhangsan (xi-bu-xihuan Lisi c)) : S
e. Ty2: ` whether’(like’(Lisi’)(Zhangsan’)) : τ(κ0)

(49) A Chinese Unary Constituent Question

a. Zhangsan xihuan shenme?
b. Zhangsan like who
c. ‘What does Zhangsan like?’
d. ` (s Zhangsan (xihuan shenme c)) : S
e. RC: ` (what0y((like’ y) (Zhangsan’)) : κ1 a

(50) A Chinese Binary Constituent Question

a. Shei xihuan shenme?
b. who like what
c. Who likes what?
d. ` (s Shei (xihuan shenme c)) : S
e. RC: ` (who1

x(what0y((like’ y) (x))) : κ2 a
f. RC: ` (what1y(who0

x((like’ y) (x))) : κ2 a



The ambiguity is inessential: the two functions are the same modulo per-
mutation of their arguments.

Finally, we consider so-called Baker-type ambiguities. Baker (1970) noticed
that English sentences like the following are ambiguous:

(51) Baker-Type Ambiguity in English

a. A: Who knows where we bought what?
b. B: Chris does. (Appropriate when what scopes to the embeded question.)
c. B: Chris knows where we bought the books, and Kim knows where we

bought the records. (Appropriate when what scopes to the root ques-
tion.)

d. The ‘overtly moved’ wh-expressions must scope at their ‘surface’ posi-
tions: who can only scope to the root question, and where can only scope
to the embedded question.

e. But the in-situ wh-expression what can scope high or low.

A full account of thus phenomenon in English depends on an analysis of overt
movement, which is beyond the scope of this paper (but see Pollard 2008a).
Instead, we analyze the corresponding facts of Chinese, which involve only covert
movement.

(52) A Chinese Baker-Type Wh-Scope Ambiguity

a. Zhangsan xiang-zhidao shei xihuan shenme./?
b. Zhangsan wonder who like what
c. ` (s Zhangsan (xiang-zhidao (s shei (xihuan shenme c) c))) : S
d. ` ((wonder’2 (who1

x(what0y((like’ y) x)))) Zhangsan’) : π a
‘Zhangsan wonders who likes what.’

e. ` (who0
x((wonder’1 (what0y((like’ y) x))) Zhangsan’) : κ1 a

‘Who does Zhangsan wonder what (that person) likes?’
f. ` (what0y((wonder’1 (who0

x((like’ y) x))) Zhangsan’) : κ1 a
‘What does Zhangsan wonder who likes?’

(53) The Gist of the Preceding

a. Both sh-expressions are in situ, so they can each scope high or low.
b. If both scope low (52d), then the root sentence expresses a proposition

and the embedded sentence expresses a binary question.
c. If one scopes high and the other low (52e,52f), then the root sentence

and the embedded sentence both express unary questions.
d. But they cannot both scope high, since then the complement sentence

would express a proposition, while the first argument of wonder’ must
be a question.



7 Conclusion

We have presented a new, simple, and formally precise account of so-called covert
movement phenomena. The key ideas of the account are these:

(54) The Key Ideas Summarized

– As in CG, both the syntax and the semantics of a linguistic expression
are proofs.

– But unlike mainstream CG, the syntax-semantics interface is not a func-
tion, so operator-scope ambiguities need not have syntactic reflections.

– Thus the syntax is simple.

– And unlike TG, the interface is not a nondeterministic process made
up of sequences of structural operations on trees.

– Instead, it is just a recursive specification of which proof pairs go to-
gether (parallel derivational architecture).

– The key insights embodied in the the semantic logic RC go back to the
1970s: Cooper’s storage and retrieval.

– The RC formulation generalizes Carpenter’s ND rules for Moortgat’s
⇑, but only in the semantic logic (not the syntactic one).

– The transform from RC to TLC is simple.24

A number of issues remain to be addressed. For one thing, the relationship
between covert and overt movement needs to be clarified. Some preliminary steps
in this direction are taken in Pollard 2008b,d. In essence, the approach taken
there is to reconstruct the analysis of overt movement in Gazdar 1981, using
(abstract) syntactic operators paired with operator meanings of the the same
general character as those that occur in the co-context. Such syntactic operators
bind a syntactic variable (‘trace of overt movement’) in a sentence in much the
same way that a quantifier retrieved from the co-store binds a semantic variable
in a proposition, except that rather then being retrieved, it is just an ordinary
logical premiss.

Second, it remains unclear how ultimately to make sense of the co-store,
and the storage and retrieval mechanisms, in logical (or categorical) terms. In
this connection, de Groote et al. (2009) show that the analysis of covert move-
ment set forth above can be assimilated to the CVG analysis of overt movement
just mentioned, provided we analyze an in situ operator as an ordinary premiss
with an operator type, which, when applied to its ‘gappy’ sentential argument,

24 It would be instructive to understand the the connection between this transform
and ones employed in many recent CG approaches (e.g. de Groote 2001a, Barker
2002, Shan 2002 and 2004, Moortgat 2007, and Bernardi and Moortgat 2007) based
on CPS transforms (Plotkin 1975, Felleisen 1988, Danvy and Filinski 1990, Parigot
1992 and 2000, and Curien and Herbelin 2000).



in effect lowers itself into the trace position via β-reduction.25 In other words,
a CVG with co-store can be algorithmically converted into an ordinary multi-
modal categorial grammar without co-store, with CVG derivations being globally
transformed into ordinary proofs that make no use of storage or retrieval.

This state of affairs is vaguely analogous to CPS transforms that map pro-
grams with control operators into pure functional programs. But what is missing
is a convincing logical or categorical characterization of the CVG-to-CG trans-
form. In the absence of such a characterization, perhaps the best face we can
put onto the the storage-and-retrieval machinery is that it provides a kind of
syntactic sugar for linguists with a taste for surface-oriented syntax. To put a
more positive spin on it, the de Groote et al.transform can be taken as estab-
lishing that Cooper-style storage-and-retrieval machinery actually has a precise
meaning (which is given by the transform).

A third, and potentially more serious challenge for the framework presented
above is the existence of the linguistic phenomenon of parasitic scope discussed
by Barker (2007). This has to do with seemingly quantificational expressions
whose scope, as Barker puts it, ‘depends on the scope of some other scope-taking
element in the sentence’. For example, in the following sentences

(55)
a. Anna and Bill read the same book.

b. John hit and killed the same man

the interpretations of the NPs introduced by the same depend on the interpre-
tations of the coordinate expressions Anna and Bill and hit and killed. Barker
argues persuasively that such phenomena resist coherent analysis under famil-
iar approaches to quantifer scope, and offers a type-logical analysis that makes
use of both continuations and choice functions. Ongoing investigation of para-
sitic scope (broadly construed to include similar phenomena such as remnant
comparatives and internal readings of superlatives) suggest that, although nei-
ther continuations nor choice functions are required for the analysis of parasitic
scope, a convincing characterization of such constructions in terms of storage-
and-retrieval is simply not avaiable.26 If so, then it may well be that, after 35
years of yeoman service, storage-and-retrieval technology is overdue for retire-
ment.
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