
Quantifier Elimination over Finite Fields Using
Gröbner Bases?

Sicun Gao, André Platzer, and Edmund M. Clarke

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. We give an algebraic quantifier elimination algorithm for the
first-order theory over any given finite field using Gröbner basis meth-
ods. The algorithm relies on the strong Nullstellensatz and properties of
elimination ideals over finite fields. We analyze the theoretical complex-
ity of the algorithm and show its application in the formal analysis of a
biological controller model.

1 Introduction

We consider the problem of quantifier elimination of first-order logic formulas in
the theory Tq of arithmetic in any given finite field Fq. Namely, given a quantified
formula ϕ(x;y) in the language, where x is a vector of quantified variables and y
a vector of free variables, we describe a procedure that outputs a quantifier-free
formula ψ(y), such that ϕ and ψ are equivalent in Tq.

Clearly, Tq admits quantifier elimination. A naive algorithm is to enumerate
the exponentially many assignments to the free variables y, and for each as-
signment a ∈ F |y|, evaluate the truth value of the closed formula ϕ(x;a) (with
a decision procedure). Then the quantifier-free formula equivalent to ϕ(x;y) is∨

a∈A(y = a), where A = {a ∈ F |y| : ϕ(x;a) is true.}. This naive algorithm
always requires exponential time and space, and cannot be used in practice.
Note that a quantifier elimination procedure is more general and complex than
a decision procedure: Quantifier elimination yields an equivalent quantifier-free
formula while a decision procedure outputs a yes/no answer. For instance, fully
quantified formulas over finite fields can be “bit-blasted” and encoded as Quanti-
fied Boolean Formulas (QBF), whose truth value can, in principle, be determined
by QBF decision procedures. However, for formulas with free variables, the use
of decision procedures can only serve as an intermediate step in the naive al-
gorithm mentioned above, and does not avoid the exponential enumeration of
values for the free variables. We believe there has been no investigation into
quantifier elimination procedures that can be practically used for this theory.

? This research was sponsored by National Science Foundation under contracts
no. CNS0926181, no. CCF0541245, and no. CNS0931985, the SRC under con-
tract no. 2005TJ1366, General Motors under contract no. GMCMUCRLNV301, Air
Force (Vanderbilt University) under contract no. 18727S3, the GSRC under con-
tract no. 1041377 (Princeton University), the Office of Naval Research under award
no. N000141010188, and DARPA under contract FA8650-10-C-7077.

ar
X

iv
:1

10
4.

07
46

v1
 [

cs
.S

C
]

 5
 A

pr
 2

01
1

Such procedures are needed, for instance, in the formal verification of cipher
programs involving finite field arithmetic [16,8] and polynomial dynamical sys-
tems over finite fields that arise in systems biology [11,12,4]. Take the S2VD
virus competition model [11] as an example, which we study in detail in Section
6: The dynamics of the system is given by a set of polynomial equations over the
field F4. We can encode image computation and invariant analysis problems as
quantified formulas, which are solvable using quantifier elimination. As is men-
tioned in [11], there exists no verification method suitable for such systems over
general finite fields so far.

In this paper we give an algebraic quantifier elimination algorithm for Tq.
The algorithm relies on strong Nullstellensatz and Gröbner basis methods. We
analyze its theoretical complexity, and show its practical application.

In Section 3, we exploit the strong Nullstellensatz over finite fields and prop-
erties of elimination ideals, to show that Gröbner basis computation gives a way
of eliminating quantifiers in formulas of the form ∃x(

∧
i αi), where the αis are

atomic formulas and ∃x is a quantifier block. We then show, in Section 4, that the
DNF-expansion of formulas can be avoided by using standard ideal operations to
“flatten” the formulas. Any quantifier-free formula can be transformed into con-
junctions of atomic formulas at the cost of introducing existentially quantified
variables. This transformation is linear in the size of the formula, and can be seen
as a generalization of the Tseitin transformation. Combining the techniques, we
obtain a complete quantifier elimination algorithm.

In Section 5, we analyze the complexity of our algorithm, which depends
on the complexity of Gröbner basis computation over finite fields. For ideals in
Fq[x] that contain xqi−xi for each xi, Buchberger’s Algorithm computes Gröbner
bases within exponential time and space [13]. Using this result, the worst-case
time/space complexity of our algorithm is bounded by qO(|ϕ|) when ϕ contains

no more than two alternating blocks of quantifiers, and qq
O(|ϕ|)

for more alter-
nations. Recently a polynomial-space algorithm for Gröbner basis computation
over finite fields has been proposed in [17], but it remains theoretical so far. If the
new algorithm can be practically used, the worst-case complexity of quantifier
elimination is qO(|ϕ|) for arbitrary alternations.

Note that this seemingly high worst-case complexity, as is common for Gröbner
basis methods, does not prevent the algorithm from being useful on practical
problems. This is crucially different from the naive algorithm, which always re-
quires exponential cost, not just in worst cases. In Section 6, we show how the
algorithm is successfully applied in the analysis of a controller design in the
S2VD virus competition model [11], which is a polynomial dynamical system
over finite fields. The authors developed control strategies to ensure a safety
property in the model, and used simulations to conclude that the controller is
effective. However, using the quantifier elimination algorithm, we found bugs that
show inconsistency between specifications of the system and its formal model.
This shows how our algorithm can provide a practical way of extending formal
verification techniques to models over finite fields.

Throughout the paper, omitted proofs are provided in the Appendix.

2 Preliminaries

2.1 Ideals, Varieties, Nullstellensatz, and Gröbner Bases

Let k be any field and k[x1, ..., xn] the polynomial ring over k with indeterminates
x1, ..., xn. An ideal generated by f1, ..., fm ∈ k[x1, ..., xn] is 〈f1, ..., fm〉 = {h :
h =

∑m
i=1 gifi, gi ∈ k[x1, ..., xn]}. Let a ∈ kn be an arbitrary point, and f ∈

k[x1, ..., xn] be a polynomial. We say that f vanishes on a if f(a) = 0.

Definition 2.1. For any subset J of k[x1, ..., xn], the affine variety of J over
k is Vn(J) = {a ∈ kn : ∀f ∈ J, f(a) = 0}.

Definition 2.2. For any subset V of kn, the vanishing ideal of V is defined
as I(V) = {f ∈ k[x1, ..., xn] : ∀a ∈ V, f(a) = 0}.

Definition 2.3. Let J be any ideal in k[x1, ..., xn], the radical of J is defined
as
√
J = {f ∈ k[x1, ..., xn] : ∃m ∈ N, fm ∈ J}.

When J =
√
J , we say J is a radical ideal. The celebrated Hilbert Nullstellensatz

established the correspondence between radical ideals and varieties:

Theorem 2.1 (Strong Nullstellensatz [14]). For an arbitrary field k, let J
be an ideal in k[x1, ..., xn]. We have I(V a(J)) =

√
J, where ka is the algebraic

closure of k and V a(J) = {a ∈ (ka)n : ∀f ∈ J, f(a) = 0}.

The method of Gröbner bases was introduced by Buchberger [6] for the algo-
rithmic solution of various fundamental problems in commutative algebra. For
an ideal 〈f1, ..., fm〉 in a polynomial ring, Gröbner basis computation transforms
f1, ..., fm to a canonical representation 〈g1, ..., gs〉 = 〈f1, ..., fm〉 that has many
useful properties. Detailed treatment of the theory can be found in [3].

Definition 2.4. Let T = {xα1
1 · · ·xαn

n : αi ∈ N} be the set of monomials in
k[x1, ..., xn]. A monomial ordering ≺ on T is a well-ordering on T satisfying
(1) For any t ∈ T , 1 ≺ t
(2) For all t1, t2, s ∈ T , t1 ≺ t2 then t1 · s ≺ t2 · s.

We order the monomials appearing in any single polynomial f ∈ k[x1, ..., xn]
with respect to ≺. We write LM(f) to denote the leading monomial in f (the
maximal monomial under ≺), and LT (f) to denote the leading term of f (LM(f)
multiplied by its coefficient). We write LM(S) = {LM(f) : f ∈ S} where S is a
set of polynomials.

Let J be an ideal in k[x1, ..., xn]. Fix any monomial order on T . The ideal of
leading monomials of J , 〈LM(J)〉, is the ideal generated by the leading mono-
mials of all polynomials in J . Now we are ready to define:

Definition 2.5 (Gröbner Basis [3]). A Gröbner basis for J is a set GB(J) =
{g1, ..., gs} ⊆ J satisfying 〈LM(GB(J))〉 = 〈LM(J)〉.

2.2 The First-order Theory over a Finite Field

Let Fq be an arbitrary finite field of size q, where q is a prime power. We fix the
structure to be Mq = 〈Fq, 0, 1,+,×〉 and the signature Lq = 〈0, 1,+,×〉 (“=” is
a logical predicate). For quantified formulas, we write ϕ(x;y) to emphasize that
the x is a vector of quantified variables and y is a vector of free variables.

The standard first-order theory for each Mq consists of the usual axioms for
fields [15] plus ∃x1 · · · ∃xq((

∧
1≤i<j≤q xi 6= xj) ∧ ∀y(

∨
i y = xi)), which fixes the

size of the domain. We write this theory as Tq. In Lq, we consider all the atomic
formulas as polynomial equations f = 0. The realization of a formula is the set of
assignments to its free variables that makes the formula true over Mq. Formally:

Definition 2.6 (Realization). Let ϕ(x1, ..., xn) be a formula with free vari-
ables x = (x1, ..., xn). The realization of ϕ, written as JϕK ⊆ Fnq , is inductively
defined as:

– Jp = 0K =df V (〈p〉) ⊆ Fnq (in particular, J>K = Fnq)
– J¬ψK = Fnq \ JψK
– Jψ1 ∧ ψ2K = Jψ1K ∩ Jψ2K
– J∃x0.ψ(x0,x)K = {〈a1, ..., an〉 ∈ Fnq : ∃a0 ∈ Fq, such that 〈a0, ..., an〉 ∈ JψK}

Proposition 2.1 (Fermat’s Little Theorem). Let Fq be a finite field. For
any a ∈ Fq, we have aq − a = 0. Conversely, V (xq − x) = Jxq − xK = Fq.

Definition 2.7 (Quantifier Elimination). Tq admits quantifier elimination if
for any formula ϕ(x;y), where the x variables are quantified and the y variables
free, there exists a quantifier-free formula ψ(y) such that Jϕ(x;y)K = Jψ(y)K.

2.3 Nullstellensatz in Finite Fields

The strong Nullstellensatz admits a special form over finite fields. This was
proved for prime fields in [10] and used in [4,5]. Here we give a short proof that
the special form holds over arbitrary finite fields, as a corollary of Theorem 2.1.

Lemma 2.1. For any ideal J ⊆ Fq[x1, ..., xn], J+〈xq1−x1, ..., xqn−xn〉 is radical.

Theorem 2.2 (Strong Nullstellensatz in Finite Fields). For an arbitrary
finite field Fq, let J ⊆ Fq[x1, ..., xn] be an ideal, then

I(V (J)) = J + 〈xq1 − x1, ..., xqn − xn〉.

Proof. Apply Theorem 2.1 to J + 〈xq1− x1, ..., xqn− xn〉 and use Lemma 2.1. We
have I(V a(J + 〈xq1 − x1, ..., xqn − xn〉)) = J + 〈xq1 − x1, ..., xqn − xn〉. But since
V a(〈xq1 − x1, ..., xqn − xn〉) = Fnq , it follows that

V a(J + 〈xq1 − x1, ..., xqn − xn〉) = V a(J) ∩ Fnq = V (J).

Thus we obtain I(V (J)) = J + 〈xq1 − x1, ..., xqn − xn〉. ut

3 Quantifier Elimination Using Gröbner Bases

In this section, we show that the key step in quantifier elimination can be re-
alized by Gröbner basis computation. Namely, for any formula ϕ of the form
∃x
∧r
i=1 fi(x,y) = 0, we can compute a quantifier-free formula ψ(y) such that

Jϕ(x;y)K = Jψ(y)K. We use the following notational conventions:

– |x| = n is the number of quantified variables and |y| = m the number of
free variables. We write xq − x =df {xq1 − x1, ..., xqn − xn} and yq − y =df

{yq1 − y1, ..., yqm − ym}, and call them field polynomials (following [10]).
– We use a = (a1, ..., an) ∈ Fnq to denote the assignment for the x variables,

and b = (b1, ..., bm) ∈ Fmq for the y variables. (a, b) ∈ Fn+mq is a complete
assignment for all the variables in ϕ.

– When we write J ⊆ Fq[x,y] or a formula ϕ(x;y), we assume that all the
x,y variables do occur in J or ϕ. We assume that the x variables always
rank higher than the y variables in the lexicographic order.

3.1 Existential Quantification and Elimination Ideals

First, we show that eliminating the x variables is equivalent to projecting the
variety V (〈f1, ..., fr〉) from Fn+mq to Fmq .

Lemma 3.1. For f1, ..., fr ∈ Fq[x,y], we have J
∧r
i=1 fi = 0K = V (〈f1, ..., fr〉).

Definition 3.1 (Projection). The l-th projection mapping is defined as:

πl : FNq → FN−lq , πl((c1, ..., cN)) = (cl+1, ..., cN)

where l < N . For any set A ⊆ FNq , we write πl(A) = {πi(c) : c ∈ A} ⊆ FN−lq .

Lemma 3.2. J∃xϕ(x;y)K = πn(Jϕ(x;y)K).

Next, we show that the projection πn of the variety Vn+m(〈f1, ..., fr〉) from
Fn+mq to Fmq , is exactly the variety Vm(〈f1, ..., fr〉 ∩ Fq[y]).

Definition 3.2 (Elimination Ideal [7]). Let J ⊆ Fq[x1, ..., xn] be an ideal.
The l-th elimination ideal Jl, for 1 ≤ l ≤ N , is the ideal of Fq[xl+1, ..., xN]
defined by Jl = J ∩ Fq[xl+1, ..., xN].

The following lemma shows that adding field polynomials does not change
the realization. For f1, ..., fr ∈ Fq[x,y], we have:

Lemma 3.3. J
∧r
i=1 fi = 0K = J

∧r
i=1 fi = 0 ∧

∧
(xqi − xi = 0) ∧

∧
(yqi − yi = 0)K.

Now we can prove the key equivalence between projection operations and
elimination ideals. This requires the use of Nullstellensatz for finite fields.

Theorem 3.1. Let J ⊆ Fq[x,y] be an ideal which contains the field polynomials
for all the variables in J . We have πn(V (J)) = V (Jn).

Proof. We show inclusion in both directions.

– πn(V (J)) ⊆ V (Jn) :
For any b ∈ πn(V (J)), there exists a ∈ Fnq such that (a, b) ∈ V (J). That is,
(a, b) satisfies all polynomials in J ; in particular, b satisfies all polynomials
in J that only contain the y variables (a is not assigned to variables). Thus,
b ∈ V (J ∩ Fq[y]) = V (Jn).

– V (Jn) ⊆ πn(V (J)) :
Let b be a point in Fmq such that b 6∈ πn(V (J)). Consider the polynomial

fb =

m∏
i=1

(
∏

c∈Fq\{bi}

(yi − c)).

fb vanishes on all the points in Fnq , except b = (b1, ..., bm), since (yi − bi)
is excluded in the product for all i. In particular, fb vanishes on all the
points in V (J), because for each (a, b′) ∈ V (J), b′ must be different from b,
and fb(a, b′) = fb(b′) = 0 (since there are no x variables). Therefore, fb is
contained in the vanishing ideal of V (J), i.e., fb ∈ I(V (J)).
Now, Theorem 2.2 shows I(V (J)) = J + 〈xq − x,yq − y〉. Since J already
contains the field polynomials, we know J + 〈xq − x,yq − y〉 = J , and
consequently I(V (J)) = J. Since fb ∈ I(V (J)), we must have fb ∈ J . But
on the other hand, fb ∈ Fq[y]. Hence fb ∈ J ∩ Fq[y] = Jn. But since
fb(b) 6= 0, we know b 6∈ V (Jn). ut

3.2 Quantifier Elimination using Elimination Ideals

Theorem 3.1 shows that to obtain the projection of a variety over Fq, we only
need to take the variety of the corresponding elimination ideal. In fact, this can
be easily done using the Gröbner basis of the original ideal:

Proposition 3.1 (cf. [7]). Let J ⊆ Fq[x1, ..., xN] be an ideal and let G be the
Gröbner basis of J with respect to the lexicographic order x1 � · · · � xN . Then
for every 1 ≤ l ≤ N , G∩Fq[xl+1, ..., xN] is a Gröbner basis of the l-th elimination
ideal Jl. That is, Jl = 〈G〉 ∩ Fq[xl+1, ..., xN] = 〈G ∩ Fq[xl+1, ..., xN]〉.

Now, putting all the lemmas together, we arrive at the following theorem:

Theorem 3.2. Let ϕ(x;y) be ∃x.(
∧r
i=1 fi = 0) be a formula in Lq, with fi ∈

Fq[x,y]. Let G be the Gröbner basis of 〈f1, ..., fr,xq − x,yq − y〉. Suppose G ∩
Fq[y] = {g1, ..., gs}, then we have JϕK = J

∧s
i=1(gi = 0)K.

Proof. We write J = 〈f1, ..., fr,xq−x,yq−y〉 for convenience. First, by Lemma
3.3, adding the polynomials xq − x and yq − y does not change the realization:

JϕK = J∃x.(
r∧
i=1

fi = 0)K = J∃x.(
r∧
i=1

fi = 0 ∧
n∧
i=1

(xqi − xi = 0) ∧
m∧
i=1

(yqi − yi = 0))K

Next, by Lemma 3.2, the quantification on x corresponds to projecting a variety:

J∃x.(
r∧
i=1

fi = 0 ∧
n∧
i=1

(xqi − xi = 0) ∧
m∧
i=1

(yqi − yi = 0))K = πn(V (J)).

Using Theorem 3.1, we know that the projection of a variety is equivalent to the
variety of the corresponding elimination ideal, i.e., πn(V (J)) = V (J ∩ Fq[y]).
Now, using the property of Gröbner bases in Proposition 3.1, we know the elim-
ination ideal 〈G〉 ∩ Fq[y] is generated by G ∩ Fq[y]:

V (J ∩ Fq[y]) = V (〈G〉 ∩ Fq[y]) = V (〈G ∩ Fq[y]〉) = V (〈g1, ..., gs〉)

Finally, by Lemma 3.1, an ideal is equivalent to the conjunction of atomic for-
mulas given by the generators of the ideal: V (〈g1, ..., gs〉) = J

∧s
i=1 gi = 0K.

Connecting all the equations above, we have shown JϕK = J
∧s
i=1 gi = 0K.

Note that g1, ..., gs ∈ Fq[y] (they do not contain x variables). ut

4 Formula Flattening with Ideal Operations

If negations on atomic formulas can be eliminated (to be shown in Lemma 4.1),
Theorem 3.2 already gives a direct quantifier elimination algorithm. That is, we
can always use duality to make the innermost quantifier block an existential one,
and expand the quantifier-free part to DNF. Then the existential block can be
distributed over the disjuncts and Theorem 3.2 is applied. However, this direct
algorithm always requires exponential blow-up in expanding formulas into DNF.

We show that the DNF-expansion can be avoided: Any quantifier-free formula
can be transformed into an equivalent formula of the form ∃z.(

∧r
i=1 fi = 0),

where z are new variables and fis are polynomials. The key is that Boolean
conjunctions and disjunctions can both be turned into additions of ideals; in the
latter case new variables need be introduced. This transformation can be done
in linear time and space, and is a generalization of the Tseitin transformation
from F2 to general finite fields.

We use the usual definition of ideal addition and multiplication. Let J1 =
〈f1, ..., fr〉 and J2 = 〈g1, ..., gs〉 be ideals, and h be a polynomial. Then J1 +J2 =
〈f1, ..., f,g1, ..., gs〉 and J1 · h = 〈f1 · h, ..., fr · h〉.

Lemma 4.1 (Elimination of Negations). Suppose ϕ is a quantifier free for-
mula in Lq in NNF and contains k negative atomic formulas. Then there is a
formula ∃z.ψ, where ψ contains new variables z but no negative atoms, such
that JϕK = J∃z.ψK.

Lemma 4.2 (Elimination of Disjunctions). Suppose ψ1 and ψ2 are two for-
mulas in variables x1, ..., xn, and J1 and J2 are ideals in Fq[x1, ..., xn] satisfying
Jψ1K = V (J1) and Jψ2K = V (J2). Then, using x0 as a new variable, we have
Jψ1 ∨ ψ2K = V (J1) ∪ V (J2) = π0(V (x0J1 + (1− x0)J2)).

Theorem 4.1. For any quantifier-free formula ϕ(x) given in NNF, there ex-
ists a formula ψ of the form ∃u,v(

∧
i(fi(x,u,v) = 0)) such that JϕK = JψK.

Furthermore, ψ can be generated in time O(|ϕ|), and also |u|+ |v| = O(|ϕ|).

Proof. Since ϕ(x) is in NNF, all the negations occur in front of atomic formulas.
We first use Lemma 4.1 to eliminate the negations. Suppose there are k negative
atomic formulas in ϕ, we obtain JϕK = J∃u1, ..., uk.ϕ′K. Now ϕ′ does not contain
negations.

We then prove that there exists an ideal Jϕ′ for ϕ′ satisfying π|v|(V (Jϕ′)) =
Jϕ′K, where v are the introduced variables (which rank higher than the existing
variables in the variable ordering, so that the projection π|v| truncates assign-
ments on the v variables).

– If ϕ′ is an atomic formula f = 0, then Jϕ′ = 〈f〉;
– If ϕ′ is of the form θ1 ∧ θ2, then Jϕ′ = Jθ1 + Jθ2 ;
– If ϕ′ is of the form θ1∨ θ2, then Jϕ′ = vi ·Jθ1 + (1−vi) ·Jθ2 , where vi is new.

Note that the new variables are only introduced in the disjunction case, and
therefore the number of v variables equals the number of disjunctions. Following
Lemma 3.1 and 4.2, the transformation preserves the realization of the formula
in each case. Hence, we have πv(V (Jϕ′)) = Jϕ′K. Writing Jϕ′ = 〈f1, ..., fr〉, we
know JϕK = J∃u.ϕ′K = J∃u∃v.

∧r
i=1 fiK. Notice that the number of rewriting

steps is bounded by the number of logical symbols appearing in ϕ. Hence the
transformation is done in time linear in the size of the formula. The number of
new variables is equal to the number of negations and disjunctions. ut

5 Algorithm Description and Complexity Analysis

We now describe the full algorithm using the following notations:

– The input formula is given by ϕ = Q1x1 · · ·Qmxmψ. Each Qixi represents
a quantifier block, where Qi is either ∃ or ∀. Qi and Qi+1 are different quan-
tifiers. We write x = (x1, ...,xm). ψ is a quantifier-free formula in x and y
given in NNF, where y are free variables.

– We assume the innermost quantifier is existential, Qm = ∃. (Otherwise we
apply quantifier elimination on the negation of the formula.)

5.1 Algorithm Description

Section 3 shows how to eliminate existential quantifiers over conjunctions of
positive atomic formulas. Section 4 shows how formulas can be put into con-
junctions of positive atoms with new quantified variables. It follows that we can
always eliminate the innermost existential quantifiers, and iterate the process by
flipping the universal quantifiers into existential ones. We first emphasize some
special features of the algorithm:

Algorithm 1 Quantifier Elimination for ϕ = Q1x1 · · ·Qmxm.ψ

1: Input: ϕ = Q1x1 · · ·Qmxm.ψ(x1, ...,xm,y) where m is the number of quan-
tifier alternations, Qmxm is an existential block (Qm = ∃), and ψ is in
negation normal form.

2: Output: A quantifier-free equivalent formula of ϕ
3: Procedure QE(ϕ)
4: while m ≥ 1 do
5: ∃u.ψ′ ← Eliminate Negations(ψ)
6: ∃v.(f1 = 0 ∧ · · · ∧ fr = 0)← Formula Flattening(ψ′)
7: ϕ← Q1x1 · · ·Qmxm∃u∃v.(f1 = 0 ∧ · · · ∧ fr = 0)
8: {g1, ..., gs} = Gröbner Basis(〈f1, ..., fr,xq − x,uq − u,vq − v〉)
9: if m = 1 then

10: ϕ← g1 = 0 ∧ · · · ∧ gs = 0
11: break
12: end if
13: ϕ← Q1x1 · · ·Qm−2xm−2Qm−1xm−1.(

∧s
i=1 gi = 0) where Qm−1 = ∀

14: ϕ← Q1x1 · · ·Qm−2xm−2.(
∧s
i=1 ¬∃xm−1(gi 6= 0))

15: for i = 1 to s do
16:

∧ti
j=1 hij = 0←QE(∃xm−1(gi 6= 0))

17: end for
18: ϕ← Q1x1 · · ·Qm−2xm−2

∧s
i=1(

∨ti
j=1 hij 6= 0)

19: m← m− 2
20: end while
21: return ϕ

– In each elimination step, a full quantifier block is eliminated. This is desir-
able in practical problems, which usually contain many variables but few
alternating quantifier blocks. For instance, many verification problems are
expressible using two blocks of quantifiers (∀∃-formulas).

– The quantifier elimination step essentially transforms an ideal to another
ideal. This corresponds to transforming conjunctions of atomic formulas to
conjunctions of new atomic formulas. Therefore, the quantifier elimination
steps do not introduce new nesting of Boolean operators.

– The algorithm always directly outputs CNF formulas.

A formal description of the full algorithm is given in Algorithm 1. The main
steps in the algorithm are explained below. Each loop of the algorithm contains
three main steps. In Step 1, ϕ is flattened; in Step 2, the innermost existential
quantifier block is eliminated; in Step 3, the next (universal) quantifier block is
eliminated and the process loops back to Step 1. The algorithm terminates either
after Step 2 or Step 3, when there are no remaining quantifiers to be eliminated.

• Step 1: (Line 5-7)

First, since ψ is in NNF, we use Theorem 4.1 to eliminate the negations and
disjunctions in ψ to get JϕK = JQ1x1 · · ·Qmxm∃u∃v.(

∧r
i=1 fi = 0)K, where u

are the variables introduced for eliminating negations (Lemma 4.1), and v are
the variables introduced for eliminating disjunctions (Lemma 4.2).
• Step 2: (Line 8-12)
Since Qm = ∃, using Theorem 4.1, we can eliminate the variables xm,u,v

simultaneously by computing

{g1, ..., gr1} = GB(〈f1, ..., fr,xqm−xm,uq−u,vq−v,yq−y〉)∩Fq[x1, ...,xm−1,y].

Now we have JϕK = JQ1x1 · · ·Qm−1xm−1.(
∧s
i=1(gi = 0))K.

If there are no more quantifiers, the output is
∧s
i=1(gi = 0), which is in CNF.

• Step 3: (Line 13-18)
Since Qm−1 = ∀, we distribute the block Qm−1xm−1 over the conjuncts:

JϕK = JQ1x1 · · ·Qm−2xm−2(

s∧
i=1

(¬∃xm−1¬(gi = 0)))K

Now we do elimination recursively on ∃xm−1(¬gi = 0) for each i ∈ {1, ..., s},
which can be done using only Step 1 and Step 2. We obtain:

J∃xm−1(¬gi = 0)K = J∃xm−1∃u′.(gi · u′ − 1 = 0)K = J
ti∧
j=1

hij = 0K (1)

and the formula becomes (note that the extra negation is distributed)

JϕK = JQ1x1 · · ·Qm−2xm−2.(
s∧
i=1

(

ti∨
j=1

hij 6= 0))K. (2)

If there are no more quantifiers left, the output formula is
∧s
i=1(

∨ti
j=1 hij 6= 0),

which is in CNF. Otherwise, Qm−2 = ∃, and we return to Step 1.

Theorem 5.1 (Correctness). Let ϕ(x;y) be a formula Q1xi · · ·Qmxm.ψ where
Qm = ∃ and ψ is in NNF. Algorithm 1 computes a quantifier-free formula ϕ′(y),
such that Jϕ(x;y)K = Jϕ′(y)K and ϕ′ is in CNF.

5.2 Complexity Analysis

The worst-case complexity of Gröbner basis computation on ideals in Fq[x] that
contain xqi − xi for each variable xi is known to be single exponential in the
number of variables in time and space. This follows from the complexity result
for Gröbner basis computation of zero-dimensional radical ideals [13] (a direct
proof can be found in [9]).

Proposition 5.1. Let J = 〈f1, ..., fr,xq − x〉 ⊆ Fq[x1, ..., xn] be an ideal. The
time and space complexity of Buchberger’s Algorithm is bounded by qO(n), as-
suming that the length of input (f1, ..., fr) is dominated by qO(n).

Now we are ready to estimate the complexity of our algorithm.

Theorem 5.2 (Complexity). Let ϕ be the input formula with m quantifier
blocks. When m ≤ 2, the time/space complexity of Algorithm 1 is bounded by

qO(|ϕ|). Otherwise, it is bounded by qq
O(|ϕ|)

.

Proof. The complexity is dominated by Gröbner basis computation, whose com-
plexity is determined by the number of variables occurring in the ideal. When
m ≤ 2, the main loop is executed once, and the number of newly introduced vari-
ables is bounded by the original length of the input formula. Therefore, Gröbner
basis computations can be done in single exponential time/space. When m > 2,
the number of newly introduced variables is bounded by the length of the formula
obtained from the previous run of the main loop, which can itself be exponential
in the number of the remaining variables. In that case, Gröbner basis computa-
tion can take double exponential time/space.

• Case m ≤ 2:

In Step 1, the number of the introduced u and v variables equals to the
number of negations and disjunctions that appear in the ϕ. Hence the total
number of variables is bounded by the length of ϕ. The flattening takes linear
time and space, O(|ϕ|), as proved in Theorem 4.1.

In Step 2, by Proposition 5.1, Gröbner basis computation takes time/space
qO(|ϕ|).

In Step 3, the variables xm,u,v have all been eliminated. The length of each
giu
′ − 1 (see Formula (1) in Step 3) is bounded by the number of monomials

consisting of the remaining variables, which is O(q(|y|+
∑m−1

i=1 |xi|)) (because the
degree on each variable is lower than q). Following Proposition 5.1, Gröbner

basis computation on each giu
′−1 takes time and space qO(|y|+

∑m−1
i=1 |xi|), which

is dominated by qO(|ϕ|). Also, since the number s of conjuncts is the number of
polynomials in the Gröbner basis computed in the previous step, we know s is
bounded by qO(|ϕ|). In sum, Step 3 takes qO(|ϕ|) time/space in worst case.

Thus, the algorithm has worst-case time and space complexity qO(|ϕ|) when
m ≤ 2.

• Case m > 2:

When m > 2, the main loop is iterated for more than one round. The key
change in the second round is that, the initial number of conjunctions and dis-
junctions in each conjunct could both be exponential in the number of the re-
maining variables (x1, ...,xm−2). That means, writing the max of ti as t (see
Formula (2) in Step 3), both s and t can be of order qO(|ϕ|).

In Step 1 of the second round, the number of the u variables introduced
for eliminating the negations is s · t. The number of the v variables introduced
for eliminating disjunctions is also s · t. Hence the flattened formula may now
contain qO(|ϕ|) variables.

In Step 2 of the second round, Gröbner basis computation takes time and
space exponential in the number of variables. Therefore, Step 2 can now take

qq
O(|ϕ|)

in time and space.

In Step 3 of the second round, however, the number of conjuncts s does not
become doubly exponential. This is because gi in Step 3 no longer contains the

exponentially many introduced variables – they were already eliminated in the
previous step. Thus s is reduced back to single exponential in the number of the
remaining variables; i.e., it is bounded by qO(|ϕ|). Similarly, the Gröbner basis
computation on each giu

′−1, which now contains variables x1, ...,xm−1,y, takes
time and space qO(|ϕ|). In all, Step 3 takes time and space qO(|ϕ|).

In sum, the second round of the main loop can take time/space qq
O(|ϕ|)

. But
at the end of the loop, the size of formula is reduced to qO(|ϕ|) after the Gröbner
basis computations, because it is at most single exponential in the number of
the remaining variables. Therefore, the double exponential bound remains for
future iterations of the main loop. ut

Recently, [17] reports a Gröbner basis computation algorithm in finite fields
using polynomial space. This algorithm is theoretical and cannot be applied
yet. Given the analysis above, if such a polynomial-space algorithm for Gröbner
basis computation can be practically used, the intermediate expressions do not
have the double-exponential blow-up. On the other hand, it does not lower the
space bound of our algorithm to polynomial space, because during flattening of
the disjunctions, the introduced terms are multiplied together. To expand the
introduced terms, one may still use exponential space. It remains further work to
investigate whether the algorithm can be practically used and how it compares
with Buchberger’s Algorithm.

Proposition 5.2. If there exists a polynomial-space Gröbner basis computa-
tion algorithm over finite fields for ideals containing the field polynomials, the
time/space complexity of our algorithm is bounded by qO(|ϕ|).

6 Example and Application

6.1 A Walk-through Example

Consider the following formula over F3:

ϕ : ∃b∀a∃y∃x.((y = ax2 + bx+ c) ∧ (y = ax))

which has three alternating quantifier blocks and one free variable. We ask for
a quantifier-free formula ψ(c) equivalent to ϕ.

We fix the lexicographic ordering to be x � y � a � b � c. First, we compute
the Gröbner basis G0 of the ideal: 〈y − ax2 − bx− c, y − ax, x3 − x, y3 − y, a3 −
a, b3 − b, c3 − c〉,and obtain the Gröbner basis of the elimination ideal

G1 = G0 ∩ F3[a, b, c] = {abc+ ac2 + b2c− c, a3 − a, b3 − b, c3 − c}.

After this, x and y have been eliminated, and we have:

JϕK = J∃b∀a.((abc+ ac2 + b2c− c = 0) ∧ (a3 − a = 0) ∧ (b3 − b = 0) ∧ (c3 − c = 0))K
= J∃b∀a.(abc+ ac2 + b2c− c = 0)K
= J∃b.(¬∃a∃u.(u(abc+ ac2 + b2c− c)− 1 = 0))K

Now we eliminate quantifiers in ∃a∃u((abc+ ac2 + b2c− c) · u− 1 = 0), again by
computing the Gröbner basis G2 of the ideal

〈(abc+ ac2 + b2c− c)u− 1, a3 − a, b3 − b, c3 − c, u3 − u〉 ∩ F3[b, c].

We obtainG2 = {b2−bc, c2−1}. Therefore JϕK = J∃b(¬(b2−bc = 0∧c2−1 = 0))K.
(Note that if both b and c are both free variables, b2− bc 6= 0∨ c2− 1 6= 0 would
be the quantifier-free formula containing b, c that is equivalent to ϕ.)

Next, we introduce u1 and u2 to eliminate the negations, and v to eliminate
the disjunction:

JϕK = J∃b∃u1∃u2∃v.(((b2 − bc)u1 − 1)v = 0 ∧ ((c2 − 1)u2)(1− v) = 0)K.

We now do a final step of computation of the Gröbner basis G3 of:

〈((b2−bc)u1−1)v, ((c2−1)u2)(1−v), b3−b, c3−c, u31− t1, u32− t2, v3−v〉∩F3[c].

We obtain G3 = {c3 − c}. This gives us the result formula JϕK = Jc3 − c = 0K,
which means that c can take any value in F3 to make the formula true.

6.2 Analyzing a Biological Controller Design

We studied a virus competition model named S2VD [11], which models the
dynamics of virus competition as a polynomial system over finite fields. The
authors aimed to design a controller to ensure that one virus prevail in the
environment. They pointed out that there was no existing method for verifying
its correctness. The current design is confirmed effective by computer simulation
and lab experiments for a wide range of initializations. We attempted to establish
the correctness of the design with formal verification techniques. However, we
found bugs in the design.

All the Gröbner basis computations in this section are done using scripts in
the SAGE system [1], which uses the underlying Singular implementation [2]. All
the formulas below are solved within 5 seconds on a Linux machine with 2GHz
CPU and 2GB RAM. They involve around 20 variables over F4, with nonlinear
polynomials containing multiplicative products of up to 50 terms.

Fig. 1: (a) The ten rings of S2VD; (b) Cell x and its neighbor y cells; (c) The
counterexample

The S2VD Model The model consists of a hexagonal grid of cells. Each
hexagon represents a cell, and each cell has six neighbors. There are four possible
colors for each cell. A green cell is infected with (the good) Virus G, and a red
cell is infected with (the bad) Virus R. When the two viruses meet in one cell,
Virus G captures Virus R and the cell becomes yellow. A cell not infected by
any virus is white. The dynamics of the system is determined by the interaction
of the viruses.

There are ten rings of cells in the model, with a total of 331 cells (Figure
1(a)). In the initial configuration, the cells in Ring 4 to 10 are set to white, and
the cells in Ring 1 to 3 can start with arbitrary colors. The aim is to have a
controller that satisfies the following safety property: The cells in the outermost
ring are either green or white at all times. The proposed controller detects if any
cell has been infected by Virus R, and injects cells that are “one or two rings
away” from it with Virus G. The injected Virus G is used to block the further
expansion of Virus R.

Formally, the model is a polynomial system over the finite field F4 = {0, 1, a, a+
1}, with each element representing one color: (0, green), (1, red), (a,white), (a+
1, yellow). The dynamics is given by the function f : F 331

4 → F 331
4 . For each

cell x, its dynamics fx is determined by the color of its six neighbors y1, ..., y6,
specified by the nonlinear polynomial fx =df γ

2
2 +γ2γ

3
1 +a2(γ31 +γ21 +γ1), where

γ1 =
∑6
i=1 yi and γ2 =

∑
i 6=j yiyj . The designed controller is specified by another

function g : F 331
4 → F 331

4 : For each cell x, with y1, ..., y18 representing the cells

in the two rings surrounding it, we define gx =df

∏18
i=1(1 − yi)3. More details

can be found in [11].

Applying Quantifier Elimination We first try checking whether the safety
property itself forms an inductive invariant of the system (which is a strong
sufficient check). To this end, we check whether the controlled dynamics of the
system remain inside the invariant on the boundary (Ring 10) of the system.
Let x be a cell in Ring 10 and y = (y1, ..., y18) be the cells in its immediate
two rings. We assume the cells outside Ring 10 (y8, ..., y12, y2, y3) are white. See
Figure 1(b) for the coding of the cells. We need to decide the formula:

∀x((∃y((

12∧
i=8

(yi = a) ∧ y2 = a ∧ y3 = a) ∧ Safe(y) ∧ x = Fx(y)))︸ ︷︷ ︸
ϕ1

→ x(x− a) = 0)︸ ︷︷ ︸
“green/white”

(3)

where (writing γ1 =
∑6
i=1 yi, γ2 =

∑
i 6=j∈{1,...,6} yiyj)

Safe(y) =df (y1(y1 − a) = 0 ∧ y4(y4 − a) = 0 ∧ y7(y7 − a) = 0 ∧ y13(y13 − a) = 0)

Fx(y) =df (γ2
2 + γ2γ

3
1 + a2(γ3

1 + γ2
1 + γ1)) · (

18∏
i=1

(1− yi))3

After quantifier elimination, Formula (3) turns out to be false. In fact, we ob-
tained Jϕ1K = Jx4−x = 0K. Therefore, the safety property itself is not an induc-
tive invariant of the system. We realized that there is an easy counterexample

of safety of the proposed controller design: Since the controller is only effective
when red cells occur, it does not prevent the yellow cells to expand in all the
cells. Although this is already a bug of the system, it may not conflict with the
authors’ original goal of controlling the red cells. However, a more serious bug
is found by solving the following formula:

∀x((∃y(

18∧
i=1

yi(yi − a)(yi − a2) = 0) ∧ x = Fx(y))︸ ︷︷ ︸
ϕ2

→ ¬(x = 1)︸ ︷︷ ︸
“not red”

) (4)

Formula (4) expresses the desirable property that when none of the neighbor cells
of x is red, x never becomes red. However, we found again that Jϕ2K = Jx4−x =
0K, which means in this scenario the x cell can still turn red. Thus, the formal
model is inconsistent with the informal specification of the system, which says
that non-red cells can never interact to generate red cells. In fact, the authors
mentioned that the dynamics Fx is not verified because of the combinatorial
explosion. Finally, to give a counterexample of the design, we solve the formula

ϕ3 =df ∃y∃x.(x = 1 ∧
6∧

i=1

yi(yi − a)(yi − a2) = 0 ∧ x = Fx(y)) (5)

The formula checks whether there exists a configuration of y1, ..., y6 which are
all non-red, such that x becomes red. ϕ3 evaluates to true. Further, we obtain
x = 1,y = (a, a, a, 0, 0, 0) as a witness assignment for ϕ3. This serves as the
counterexample (see Figure 1(c)).

This example shows how our quantifier elimination procedure provides a
practical way of verifying and debugging systems over finite fields that were
previously not amenable to existing formal methods and cannot be approached
by exhaustive enumeration.

7 Conclusion

In this paper, we gave a quantifier elimination algorithm for the first-order the-
ory over finite fields based on the Nullstellensatz over finite fields and Gröbner
basis computation. We exploited special properties of finite fields and showed
the correspondence between elimination of quantifiers, projection of varieties,
and computing elimination ideals. We also generalized the Tseitin transforma-
tion from Boolean formulas to formulas over finite fields using ideal operations.
The complexity of our algorithm depends on the complexity of Gröbner basis
computation. In an application of the algorithm, we successfully found bugs in a
biological controller design, where the original authors expressed that no verifi-
cation methods were able to handle the system. In future work, we expect to use
the algorithm to formally analyze more systems with finite field arithmetic. The
scalability of the method will benefit from further optimizations on Gröbner ba-
sis computation over finite fields. It is also interesting to combine Gröbner basis
methods and other efficient Boolean methods (SAT and QBF solving). See [9]
for a discussion on how the two methods are complementary to each other.

Acknowledgement

The authors are grateful for many important comments from Jeremy Avigad,
Helmut Veith, Paolo Zuliani, and the anonymous reviewers.

References

1. The SAGE Computer Algebra system, http://sagemath.org
2. The Singular Computer Algebra system, http://www.singular.uni-kl.de/
3. Becker, T., Weispfenning, V.: Gröbner Bases. Springer, (1998)
4. Le Borgne, M., Benveniste, A., Le Guernic, P.: Polynomial dynamical systems over

finite fields. In: Algebraic Computing in Control, Vol. 165, Springer, (1991)
5. Marchand, H., Le Borgne, M.: On the Optimal Control of Polynomial Dynamical

Systems over Z/pZ. In: 4th International Workshop on Discrete Event Systems,
pp. 385–390 (1998)

6. Buchberger, B.: A Theoretical Basis for the Reduction of Polynomials to Canonical
Forms. In: ACM SIGSAM Bulletin, 10(3), pp.19-29, (1976)

7. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer (1997)
8. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer (2005)
9. Gao, S.: Counting Zeroes over Finite Fields with Gröbner Bases. Master Thesis,

Carnegie Mellon University (2009)
10. Germundsson, R.: Basic results on ideals and varieties in Finite Fields. Technical

Report LiTH-ISY-I-1259, Linkoping University, S-581 83 (1991)
11. Jarrah, A., Vastani, H., Duca, K., and Laubenbacher, R.: An Optimal Control

Problem for in vitro Virus Vompetition. In: 43rd IEEE Conference on Decision
and Control (2004)

12. Jarrah, A.S., Laubenbacher, R., Stigler, B., and Stillman, M.: Reverse-engineering
of polynomial dynamical systems. In: Advances in Applied Mathematics, vol. 39,
pp 477–489 (2007)

13. Lakshman, Y.N.: On the Complexity of Computing a Gröbner Casis for the Radical
of a Zero-dimensional Ideal. In STOC ’90, pp 555–563, New York, NY, USA, (1990)

14. Lang, S.: Algebra, 3rd Edition. Springer (2005)
15. Marker, D.: Model theory. Springer (2002)
16. Smith, E.W., Dill, D.L.: Automatic Formal Verification of Block Cipher Implemen-

tations. In: FMCAD, pp. 1–7 (2008)
17. Tran, Q.N.: Gröbner Bases Computation in Boolean Rings is PSPACE. In: Inter-

national Journal of Applied Mathematics and Computer Sciences, vol. 5, No. 2,
(2009)

http://sagemath.org
http://www.singular.uni-kl.de/

Appendix: Omitted Proofs

Proof of Lemma 2.1 This is a consequence of the Seidenberg’s Lemma (Lemma
8.13 in [3]). It can also be directly proved as follows.

Proof. We need to show
√
J + 〈xq1 − x1, ..., x

q
n − xn〉 = J+〈xq1−x1, ..., xqn−xn〉.

Since by definition, any ideal is contained in its radical, we only need to prove√
J + 〈xq1 − x1, ..., x

q
n − xn〉 ⊆ J + 〈xq1 − x1, ..., xqn − xn〉.

Let R denote Fq[x1, ..., xn]. Consider an arbitrary polynomial f in the ideal√
J + 〈xq1 − x1, ..., x

q
n − xn〉. By definition, for some integer s, fs ∈ J + 〈xq1 −

x1, ..., x
q
n − xn〉. Let [f] and [J] be the images of, respectively, f and J , in

R/〈xq1−x1, ..., xqn−xn〉 under the canonical homomorphism from R to R/〈xq1−
x1, ..., x

q
n − xn〉. For brevity we write S = 〈xq1 − x1, ..., xqn − xn〉.

Now we have [f]s ∈ [J], and we further need [f] ∈ [J]. We prove, by induction
on the structure of polynomials, that for any [g] ∈ R/S, [g]q = [g].

– If [g] = cxa11 · · ·xann + S (c ∈ Fq, ai ∈ N), then

[g]q = (cxa11 · · ·xann + S)q = (cxa11 · · ·xann)q + S = cxa11 · · ·xann + S = [g].

– If [g] = [h1] + [h2], by inductive hypothesis, [h1]q = [h1], [h2]q = [h2], and,
since any element divisible by p is zero in Fq (q = pr), then

[g]q = ([h1] + [h2])q =

q∑
i=0

(
q

i

)
[h1]i[h2]q−i = [h1]q + [h2]q = [h1] + [h2] = [g]

Hence [g]q = [g] for any [g] ∈ R/S, without loss of generality we can assume
s < q in [f]s. Then, since [f]s ∈ [J], [f] = [f]q = [f]s · [f]q−s ∈ [J]. ut

Proof of Lemma 3.1

Proof. Let a ∈ Fn+mq be an assignment vector for (x,y).
If a ∈ J

∧r
i=1 fi = 0K, then f1(a) = · · · = fr(a) = 0 and a ∈ V (〈f1, ..., fk〉).

If a ∈ V (〈f1, ..., fr〉), then
∧r
i=1 fi(a) = 0 is true and a ∈ J

∧r
i=1 fi = 0K. ut

Proof of Lemma 3.2

Proof. We show set inclusion in both directions.

– For any b ∈ J∃xϕ(x;y)K, by definition, there exists a ∈ Fnq such that (a, b)
satisfies ϕ(x;y). Therefore, (a, b) ∈ Jϕ(x;y)K, and b ∈ πn(Jϕ(x;y)K).

– For any b ∈ πn(Jϕ(x;y)K), there exists a ∈ Fnq such that (a, b) ∈ Jϕ(x;y)K.
By definition, b ∈ J∃xϕ(x;y)K. ut

Proof of Lemma 3.3

Proof. We have J
∧
i∈Ax

(xqi −xi = 0)∧
∧
i∈Ay

(yqi − yi = 0)K = J>K, which follows
from Proposition 2.1. ut

Proof of Lemma 4.1

Proof. Let ϕ[ψ1/ψ2] denote substitution of ψ1 in ϕ by ψ2. Suppose the negative
atomic formulas in ϕ are f1 6= 0, ..., fk 6= 0.

We introduce a new variable z1, and substitute f1 6= 0 by p ·z1 = 1. Since the
field Fq does not have zero divisors, all the solutions for Jf1 6= 0K = J∃z1(p · z1 =
1)K (the Rabinowitsch trick).

Iterating the procedure, we can use k new variables z1, ..., zk so that:

JϕK = Jϕ[f1 6= 0/(∃z1.(p · z1 − 1 = 0))] · · · [fk 6= 0/(∃zk.(p · zk − 1 = 0))]K

Since the result formula contains no more negations and the zis are new variables,
it can be put into prenex form ∃z.(ϕ[f1 6= 0/(p·z1−1 = 0)] · · · [fk 6= 0/(p·zk−1 =
0)]). ut

Proof of Lemma 4.2

Proof. Jψ1 ∨ ψ2K = V (J1) ∪ V (J2) follows from the definition of realization. We
only need to show the second equality. Let a = (a1, ..., an) ∈ Fnq be a point.

- Suppose a ∈ V (J1) ∪ V (J2). If a ∈ V (J1), then (1, a1, ..., an) ∈ V (x0J1 +
(1 − x0)J2). If a ∈ V (J2), then 〈0, a1, ..., an〉 ∈ V (x0J1 + (1 − x0)J2). In both
cases, a ∈ π0(V (x0J1 + (1− x0)J2)).

- Suppose a ∈ π0(V (x0J1 + (1 − x0)J2)). There exists a0 ∈ Fq such that
(a0, a1, ..., an) ∈ V (x0J1 + (1−x0)J2). If a0 6∈ {0, 1}, then all the polynomials in
J1 and J2 need to vanish on a; if a0 = 1 then J1 vanishes on a; if a0 = 0 then
J2 vanishes on a. In all cases, a ∈ V (J1) ∪ V (J2). ut

Proof of Theorem 5.1

Proof. We only need to show the intermediate formulas obtained in Step 1-3 are
always equivalent to the original formula ϕ. In Step 1, the formula is flattened
with ideal operations, which preserve the realization of the formula as proved in
Theorem 4.1. In Step 2, we have (by Theorem 3.2) J∃xm∃t∃s(

∧r
i=1(fi = 0))K =

J
∧u
i=1(gi = 0)K.
Hence the formula obtained in Step 2 is equivalent to ϕ. In Step 3, the

substitution preserves realization of the formula because

J
u∧
i=1

∀xm−1(gi = 0)K = J
u∧
i=1

(¬∃xm−1(¬gi = 0))K = J(
u∧
i=1

(

vi∨
j=1

hij 6= 0))K,

where the second equality is guaranteed by Theorem 3.2 again.
The loop terminates either at the end of Step 2 or Step 3. Hence the output

quantifier-free formula ψ is always in conjunctive normal form, which contains
only variables y, and is equivalent to the original formula ϕ. ut

	Quantifier Elimination over Finite Fields Using Gröbner Bases

