Skip to main content

Simulating Building Blocks for Spikes Signals Processing

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Abstract

In this paper we will explain in depth how we have used Simulink with the addition of Xilinx System Generation to design a simulation framework for testing and analyzing neuro-inspired elements for spikes rate coded signals processing. Those elements have been designed as building blocks, which represent spikes processing primitives, combining them we have designed more complex blocks, which behaves like analog frequency filter using digital circuits. This kind of computation performs a massively parallel processing without complex hardware units. Spikes processing building blocks have been written in VHDL to be implemented for FPGA. Xilinx System Generator allows co-simulating VHDL entities together with Simulink components, providing an easy interface for presented building block simulations and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lichtsteiner, P., et al.: A 128×128 120dB 15 us Asynchronous Temporal Contrast Vision Sensor. IEEE Journal on Solid-State Circuits 43(2) (February 2008)

    Google Scholar 

  2. Chan, V., et al.: AER EAR: A Matched Silicon Cochlea Pair With Address Event Representation Interface. IEEE TCAS I 54(1) (January 2007)

    Google Scholar 

  3. Serrano-Gotarredona, R., et al.: On Real-Time AER 2-D Convolutions Hardware for Neuromorphic Spike-Based Cortical Processing. IEEE TNN 19(7) (July 2008)

    Google Scholar 

  4. Oster, M., et al.: Quantifying Input and Output Spike Statistics of a Winner-Take-All Network in a Vision System. In: IEEE International Symposium on Circuits and Systems, ISCAS 2007 (2007)

    Google Scholar 

  5. Hafliger, P.: Adaptive WTA with an Analog VLSI Neuromorphic Learning Chip. IEEE Transactions on Neural Networks 18(2) (March 2007)

    Google Scholar 

  6. Indiveri, G., et al.: A VLSI Array of Low-Power Spiking Neurons and Bistables Synapses with Spike-Timig Dependant Plasticity. IEEE Transactions on Neural Networks 17(1) (January 2006)

    Google Scholar 

  7. Gomez-Rodríguez, F., et al.: AER Auditory Filtering and CPG for Robot Control. In: IEEE International Symposium on Circuits and Systems, ISCAS (2007)

    Google Scholar 

  8. Linares-Barranco, A., et al.: Using FPGA for visuo-motor control with a silicon retina and a humanoid robot. In: IEEE International Symposium on Circuits and Systems, ISCAS 2007 (2007)

    Google Scholar 

  9. Telluride Cognitive Neuromorphic workshop, https://neuromorphs.net/

  10. Capo Caccia Cognitive Neuromorphic workshop, http://capocaccia.ethz.ch

  11. Shepherd, G.: The Synaptic Organization of the Brain. Oxford University Press, Oxford (1990)

    Google Scholar 

  12. Chicca, E., et al.: An event based VLSI network of integrate-and-fire neurons. In: IEEE International Symposium on Circuits and Systems, ISCAS 2004 Misha Mahowald. VLSI Analogs of Neuronal Visual Processing: A Synthesis of Form and Function. PhD. Thesis, California Institute of Technology Pasadena, California (1992)

    Google Scholar 

  13. Serrano-Gotarredona, R., et al.: CAVIAR: A 45k-neuron, 5M-synapse AER Hardware Sensory-Processing-Learning-Actuating System for High-Speed Visual Object Recognition and Tracking. IEEE Trans. on Neural Networks 20(9), 1417–1438 (2009)

    Article  Google Scholar 

  14. Gomez-Rodriguez, F., et al.: Two Hardware Implementation of the Exhaustive Synthetic Aer Generation Method. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 534–540. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Paz-Vicente, R., et al.: Synthetic retina for AER systems development. In: International Conference on Computer Systems and Applications, AICCSA 2009 (2009)

    Google Scholar 

  16. Jiménez-Fernández, A., et al.: AER-based robotic closed-loop control system. In: IEEE International Symposium on Circuits and Systems, ISCAS 2008 (2008)

    Google Scholar 

  17. Jiménez-Fernández, A., et al.: AER and dynamic systems co-simulation over Simulink with Xilinx System Generator. In: IEEE International Conference on Electronics, Circuits and Systems, ICECS 2008 (2008)

    Google Scholar 

  18. Jimenez-Fernandez, A., et al.: Building Blocks for Spike-based Signal Processing. In: IEEE International Joint Conference on Neural Networks, IJCNN 2010 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jimenez-Fernandez, A., Domínguez-Morales, M., Cerezuela-Escudero, E., Paz-Vicente, R., Linares-Barranco, A., Jimenez, G. (2011). Simulating Building Blocks for Spikes Signals Processing. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21498-1_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21497-4

  • Online ISBN: 978-3-642-21498-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics