Skip to main content

A Biologically Inspired Neural Network for Autonomous Underwater Vehicles

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6691))

Abstract

Autonomous underwater vehicles (AUVs) have great advantages for activities in deep oceans, and are expected as the attractive tool for near future underwater development or investigation. However, AUVs have various problems which should be solved for motion control, acquisition of sensors’ information, behavioral decision, navigation without collision, self-localization and so on. This paper proposes an adaptive biologically inspired neural controller for trajectory tracking of AUVs in nonstationary environment. The kinematic adaptive neuro-controller is an unsupervised neural network, which is termed Self-Organization Direction Mapping Network (SODMN). The network uses an associative learning system to generate transformations between spatial coordinates and coordinates of propellers’ velocity. The neurobiological inspired control architecture requires no knowledge of the geometry of the robot or of the quality, number, or configuration of the robot’s sensors. The SODMN proposed in this paper represents a simplified way to understand in part the mechanisms that allow the brain to collect sensory input to control adaptive behaviours of autonomous navigation of the animals. The efficiency of the proposed neurobiological inspired controller for autonomous intelligent navigation was implemented on an underwater vehicle capable of operating during large periods of time for observation and monitoring tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seshadri, C., Ghosh, A.: Optimum path planning for robot manipulators amid static and dynamic obstacles. IEEE Trans. Syst. Man, Cybern. 23, 576–584 (1993)

    Article  MATH  Google Scholar 

  2. Li, Z.X., Bui, T.D.: Robot path planning using fluid model. J. Intell. Robot. Syst. 21, 29–50 (1998)

    Article  Google Scholar 

  3. Oriolo, G., Luca, A.D., Vendittelli, M.: WMR control via dynamic feedback linearization: Design, implementation and experimental validation. IEEE Trans. Control. Syst. Technol. 10, 835–852 (2002)

    Article  Google Scholar 

  4. Fujii, T., Arai, Y., Asama, H., Endo, I.: Multilayered reinforcement learning for complicated collision avoidance problems. In: Proceedings IEEE International Conference on Robotics and Automation, Leuven, Belgium, vol. 3, pp. 2186–2191 (1998)

    Google Scholar 

  5. Carreras, M., Yuh, J., Batlle, J., Ridao, P.: A behavior-based scheme using reinforcement learning for autonomous underwater vehicles. IEEE Journal Of Oceanic Engineering 30, 416–427 (2005)

    Article  Google Scholar 

  6. Ritter, H.J., Martinez, T.M., Schulten, K.J.: Topology-conserving maps for learning visuo-motor coordination. Neural Networks 2, 159–168 (1989)

    Article  Google Scholar 

  7. García-Córdova, F.: A cortical network for control of voluntary movements in a robot finger. Neurocomputing 71, 374–391 (2007)

    Article  Google Scholar 

  8. García-Córdova, F., Guerrero-González, A., Marín-García, F.: Design and implementation of an adaptive neuro-controller for trajectory tracking of nonholonomic wheeled mobile robots. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 459–468. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Gaudiano, P., Grossberg, S.: Vector associative maps: Unsupervised real-time error-based learning and control of movement trajectories. Neural Networks 4, 147–183 (1991)

    Article  Google Scholar 

  10. Baraduc, P., Guigon, E., Burnod, Y.: Recording arm position to learn visuomotor transformations. Cerebral Cortex 11, 906–917 (2001)

    Article  Google Scholar 

  11. Georgopoulos, A.P.: Neural coding of the direction of reaching and a comparison with saccadic eye movements. Cold Spring Harbor Symposia in Quantitative Biology 55, 849–859 (1990)

    Article  Google Scholar 

  12. Caminiti, R., Johnson, P., Urbano, A.: Making arm movements within different parts of space: Dynamic aspects in the primate motor cortex. Journal of Neuroscience 10, 2039–2058 (1990)

    Google Scholar 

  13. Rondot, P., De-Recondo, J., Dumas, J.: Visuomotor ataxia. Brain 100, 355–376 (1976)

    Article  Google Scholar 

  14. Lacquaniti, F., Guigon, E., Bianchi, L., Ferraina, S., Caminiti, R.: Representing spatial information for limb movement: Role of area 5 in the monkey. Cerebral Cortex 5, 391–409 (1995)

    Article  Google Scholar 

  15. Fiala, J.C.: Neural Network Models of Motor Timing and Coordination. PhD thesis, Boston University (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-Córdova, F., Guerrero-González, A. (2011). A Biologically Inspired Neural Network for Autonomous Underwater Vehicles. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21501-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21501-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21500-1

  • Online ISBN: 978-3-642-21501-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics