Skip to main content

Sliding Empirical Mode Decomposition for On-line Analysis of Biomedical Time Series

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6691))

Included in the following conference series:

Abstract

Biomedical signals are in general non-linear and non-stationary. Empirical Mode Decomposition in conjunction with Hilbert-Huang Transform provides a fully adaptive and data-driven technique to extract Intrinsic Mode Functions (IMFs). The latter represent a complete set of orthogonal basis functions to represent non-linear and non-stationary time series. Large scale biomedical time series necessitate an on-line analysis which is presented in this contribution. It shortly reviews the technique of EMD and related algorithms, discusses the newly proposed slidingEMD algorithm and presents some applications to biomedical time series from neuromonitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flandrin, P., Gonçalvès, P., Rilling, G.: Detrending and denoising with empirical mode decmposition. In: EUSIPCO 2004, pp. 1581–1584 (2004)

    Google Scholar 

  2. Huang, N.E., Shen, Z., Long, S.R., Wu, M.L., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. Roy. Soc. London A 454, 903–995 (1998)

    Article  MATH  Google Scholar 

  3. Quiroga, R.Q., Arnhold, J., Grassberger, P.: Learning driver-response relationships from synchronization patterns. Phys. Rev. E 61, 5142 (2000)

    Article  Google Scholar 

  4. Quiroga, R.Q., Kraskov, A., Kreuz, T., Grassberger, P.: Performance of different synchronization measures in real data: A case study on electroencephalographic signals. Phys. Rev. E 65, 041903 (2002)

    Article  Google Scholar 

  5. Rilling, G., Flandrin, P., Goncalès, P.: On empirical mode decomposition and its algorithms. In: Proc. 6th IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (2003)

    Google Scholar 

  6. Wu, M.-C., Struzik, Z.R., Watanabe, E., Yamamoto, Y., Hu, C.-K.: Temporal evolution for the phase histogram of ECG during human ventricular fibrillation. In: AIP Conf. Proc., vol. 922, pp. 573–576 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeiler, A., Faltermeier, R., Tomé, A.M., Puntonet, C., Brawanski, A., Lang, E.W. (2011). Sliding Empirical Mode Decomposition for On-line Analysis of Biomedical Time Series. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21501-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21501-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21500-1

  • Online ISBN: 978-3-642-21501-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics