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Abstract. The simulation of complex LoC (Lab-on-a-Chip) devices is a 
process that requires solving computationally expensive partial differen­
tial equations. An interesting alternative uses artificial neural networks 
for creating computationally feasible models based on MOR techniques. 
This paper proposes an approach that uses artificial neural networks 
for designing LoC components considering the artificial neural network 
topology as an isomorphism of the LoC device topology. The parameters 
of the trained neural networks are based on equations for modeling mi-
crofluidic circuits, analogous to electronic circuits. The neural networks 
have been trained to behave like AND, OR, Inverter gates. The parame­
ters of the trained neural networks represent the features of LoC devices 
that behave as the aforementioned gates. This would mean that LoC 
devices universally compute. 
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1 Introduction 

Lab-on-a-Chip (LoC) is a field of research and technological development with 
the goal of constructing highly integrated compact devices for integrating mul­
tiple laboratory functions on a single chip with a minimized size. The integra­
tion is carried out on monolithic platforms which permit the integration of mi-
cro(nano)fluidic functionalities and components necessary to accomplish one or 
more biochemical or chemical processes. Microfluidic lab-on-a-chip (LoC) sys­
tems have been studied for more than a decade and have many applications 
in biology, medicine, and chemistry [7,8]. LoC devices perform chemical analy­
sis involving sample preparation, mixing, reaction, injection, separation analysis 
and detection [1]. The most highly integrated Lab-on-a-Chip devices include all 
processes and devices on a single chip or card so tha t the introduction of an 
unprocessed sample leads to the output of an analytical result - an "answer" -
from tha t same chip [4]. 

Simulating these types of devices and their components requires a great num­
ber of parameters and complex partial differential equations. An efficient way of 
simulating LoC devices involves functional decomposition into a series of inter­
connected blocks which work to create models for use in the decomposition when 
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first principle models are not possible. These blocks are the mixer, the injector, 
and the separator. For the mixer and separator, band shape assumptions are 
used with analytical techniques for simplifying the partial differential equations 
into several ordinary differential equations. For the injector, the resulting mod­
eled outputs are described by a finite number of performance functions; hence 
numerical techniques are used to describe these functions in a finite domain 
(see [4]). 

The structure of this paper is as follows. Section 2 is the background where 
we present the theoretical basis that supports the approach proposed by other 
researchers [4] who use artificial neural networks for simulating the behavior of 
components of a set of microfluidic devices. Section 3 presents our proposal for 
designing LoC devices through artificial neural networks which map the topology 
of the LoC. Section 4 presents conclusions and future work. 

2 Artificial Neural Networks for Simulating LoC 
Components 

Simulation of complex LoC devices is a very expensive process from the point of 
view of computational resources. In general, numerical solutions for partial differ­
ential equations are necessary to achieve an appropriate simulation. Processing 
these solutions is costly. As the design of LoC systems requires many repeated 
simulations, iterative design using numerical simulation is computationally in-
feasible [1]. The proposal [2] simplifies this process applying MOR (Model Order 
Reduction) for splitting the spatial dependency of device behavior, extracting 
the most typical characteristics of the governing equations and, hence, reduces 
the complexity of the problem. In particular, applying MOR is undertaken to 
reduce the number of parameters in the simulation. The methodology proposed 
in [1] uses the results of MOR applied to specific LoC components as input for 
training an artificial neural network. This trained neural network simulates the 
behavior and performance of the specified LoC components. Finally, the result 
obtained is a model for designing LoC components generated through the neu­
ral architecture. This approach is tested in [1] modeling an injector component 
because it defines the shape and quantity of analytes that will be used for sep­
aration and analysis. The injector components modeled were cross, double-tee 
and gated-cross. Modeling an injector is a very difficult task. The approach [1] 
tries to simplify the mathematical model maintaining accuracy with respect to 
physical features. The steps for modeling the injector described in [1] are 

1. The IT - Buckingham theorem is used for reducing the physical parameter 
space. The reduced parameters are dimensionless. 

2. The process is carried out in the dimensionless parameter space to obtain 
the minimal number of numerical simulations and so reduce cost. 

3. An artificial neural network is constructed to analytically describe the pa­
rameter space. 

(a) The selected network topology is feed-forward back-propagation. 



(b) The network learns the functional mapping without knowing the under­
lying physical basis. 

4. The trained network is converted into an explicit algebraic function appro­
priate for use in any software environment for executing a simulation or 
synthesis process. 

The results obtained in this research indicate that the injector model obtained 
by neural networks is very close to the result obtained by numerical simulations. 
This result is fascinating because, as described above, numerical simulations 
are not only expensive to carry out but time-consuming. This approach demon­
strates that artificial neural networks can obtain models very close to the results 
obtained in numerical simulations at lower resources cost. 

3 Artificial Neural Networks for Designing LoC Devices 

The main idea involves considering the topology of an artificial neural network 
as an isomorphism between this network and a microffuidic device (LoC). This 
isomorphism permits the network to be trained in a specific function and to 
transform elements such as nodes, edges, weights and activation functions into 
elements and features of a microffuidic device. This approach is based on the 
analogy between electronic circuits and microffuidic circuits shown in the next 
equation (for more details, see [3]) 

AP = Lf^+RfQ + ^- JQdt (1) 

Where P is pressure, t is time, Q is the rate of volumetric flow, L is inductance 
(due to the inertia of the fluid), R is resistance (due to the transversal forces 
of the channel walls), C is capacity (due to the compressibility of the fluid). In 
most of the microffuidic circuits, the third member of equation 1 can be omitted. 

For a channel with transversal fixed section and circular shape, ffuidic resis­
tance is expressed by 

Where p is the viscosity dynamic of the fluid, / is the length of the channel 
and rc is the radius of the channel. 

Fluidic inductance is defined by 

" = £ «3» 
Where p is the density of the fluid, / is the length o the channel and and Ac 

is the transversal of the channel. 
Now, Q can be expressed in the following way 

Q = GfAP (4) 



Where Gf is the fluidic conductance, Q can be expressed as the sum of input 
rates of volumetric flow 

Q = ^2Qi (5) 

Based on the equations above, we can model each component of the neural 
network with the following features: 

— The whole of the nodes are LoC chambers where reactions and processes 
take place. 

— The input nodes receive rates of volumetric flow Qi as inputs. 
— The weights of the edges are Rfij . This paper considers the rate of volumetric 

flow Q as constant, so Lf is not modeled. 
— The output nodes return APj = ^ i QiRfij as output. 

Artificial neural networks have been trained to behave like AND, OR and inverter 
gates. The possible values and the equivalences between digital inputs and flows 
are 

— 0 is equal to any value lower than a flow unit 
— 1 is equal to any value equal or greater than a flow unit. 

3.1 A N D Ga t e 

The truth table of the AND gate is shown in Table 1 

Table 1. Truth Table of the AND Gate 

Xl 

0 
0 
1 
1 

X2 

0 
1 
0 
1 

y 
0 
0 
0 
l 

A simple artificial neural network that implements this gate has two input 
nodes and one output node, with two edges, each from input node to output node. 
The weights of the edges are equal to 0.5 and the threshold for the activation 
function is 1. With these values, the equation for fluidic resistance is 

R f 
8(i,l 

0,5 (6) 

Variables can take different values. This represents the degrees of freedom 
provided in terms of the possibilities that the lab-on-chip design permits. The 
dynamic viscosity of fluids can be determined by fixing the radius channel and 
its length with known resistance 



M 
0, h-KT^ 

81 (7) 

Similarly, it is possible to determine the radius channel by fixing the dynamic 
viscosity channel length and resistance 

/ /x8Z 

0,5TT 
(8) 

Finally it is possible to determine the length of the channel by fixing its 
radius, the dynamic viscosity and resistance 

/ : 

The value for the output node is 

0, h-KT^ 

8/x 

AP = 0 ,5 (Q!+Q 2 ) 

(9) 

(10) 

If the pressure applied is greater than or equal to the unit of pressure, the 
flow through the node is the desired one. 

3.2 O R Gate 

The truth table of the OR gate is shown in Table 2 

Table 2. Truth table of the OR gate 

Xl 

0 
0 
1 
1 

X2 

0 
1 
0 
1 

y 
0 
l 
l 
l 

A simple artificial neural network that implements this gate has two input 
nodes and one output node, with two edges, each from input node to output 
node. The weights of the edges are equal to the value 1 and the threshold for 
the activation function is 1. 

With these values, the next equation for the fluidic resistance is 

1 nri (11) 

Variables can take different values. This represents the degrees of freedom 
provided in terms of the possibilities that the lab-on-chip design permits. The 
dynamic viscosity of fluids can be determined by fixing the radius channel and 
its length with known resistance 



"=if <12» 
Similarly, it is possible to determine the radius channel by fixing the dynamic 

viscosity, channel length and resistance 

(13) 
TT 

Finally, it is possible to determine the length of the channel by fixing its 
radius, the dynamic viscosity and resistance 

4 
TIT 

i = ir (14) 

The value for the output node is 

AP = Q i + Q 2 (15) 

If the pressure applied is greater than or equal to the unit of pressure, flow 
through the node is the desired flow. 

3.3 Inverter 

Inspired by "NOT A AND B" gate in [6], this is an inverter gate adapted to the 
features of LoC devices. We consider it impossible to have negative resistance, 
but the flows can interfere with one another. The base of the inverter is an 
artificial neural network that implements an XOR gate with an input always 
equal to 1. Figure 1 (obtained with JavaNNS [5]) shows the network used to 
create our inverter, where the thresholds of the activation functions are below 
those of the hidden nodes and y. 

Let x\ be the input which always has the value 1, and let X2 be the input to 
be inverted. Table 3 shows the truth table of the XOR gate where the rows of 
interest are in italics, i.e. those whose xl input is equal to 1. Fluidic resistance 
does not have negative values, so we can consider the negative weights as channels 
from input flow to channels whose weights in the neural network are positive; 
thus the channels, with negative weight-resitance, will oppose the positive flow. 
In the Figure 1, a "negative" channel goes to the channel represented in the 
neural network through the edge from the input xl to the node in the hidden 
layer. 

The values for Rf to be considered for the each channel are (with absolute 
values) 

Rfxihidden = J = 6.508 (16) 

•Krl 

Rf^v = ^ =4-661 (17) 



Fie. 1. XOR Network 

Table 3. Truth Table of the XOR gate 

Xl 

0 
0 
1 
1 

X2 

0 
f 
0 
1 

y 
0 
f 
l 
0 

R 
8/xZ 

fxohidden A 
•Kr^ 

6.197 

Rt - M - 4 5 9 4 

•^hidden y 7 y . i ?41 

The values for the AP , both hidden node and output node are 

^-ij hidden ^-fxihidden^l ~T~ ^-fx2hidden^2 

APy = RfxiyQ1 + APh 
idden T Rfxiy^ll 

(18) 

(19) 

(20) 

(21) 

(22) 

4 Conclusions and Future Work 

This paper has presented, in section 2, other studies demonstrating the viability 
of neural networks for simulating lab-on-a-chip (LoC) components. The contri­
bution of this paper is to demonstrate the suitability of mapping artificial neural 
network topology into a lab-on-a-chip (LoC) using the neural network as a design 



tool. AND, OR and inverter gates have been used to prove the potential of this 
approach. It is important to emphasize tha t these three gates are necessary for 
a device, abstract or real, to compute universally. In this sense, it is possible 
to affirm this approach makes universal computation in a lab-on-a-chip (LoC) 
conceivable. In general, this idea opens possibilities for designing any type of 
circuit to be used to represent the functionalities performed in a lab-on-a-chip 
(LoC). Our approach permits the creation of more complex operations over 
samples e.g. "if element x\ is present and element X2 is not but element X3 
is, the microfiuidic device must do a specific task" in a straightforward way. The 
circuits designed using this methodology should be tested by means of lab-on-
a-chip (LoC) simulation tools. Comparisons between theoretical and simulated 
results could support this new methodology. Future research can be focused on 
taking into account the first element of equation 1, i.e. the influence of inductance 
with respect to the variation of volumetric flow over time in pressure. Neural 
networks able to solve differential equations could be used for this purpose. 
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