Skip to main content

Realistic Modeling of Large-Scale Networks: Spatio-temporal Dynamics and Long-Term Synaptic Plasticity in the Cerebellum

  • Conference paper
  • 2167 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6691))

Abstract

A large-scale computational model of the cerebellum granular layer has been adapted to generate long-term synaptic plasticity in response to afferent mossy fiber bursts. A simple learning rule was elaborated in order to link the average granule cell depolarization to LTP and LTD. Briefly, LTP was generated for membrane potentials >-40 mV and LTD for membrane potentials <-40 mV. The result was to generate LTP and stronger excitation in the core of active clusters, which were surrounded by LTD. These changes were accompanied by a faster and stronger spike generation compared to the surround. These results reproduce the experimental observations and provide a valuable and efficient tool for implementing autonomous learning algorithms in the cerebellar neuronal network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hines, M.L., Carnevale, N.T.: The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997)

    Article  Google Scholar 

  2. Solinas, S., Nieus, T., D’Angelo, E.: A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci. 4, 12 (2010)

    Google Scholar 

  3. Eccles, J.C., Ito, M., Szentagothai, J.: The cerebellum as a neural machine. Springer, Heidelberg (1967)

    Book  Google Scholar 

  4. Eccles, J.C.: The cerebellum as a computer: patterns in space and time. J. Physiol. 229, 1–32 (1973)

    Article  Google Scholar 

  5. Ito, M.: Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78, 272–303 (2006)

    Article  Google Scholar 

  6. D’Angelo, E.: The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage. Front Neurosci. 2, 35–46 (2008)

    Article  Google Scholar 

  7. D’Angelo, E., De Zeeuw, C.I.: Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 32, 30–40 (2009)

    Article  Google Scholar 

  8. D’Angelo, E., Koekkoek, S.K., Lombardo, P., Solinas, S., Ros, E., et al.: Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience 162, 805–815 (2009)

    Article  Google Scholar 

  9. D’Angelo, E.: Rebuilding cerebellar network computations from cellular neurophysiology. Front Cell Neurosci. 4, 131 (2010)

    Google Scholar 

  10. D’Angelo, E., Mazzarello, P., Prestori, F., Mapelli, J., Solinas, S., et al.: The cerebellar network: From structure to function and dynamics. Brain Res Rev (2010)

    Google Scholar 

  11. D’Angelo, E., De Filippi, G., Rossi, P., Taglietti, V.: Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J. Physiol. 484(Pt 2), 397–413 (1995)

    Article  Google Scholar 

  12. D’Angelo, E., De Filippi, G., Rossi, P., Taglietti, V.: Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. J. Neurophysiol. 80, 493–503 (1998)

    Google Scholar 

  13. Chadderton, P., Margrie, T.W., Hausser, M.: Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004)

    Article  Google Scholar 

  14. Rancz, E.A., Ishikawa, T., Duguid, I., Chadderton, P., Mahon, S., et al.: High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450, 1245–1248 (2007)

    Article  Google Scholar 

  15. Arenz, A., Silver, R.A., Schaefer, A.T., Margrie, T.W.: The contribution of single synapses to sensory representation in vivo. Science 321, 977–980 (2008)

    Article  Google Scholar 

  16. Mitchell, S.J., Silver, R.A.: Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron. 38, 433–445 (2003)

    Article  Google Scholar 

  17. Saviane, C., Silver, R.A.: Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature. England, pp. 983-987 (2006)

    Google Scholar 

  18. Jorntell, H., Ekerot, C.F.: Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J. Neurosci. 26, 11786–11797 (2006)

    Article  Google Scholar 

  19. Sola, E., Prestori, F., Rossi, P., Taglietti, V., D’Angelo, E.: Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum. J. Physiol. 557, 843–861 (2004)

    Article  Google Scholar 

  20. D’Angelo, E., Nieus, T., Maffei, A., Armano, S., Rossi, P., et al.: Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. J. Neurosci. 21, 759–770 (2001)

    Google Scholar 

  21. Nieus, T., Sola, E., Mapelli, J., Saftenku, E., Rossi, P., et al.: LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J. Neurophysiol. 95, 686–699 (2006)

    Article  Google Scholar 

  22. Diwakar, S., Magistretti, J., Goldfarb, M., Naldi, G., D’Angelo, E.: Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. J. Neurophysiol., 519-532 (2009)

    Google Scholar 

  23. Arleo, A., Nieus, T., Bezzi, M., D’Errico, A., D’Angelo, E., et al.: How synaptic release probability shapes neuronal transmission: information-theoretic analysis in a cerebellar granule cell. Neural Comput. 22, 2031–2058 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dieudonne, S.: Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J. Physiol. 510(Pt 3), 845–866 (1998)

    Article  Google Scholar 

  25. Forti, L., Pietrobon, D.: Functional Diversity Of L-Type Calcium Channels In Rat Cerebellar Neurons. Neuron. 10, 437–450 (1993)

    Article  Google Scholar 

  26. Aizenman, C.D., Manis, P.B., Linden, D.J.: Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron. 21, 827–835 (1998)

    Article  Google Scholar 

  27. Solinas, S., Forti, L., Cesana, E., Mapelli, J., De Schutter, E., et al.: Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Front Cell Neurosci. 1, 2 (2007)

    Article  Google Scholar 

  28. Solinas, S., Forti, L., Cesana, E., Mapelli, J., De Schutter, E., et al.: Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Front Cell Neurosci. 1, 4 (2007)

    Article  Google Scholar 

  29. Kanichay, R.T., Silver, R.A.: Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex. J. Neurosci., 8955–8967 (2008)

    Google Scholar 

  30. D’Angelo, E., Rossi, P., Armano, S., Taglietti, V.: Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. J. Neurophysiol. 81, 277–287 (1999)

    Google Scholar 

  31. D’Errico, A., Prestori, F., D’Angelo, E.: Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. J. Physiol. 587, 5843–5857 (2009)

    Article  Google Scholar 

  32. Gall, D., Prestori, F., Sola, E., D’Errico, A., Roussel, C., et al.: Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. Journal of Neuroscience 25, 4813–4822 (2005)

    Article  Google Scholar 

  33. Mapelli, J., D’Angelo, E.: The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. J. Neurosci. 27, 1285–1296 (2007)

    Article  Google Scholar 

  34. Maffei, A., Prestori, F., Rossi, P., Taglietti, V., D’Angelo, E.: Presynaptic current changes at the mossy fiber-granule cell synapse of cerebellum during LTP. J. Neurophysiol. 88, 627–638 (2002)

    Google Scholar 

  35. Mapelli, J., Gandolfi, D., D’Angelo, E.: Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer. J. Neurophysiol. 103, 250–261 (2010)

    Article  Google Scholar 

  36. Mapelli, J., Gandolfi, D., D’Angelo, E.: High-Pass Filtering and Dynamic Gain Regulation Enhance Vertical Bursts Transmission along the Mossy Fiber Pathway of Cerebellum. Front Cell Neurosci. 4, 14 (2010)

    Google Scholar 

  37. Albus, J.: The theory of cerebellar function. Math. Biosci. 10, 25–61 (1971)

    Article  Google Scholar 

  38. Marr, D.: A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969)

    Article  Google Scholar 

  39. Dean, P., Porrill, J., Ekerot, C.F., Jorntell, H.: The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat. Rev. Neurosci. 11, 30–43 (2010)

    Article  Google Scholar 

  40. Schweighofer, N., Doya, K., Lay, F.: Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience 103, 35–50 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D’Angelo, E., Solinas, S. (2011). Realistic Modeling of Large-Scale Networks: Spatio-temporal Dynamics and Long-Term Synaptic Plasticity in the Cerebellum. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21501-8_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21501-8_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21500-1

  • Online ISBN: 978-3-642-21501-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics