Skip to main content

Global Optimal Path Planning for Mobile Robots Based on Hybrid Approach with High Diversity and Memorization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6752))

Abstract

This paper presents a hybrid approach to the path planning problem of autonomous robots that combines potential field (PF) method and genetic algorithm (GA). The proposed PF+GA approach takes the strength of both potential field and genetic algorithm to find global optimal collision-free paths. In this integrated frame, the PF is designed as gradient-based searching strategy to exploit local optimal, and the GA is used to explore over the whole problem space. Different implementation strategies are examined through simulations in 2D scenarios. The conducted experiments show that global optimal path can be achieved effectively using the proposed approach with a strategy of high diversity and memorization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AL-Taharwa, I., Sheta, A., Al-Weshah, M.: A mobile robot path planning using genetic algorithm in static environment. Journal of Computer Science 4(4), 341–344 (2008)

    Article  Google Scholar 

  2. Andrews, J.R., Hogan, N.: Impedance control as a framework for implementing obstacle avoidance in a manipulator. In: Hardt, D.E., Book, W. (eds.) Control of Manufacturing Processes and Robotic Systems, pp. 243–251. ASME, Boston (1983)

    Google Scholar 

  3. Elshamli, A., Abdullah, H.A., Areibi, S.: Genetic algorithm for dynamic path planning. In: Proc. of Canadian Conf. Elect. and Comput. Eng., Niagara Falls, vol. 2, pp. 677–680 (2004)

    Google Scholar 

  4. Gerke, M.: Genetic path planning for mobile robots. In: Proceedings of the American Control Conference, vol. 4, pp. 2424–2429 (1999)

    Google Scholar 

  5. Jarvis, R.A.: Collision-free trajectory planning using distance transforms. Mechanical Engineering Transactions, Journal of the Institution of Engineers ME-10(3), 187–191 (1985)

    Google Scholar 

  6. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The International journal of Robotics Research 5(1), 90–98 (1986)

    Article  Google Scholar 

  7. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 1398–1404 (1991)

    Google Scholar 

  8. Krogh, B.H., Thorpe, C.E.: Integrated path planning and dynamic steering control for autonomous vehicles. In: Proceedings of the 1986 IEEE International Conference on Robotics and Automation, San Francisco, California, pp. 1664–1669 (1986)

    Google Scholar 

  9. Latombe, J.C.: Robot motion planning. Kulwer Academic Publisher, Boston (1991)

    Book  MATH  Google Scholar 

  10. LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  11. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. Technical Report 98-11, Dept. of Computer Science, Iowa State University (1998)

    Google Scholar 

  12. Lozano-Perez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)

    Article  Google Scholar 

  13. Masehian, E., Nejad, A.H.: A hierarchical decoupled approach for multi robot motion planning on trees. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3604–3609 (2010)

    Google Scholar 

  14. Nilsson, N.J.: Problem Solving Methods in Artificial Intelligence. McGraw-Hill, New York (1971)

    Google Scholar 

  15. Strandberg, M.: Robot Path Planning: An Object-Oriented Approach. PhD thesis, Automatic Control Department of Signals, Sensors and Systems Royal Institute of Technology (KTH) Stockholm, Sweden (2004)

    Google Scholar 

  16. Tedrake, R.: LQR-Trees: Feedback motion planning on sparse randomized trees. In: Proceedings of Robotics: Science and Systems, RSS (2009)

    Google Scholar 

  17. Teeyapan, K., Wang, J., Kunz, T., Stilman, M.: Robot limbo: Optimized planning and control for dynamically stable robots under vertical obstacles. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4519–4524 (2010)

    Google Scholar 

  18. Trojanowski, K., Michalewicz, Z., Xiao, J.: Adding memory to the evolutionary planner/navigator. In: Proc. of the 4th IEEE ICEC, pp. 483–487 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miao, YQ., Khamis, A., Karray, F.O., Kamel, M.S. (2011). Global Optimal Path Planning for Mobile Robots Based on Hybrid Approach with High Diversity and Memorization. In: Kamel, M., Karray, F., Gueaieb, W., Khamis, A. (eds) Autonomous and Intelligent Systems. AIS 2011. Lecture Notes in Computer Science(), vol 6752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21538-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21538-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21537-7

  • Online ISBN: 978-3-642-21538-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics