Two-stage Augmented Kernel Matrix for Object
Recognition

Muhammad Awais, Fei Yan, Krystian Mikolajczyk, and Josef Kittler

Centre for Vision, Speech and Signal Processing (CVSSP),
University of Surrey, UK
{m.rana, f.yan,k.mikolajczyk, j.kittler}@surrey.ac.uk

Abstract. Multiple Kernel Learning (MKL) has become a preferred
choice for information fusion in image recognition problem. The aim of
MKL is to learn the optimal combination of kernels formed from dif-
ferent features, thus, to learn the importance of different feature spaces
for classification. Augmented Kernel Matrix (AKM) has recently been
proposed to accommodate for the fact that a single training example
may have different importance in different feature spaces, in contrast to
the MKL that assigns the same weight to all examples in one feature
space. However, the AKM approach is limited to small datasets due to
its memory requirements.

We propose a novel two stage technique to make AKM applicable to
large data problems. In the first stage various kernels are combined into
different groups automatically using kernel alignment. Next, the most
influential training examples are identified within each group and used
to construct an AKM of significantly reduced size. This reduced size
AKM leads to the same results as the original AKM. We demonstrate
that the proposed two stage approach is memory efficient and leads to
the better performance than the original AKM and is robust to noise.
The results are compared with other state-of-the art MKL techniques,
and show improvement on challenging object recognition benchmarks.

1 Introduction

Object and image recognition has undergone a rapid progress in the last decade
due to advances in both features design and kernel methods [1], [2], [3] in ma-
chine learning. In particular, the recent introduction of multiple kernel learning
methods set a new direction of research in computer vision and object recogni-
tion. The state-of-the-art object and image recognition algorithms use multiple
kernel learning based methods for classification, dimensionality reduction and
clustering in a wide range of applications [1], [2], [3], [4]. Due to importance
of complementary information in MKL, much research was done in the field of
feature design [5], [6] to diversify kernels, leading to large number of kernels in
typical visual classification tasks. Kernels are often computed independently of
each others thus may be highly informative, noisy or redundant. Proper selection
and fusion of kernels is therefore crucial to maximize the performance and to
address the efficiency issues in large scale visual recognition applications.

The key idea of Multiple Kernel Learning (MKL), in case of SVM, is to
learn a linear combination of given base kernels by maximizing the soft margin
between two classes. The MKL was first proposed by Lancriet et al. [7] using
semi-definite programming, where the kernel weights were learned by ¢;-norm



2 Muhammad Awais, Fei Yan, Krystian Mikolajczyk, and Josef Kittler

regularization. Since the algorithm proposed in [7] was limited to small kernel
sizes and low number of kernels, a number of other methods were proposed to
address these problems [8], [9]. Different formulation for MKL primal are com-
pared in [10], which also extend MKL to multiclass. All these MKL methods
focus on linear combination of kernels, in which a single kernel corresponding
to a particular feature space is attributed a single weight. This is a strong con-
straint as it does not exploit the information from individual samples in different
feature spaces, e.g., in the context of object recognition, some samples can carry
more shape information while others may carry more texture information for the
same object category. To address this problem augmented kernel matrix (AKM)
was proposed [11] in which different features extracted form the same sample
are treated as different samples of the same class. Despite the improvement in
classification performance the fundamental problem with AKM is its large aug-
mented matrix which requires a lot of memory and makes it inapplicable to large
datasets. In this paper we derive the primal and dual of the AKM, discuss its
empirical feature space and address its issues with a two stage architecture. In
the first stage, groups are formed from a set of base kernels based on the sim-
ilarity between kernels. Next, a representative kernel for each group is learned
by a linear combination of within group kernels. These representative kernels
are highly informative containing most of the information from each group. Our
grouping approach is also useful for methods proposed in [12], [13], which as-
sumed that the kernel groups are available. We further reduce the complexity of
AKM by exploiting the independence of empirical feature spaces of representa-
tive kernels in the augmented kernel matrix. Due to the independence, only the
most influential training examples from the representative kernels can be used to
build an AKM of a reduced size without compromising its performance. In the
second stage, the AKM scheme is used to include the contribution of the most
influential samples from all the representative kernels in the final classifier. Our
experiments show that the proposed strategy of grouping kernels and selecting
subsets of training examples makes the approach efficient and improves the clas-
sifier performance. The AKM results are compared to other MKL techniques,
using different regularization, 1, ¢s, and ¢, norms. We demonstrate significant
improvement on challenging object recognition benchmark Pascal VOC 2007 [14]
and multiclass Oxford flower datasets [15], [16]. Moreover, the proposed mem-
ory efficient learning strategy is also applicable in other MKL techniques which
is particularly important in large scale data scenario.

The rest of paper is organized as follows. In section 2 we discuss the structure
of AKM matrix and derive its primal and dual for SVM. We then compare
empirical feature spaces of a linear combination MKL and AKM schemes. Our
proposed two stage multiple kernel learning for AKM is presented in section 3.
In section 4 we present the result and compare with other state-of-art MKL
methods for object recognition.

2 Linear Combination vs Augmented Kernel Matrix

In this section, we first present the structure of AKM and give primal formula-
tions for a binary classification. We then present the concept of empirical feature
space for the AKM scheme. In the next section, we illustrate feature spaces for
linear combination and AKM schemes with a toy example.

Consider we are given m training samples (2;,¥;)i=1,....,m, Where z; is the
sample in the input space and y; € %1 is its label. Feature extraction results in



Two-stage Augmented Kernel Matrix for Object Recognition 3

n training kernels (K,)p=1,...., of size m x m and corresponding n test kernels
(Kp)p=1,...n of size m x l. Each kernel K, = (®,(x;), Pp(z;)) implicitly maps
samples x; from the input space to the feature space with mapping function
(@p(xi)p=1,...n)- In MKL the aim is to find linear combination E;Lzl BpKp, nor-
mal vector w and bias b of the separating hyperplane simultaneously such that
the soft margin between two classes is maximized. The primal and its correspond-
ing dual for a linear combination of kernels are derived for various formulations
in [17], [7], [8], [9] and compared in [10]. The dual problem can be solved by
several existing MKL approaches, e.g., using SDP [7], SMO [8], SILP [9]. The
decision function is then f(z) = sign(d> i, cuyik(z;, x) + b), where k(z;,z) is
the dot product of test sample x with the i*” training sample in the feature
space. The Lagrange multiplier & € R™, and b are learnt by maximizing the
margin. The contribution of a given feature channel is fixed by 3,, which may
be suboptimal, as in a particular feature channel one example can carry more
shape information than texture or vice versa. In contrast, in AKM [11], given
the set of base training kernels (Kp)p=1,..» the augmented kernel is defined as
follows:

K -0
K=Ki®&  @®oK,=| 1 " (1)
0 --- K,

where the base kernels are on the diagonal. The zeros on the off diagonal reflect
that there is no cross terms between different kernel matrices. Note that all the
base kernels are of size m x m while the AKM is of size (n x m) x (n x m), thus
it uses n X m training samples instead of m. The SVM primal of AKM scheme
is then given:

) 1 n nxm
min 7 Z(wp,’wp) +C Z & (2)
p=1 i=1
w.rt. we R £ e RV b e R

n
st YO (wp, Bp(x:)) +0) 2 1= &y §i 20, i=1,.,m, p=1,..,n
p=1

The dual optimization problem of equation 2 can be derived using Lagrange
multiplier techniques:

max » > oy %Z > apicpyiyikp (i, ;) ®3)

p=1i=1 p=14i,j=1

w.rt. o € R™*™
n

m
s.t. Z opiyi =0, 0<a<C,

p=1i=1

The decision function of AKM is f(z) = sign(3_)_; >2i"; apiyiky(zi,x) + b,
where ay,; are Lagrange multipliers and « is the test sample. Note that the same
samples from different feature channels are added as separate examples of the
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same class, therefore one Lagrange multiplier a,; is learnt for each sample from
each feature channel.

The concept of empirical feature space is crucial to analyze the spread and
shape of the data. Kernel matrices consist of dot products between samples in
some feature spaces. These feature spaces are usually very high or even infinite
dimensional. However, in [18] it is shown that there exists an empirical feature
space in which the intrinsic geometry of the data is identical to true feature
space, thus, in many problems it is sufficient to study the empirical feature
space. Empirical feature spaces X and X for training kernel K of size m x m
and test kernel K of size m x [ can be derived by eigen value decomposition as
shown in [11].

Consider a linear combination of two training kernels K7, Ko with the sample
points in 71,7, dimensional empirical feature space given by matrices X1, X5
of sizes r;1 X m and ro X m, respectively. By the definition of a dot product,
computing the weighted sum of base kernels is equivalent to computing the
cartesian product of the associated empirical feature spaces, after scaling them
with /B, p = 1,..n. An illustration of the empirical feature space is given in
figure 1. K1, K5 are two base kernels with rank ry = ro = 1 i.e., the samples live
in one dimensional empirical feature space as shown in figure 1(a) and (b). Note,
this toy example is for illustration purpose, whereas, in practice the empirical
feature spaces can be up to m dimensional. Figure 1(c) shows the empirical
feature space of a sum of two kernels. Note that the number of samples in
figure 1(c) is equal to m which is the same as the number of samples in K7 and
K.

Consider the augmented kernel matrix K of two training kernels K7, K5. The
matrix X of training vectors in the empirical feature space associated with K
can be computed by eigen value decomposition [11]. However, by exploiting
the property of block diagonal augmented matrix K, its associated matrix X is

directly given by:
(X100
X = ( 0 XQ) (4)

where X is a block diagonal matrix of size (r1+r2) x 2m, with matrix X; and X»
on its diagonal. The empirical feature space for augmented kernel matrix from
two one-dimensional kernels K7 and K5 is shown in figure 1(d). Note that there
are now total of 2m training examples in the empirical feature space of AKM.

3 Two-Stage Multiple Kernel Learning

In this section we present a two stage architecture for multiple kernel learning
which combines the MKL and AKM schemes. Kernel matrix of AKM needs large
amount of memory and is very slow in training of classifier. For example, the
extra memory required by cross terms in a large augmented kernel matrix of
n base kernels is n(n — 1) times larger than linear combination of these base
kernels. This makes AKM less inapplicable to large datasets especially when n is
large. We address this problem by introducing grouping of base kernels followed
by a selection of training samples. Two stage approach serves two goals. It ad-
dresses the memory problems of AKM but also filters out noisy and redundant
feature channels. Adding redundant feature channels as separate examples in-
creases the memory requirements in AKM and adding noisy feature channel as
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separate examples leads to a significant performance loss. These two problems
are alleviated by applying the grouping stage.

3.1 Kernel Grouping

We define multiple groups of base kernels using a similarity criterion. One such
grouping criterion can be based on the modality of features or their extrac-
tion technique. For example, feature channels based on colour can belong to
one group, texture based feature channels to another group and shape based
ones to yet another group. However, this kind of grouping is not automatic
and needs prior information about input spaces of kernel which may not be
available. We exploit Kernel Alignment [19] as a measure of similarity between
kernels to group then in unsupervised manner. Given an unlabeled sample set
S = {x;}™,, we use the Frobenius inner product between kernel matrices i.e.,
(K1, Ka)p = 30" —) K1(wi,75) Ko(2, 7;). The empirical alignment between ker-
nels with respect to the set S is defined as:

(K1, Ko)p
VK1, K1) (K2, Ka)

A(S, K1, K>) = (5)

where K; is the kernel matrix for the sample S. In [19] concentration and gener-
alization of kernel alignment was introduced and proved. Concentration means
that the probability of an empirical estimate deviating from its mean can be
bounded as an exponentially decaying function of that deviation. In other words,
the alignment is little dependent on the training set S as shown by theorem 3
n [19]. Generalization (test error) of a simple classification function is related
to the value of the alignment as shown by theorem 4 in [19].

Using kernel alignment A(S , k1, ko) defined in equation 5 as a similarity mea-
sure we preform agglomerative clustering to find g groups of kernels. We initialize
all kernels as clusters. We then merge two most similar clusters at a time. The
similarity between two clusters is defined as the largest distance between all pos-
sible pairs of the clusters members. This continues until g groups re obtained.
We used agglomerative as opposed to k-means to make it independent to ini-
tialization. Kullback-Leibler divergence can also be used as a similarity criterion
between kernels [20], [21].

Learning a linear combination of kernels within a group can discard or down-
weight redundant or noisy kernels thus result in a better kernel. Moreover, linear
combination leads to more compact representation without loss of information.
Therefore, for each group, MKL-SVM methods using ¢, {5 and ¢, norms are
applied to obtain the representative kernels. The kernel that obtains the highest
score on the validation data is used as group representant. Thus, the grouping
and within group combination results in a set of representative kernels containing
most of the information from various feature channels.

3.2 Selection of Training Samples

Kernel grouping partially addresses the issue of large AKM matrix. However,
the matrix can be further reduced without compromising the performance by
selecting only the samples from representative kernels which are crucial for clas-
sification. The decision function of SVM is determined by the «;, one for each
training sample. The «; are non-zero for the support vectors only. Hence, for a
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Fig. 1. Empirical feature spaces for Multiple kernels: (a) empirical feature space for
K1; (b) empirical feature space for K»; (c¢) empirical feature space for K1 + K»; (d)
empirical feature space for K1 & Ko.

single kernel, support vectors are sufficient for classification and all other sam-
ples can be discarded without performance degradation. This is supported by the
fact that the feature spaces do not interfere with each other due to the structure
of the augmented kernel matrix (cf. equation 1). It can be proved by considering
the dual of AKM, equation 3, which can be rewritten as follows:

m 1 m
max Zau ~3 Z a1y (P1(wi), Pi(zy)) + ... + (6)
i=1

i,5=1

m 1 m
Zani - § Z Qi QlnjYiY; <¢n($z)>¢n(xj)>
=1

4,5=1

w.r.t. o € R"*™

m m
s.t. Zah—yi + ...+ Zamyl = 0, 0 S a < C,

i=1 =1

The first constraint in equation 6 is the sum of constraints for n kernels. The
support vectors for all individual kernels together satisfy this constraint and
thus lie in the feasible set of the optimization problem in equation 6. This is also
illustrated by a toy example of a binary classification in figure 1. All the support
vectors in empirical feature space for base kernels K7 and K5 are shown by the
enclosing black circles and the hyperplane is represented in green at origin in
figure 1(a) and (b), respectively. Figure 1(c) shows the empirical feature space of
unweighted linear combination of base kernel. There are only two support vectors
in figure 1(c), and the classes are separated by the hyperplane. However, the
separability of the training set does not necessarily guarantee better performance
as it depends upon the generalization to the test set [1]. Figure 1(d) is the
empirical feature space of AKM combination of base kernels. Feature spaces of
two base kernels are orthogonal to each other. There are 2m training samples
and all the support vectors of kernel K7 and K5 are support vectors of AKM
due to the orthogonality of their feature space. It is clear from equation 6 and
figure 1, that the support vectors of representative kernels from each group are
sufficient to construct the AKM matrix as the Lagrange multipliers of support
vectors lie in the feasible set of equation 6. The use of support vectors only for
different combinations of kernels is validated empirically in section 4.
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4 Experiments and Discussion

This section presents the experimental results on challenging binary and multi-
class object recognition datasets Pascal VOC 2007 [14], Oxford Flower 17 [15]
and Oxford Flower 102 [16].

Pascal VOC 2007 [14] consists of 20 object classes with 9963 image ex-
amples. The images include indoor and outdoor scenes, truncated and occluded
objects at various scales and different lighting conditions. The classification of 20
object categories is handled as 20 independent binary classification problems (as
recommended by organizers of Pascal challenge). We present the results using
average precision (AP) [14], which is proportional to the area under precision
recall curve. Mean average precision (MAP) is computed by averaging scores for
all 20 classes.

We compute 20 kernels by combining features introduced in [6] with 2 sam-
pling strategies (dense, interest points) and spatial location grids [22]: whole
image (1x1), horizontal bars (1x3), vertical bars (3x1) and image quarters (2x2).
To form a codebook of 4000 visual words the descriptors are clustered using
k-means. Each spatial grid is then represented by histograms of codebook oc-
currences and a separate kernel matrix is computed based on the x? distance
between histograms.

In the experiments we use SVM to compare several kernel combination
schemes and the two stage AKM scheme proposed in this paper. The multiple
kernel SVM (MK-SVM) schemes differ by the regularization norms used during
learning, which include ¢; [9], €2 [17], and ¢s (equal weights). We divide the
20 kernels into 4 groups as discussed in section 3.1. For each group, MKL-SVM
methods using ¢, ¢5 and /., norms are applied to obtain the representative
kernels. The results for various learning techniques are presented in table 1.

The consistently lower performance of ¢;-norm, which typically leads to
sparsely selected kernels, indicates that most of the base kernels carry com-
plementary information. Therefore, the non-sparse multiple kernel methods, £5-
norm and £..-norm, give better results. The proposed two stage AKM scheme
outperforms the other MKL combination schemes. In case of f5 within group
and AKM between groups, (AK M, ¢5), we obtain an improvement of 0.6%, and
in case of £, within group and AKM between groups, an improvement of 0.7%
over all linear combinations of MKL-SVM. In case of informative kernels, the use
of kernel grouping achieves comparable performance to the corresponding non-
grouping schemes. The best performance of the state-of-the-art multiple kernel
learning for these kernels is 62.1% , as shown in table 1 while the performance
of win method for this challenge is 59.4% [14]. We beat the wining method by
3.4%, moreover, the 0.7% improvement by the proposed two stage AKM over
state-of-the-art MKL is still significant given that all the kernels are highly in-
formative due to carefully designed features. For example, the leading methods
in PASCAL VOC often differ by a fraction of a percent in MAP. It is important
to note that AKM on its own is giving 61.0%, however, when it is used together
with grouping stage it is performing 1.8% better. It is because the linear combi-
nation within grouping stage gives good representative kernel with less noisy or
redundant data. These highly informative representative kernel should be com-
bined with AKM scheme so that information in each example of these kernels is
exploited. We expect the grouping scheme to show better performance if there
are noisy or redundant kernels in the set as shown by the noisy feature channels
experiment in next section.
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Table 1. MAP of PASCAL VOC 2007 with various MKL and AKM approaches.

within group j i i j
no grouping|linear ¢; [linear ¢s |linear £
between groups

linear /4 56.0 55.3 56.5 56.6
linear £ 61.4 60.8 61.3 56.5
linear o 62.1 61.1 62.1 62.0
AKM 61.0 60.8 62.7 62.8

We have also validated empirically the selection of support vectors for AKM
on 20 binary classification problems of the Pascal 2007 [14] dataset. Only 0.3%
to 0.5% of the support vectors of the AKM differs from the union of individual
support vectors of representative kernels, while the MAP results are the same
up to sixth decimal place. However, due to the use of the significant examples
only, we are using 3 to 4 times less samples per base kernel. Hence, size of the
AKM matrix is 60% to 70% less than the original size without compromising
the performance. It is important note that it is not possible to apply AKM
without the selection of significant examples in this benchmark due to memory
requirements. We have used 4 groups of kernels thus the augmented kernel matrix
is even smaller than the original training matrix of size 5011 x 5011. Note that for
each group a classifiers has to be trained i.e. 4 in this experiment. This is however
done efficiently on small kernels and acceptable considering the performance
gain achieved over other multiple kernel learning methods. Moreover, in a-step
of alternative MKL techniques [9], [17] we have to train the linear combination
of base kernels for different regularization norms several times before obtaining
optimal weights values 8 for base kernels. All the results presented for AKM in
this paper are obtained using “support vectors only scheme”.

Oxford Flower 17 [15] dataset contain pictures of some of the common
flowers in the UK. It consists of 17 categories with 80 images in each category.
There is large variation within a category and similarity with other categories.
Dataset is split into training (40 images per class), validation (20 images per
class) and test (20 images per class) using 3 predefined random splits. For the
experiments we have used used seven x? distance matrices provided online. The
features used to compute these distance matrices include different types of shape,
texture and color based descriptors [15]. We have used SVM as the base clas-
sifier and follow one-vs-all setup for multiclass classification [15]. We train an
AKM classifier for each category and use the maximum response of the classi-
fiers for each example to obtain the label and score for evaluation. Regularization
parameter for the SVM is in the range C' € {10(=2= 131,

The results are given in figure 2(a). For comparison we use recent evaluation
results from [23] of state-of-the-art feature fusion techniques including MKL and
boosting based classifier fusion. There are two baseline techniques, MKL-prod-
SVM and MKL-avg-SVM, which are obtained from element wise product and
averaging of base kernels and classifying with SVM. MKL baseline for kernel
product gives the highest score of 85.5%. Moreover, it is very simple and fast in
comparison to other MKL methods in figure 2(a). Our proposed scheme based on
AKM gives 86.7%, which is better than all MKL and Boosting based methods.

we investigate the effect of adding random feature channels on different fu-
sion schemes. In addition to 7 informative kernels of Oxford Flower 17 dataset
we have generated 20 RBF kernels from 20 set of random vectors. We started
with all informative kernels, i.e., number of noisy kernels is 0, then we added
different number of noisy kernel. The mean accuracy of different state-of-the-art
methods under noisy channels is presented in figure 2(b). MKL baseline drops
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down significantly with the number of noisy kernels while two-stage AKM is
robust to noisy feature channels and perform significantly better than MKL or
boosting based approaches.

NIL lﬂethods tOtal effect of noisy feature channels

MEL-prod-SVM [23]] 85.5 £ 1.2 parRi

VKL-avg-SVM [23] | 840 £ 1.9 SR

CG-Boost 23, 348 £22 053

VKL (SILP) [23] 85215

MKL (Simple) [23] | 85.2 £ 1.5 o8

EE ﬁ [%33]] 232 i ; 2 | — e
B2 EEY) MKL [16 72.80

ARM 86.67 T 2.67 ARM - 73.0

(a)

(b)

()

Fig. 2. Empirical feature spaces for Multiple kernels: (a) Mean accuracy on Ox-
ford Flowerl7 and comparision with different machine learning methods; (b) Oxford
Flowerl7. Mean Accuracy of diffierent fusion methods under noisy feature channels;
(c) Mean accuracy on Oxford Flower 102 dataset.

Oxford Flower 102 [16] is an extended multi-class dataset containing 102
flower categories. It consists of 8189 images with 40 to 250 images in each class.
The dataset is split into training (10 images per class), validation (10 images per
class) and test (with a minimum of 20 images per class) using predefined splits.
For the experiments we have used 4 x? distance matrices provided online. The
details of the features used to compute these distance matrices can be found
in [16]. The experimental setup is the same as for Oxford Flower 17. AKM is
performing comparable to MKL as shown in figure 2(c).

5 Conclusions

In this paper we have presented a novel two stage multiple kernel learning ap-
proach for augmented kernel matrix. The proposed method addresses the com-
plexity problems of AKM and makes it robust to redundant and noisy kernels.
We propose automatic grouping of kernels based on kernel alignment by ag-
glomerative clustering of kernels. Learning representative kernels for each group
results in a small set of highly informative kernels. Learning a combination within
a group discards or downweights redundant and noisy kernels thus results in an
optimal kernel from a set of informative base kernels. The complexity is further
reduced by exploiting the property of independence of empirical feature spaces
in the AKM scheme. It allows to use only the most influential examples from
each representative kernel to construct the AKM matrix. We perform exper-
iments on challenging object recognition datasets and the results validate our
technique. The proposed approach makes it possible to use the AKM method for
20 kernels with several thousands of training examples. A performance increase
is observed compared to MKL based on a linear combination of all base kernels.
This observation is significant as it suggests that the information in the kernels
can be exploited more effectively and the classification rate increases without
using additional features.
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