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Abstract We compare experimentally the performance of three ap-
proaches to ensemble-based classi�cation on general multi-class datasets.
These are the methods of random forest, error-correcting output codes
(ECOC) and ECOC enhanced by the use of bootstrapping and class-
separability weighting (ECOC-BW). These experiments suggest that ECOC-
BW yields better generalisation performance than either random for-
est or unmodi�ed ECOC. A bias-variance analysis indicates that ECOC
bene�ts from reduced bias, when compared to random forest, and that
ECOC-BW bene�ts additionally from reduced variance. One disadvan-
tage of ECOC-based algorithms, however, when compared with random
forest, is that they impose a greater computational demand leading to
longer training times.

1 Introduction

Two of the most popular approaches to constructing multiple classi�er systems
(MCS) to solve multi-class classi�cation problems are random forest [1] and
error-correcting output codes (ECOC) [2,3]. In this paper we present the result
of an experimental comparison of these two methods when applied to a selection
of real-world datasets taken from the UCI repository [4]. We also consider an
enhanced version of ECOC, referred to as ECOC-BW, in which bootstrapping1

is applied when constructing base-classi�er training sets and weighting is applied
to base-classi�er decisions. Previous work has shown these enhancements to be
bene�cial [5].

The random forest algorithm was introduced by Breiman in 2001 [1]. A num-
ber of variants of random forest have been proposed but here we focus on the
method that is often cited as a reference in the literature, known as Forest-RI.
This consists of building an ensemble of unpruned decision tree classi�ers whose

1 Bootstrapping is a technique whereby new training sets are constructed from a given
training set by repeated sampling with replacement. Each new training set (referred
to as a bootstrap replicate) has, on average, 63% of the patterns in the original set
but with some patterns repeated so as to form a set of the same size.



classi�cation decisions are combined by a voting procedure. Each decision tree
is randomised in two ways: �rstly, the training set is modi�ed by constructing
a bootstrap replicate and secondly, at each node of the tree, the search for the
best split is limited to a subset of features that is randomly selected (without
replacement) from the full set of features. Forest-RI thus aims to achieve good
classi�cation performance by combining the principles of bagging and random
feature selection.

In the ECOC approach, �rst described by Dietterich in 1991 [6], a multi-
class problem is decomposed into a series of 2-class problems, or dichotomies,
and a separate base classi�er trained to solve each one. These 2-class problems
are constructed by repeatedly partitioning the set of target classes into pairs
of super-classes so that, given a large enough number of such partitions, each
target class can be uniquely represented as the intersection of the super-classes
to which it belongs. The classi�cation of a previously unseen pattern is then
performed by applying each of the base classi�ers so as to make decisions about
the super-class membership of the pattern. Redundancy can be introduced into
the scheme by using more than the minimum number of base classi�ers and this
allows errors made by some of the classi�ers to be corrected by the ensemble as
a whole.

The operation of the ECOC algorithm can be broken down into two distinct
stages - the coding stage and the decoding stage. The coding stage consists of
applying the base classi�ers to the input pattern x so as to construct vector of
base classi�er outputs s (x) and the decoding stage consists of applying some
decoding rule to this vector so as to make an estimate of the class label that
should be assigned to the input pattern. A commonly used decoding method is to
base the classi�cation decision on the minimum distance between s (x) and the
vector of target outputs for each of the classes, using a distance metric such as
Hamming or L1. This, however, treats all base classi�ers as equal, and takes no
account of variations in their reliability. In the ECOC-BW variant of ECOC we
assign di�erent weights to each base classi�er and target class combination so as
to obtain improved ensemble accuracy. The weighting algorithm is referred to as
class-separability weighting (CSEP) because the weights are computed in such
a way that they measure the ability of a base classi�er to distinguish between
examples belonging to and not belonging to a given class [7].

Although, unlike random forest, bootstrapping is not a standard feature of
the ECOC algorithm, we have shown in [5] that it can be bene�cial, particularly
when combined with the CSEP weighting scheme. For this reason, in ECOC-BW
we apply bootstrapping to the training set when each base classi�er is trained.
The e�ect of bootstrapping is to increase the desirable property of diversity [8]
among the base classi�ers in the ensemble. By this is meant that the errors made
by component classi�ers should, as far as possible, be uncorrelated so that the
error correcting properties of the ensemble can have maximum e�ect. A further
potential bene�t of bootstrapping is that each base classi�er is trained on only a
subset of the available training data and this leaves the remaining data, known as



the out-of-bootstrap (OOB) set, to be used for other purposes such as parameter
tuning. Note, however, that the OOB set is unique to each base classi�er.

When considering the errors made by statistical pattern classi�ers it is use-
ful to group them under three headings. Firstly there is the unavoidable error,
known as Bayes error, which is caused by noise in the process that generates the
patterns. A second source of error is variance; this is caused by the sensitivity of
a learning algorithm to the chance details of a particular training set and causes
slightly di�erent training sets to produce classi�ers that give di�erent predic-
tions for some patterns. Thirdly there are errors caused by bias in a learning
algorithm2; here the problem is that the classi�er is unable, for whatever reason,
to adequately model the class decision boundaries in the pattern feature space.
When training a classi�er there is often a tradeo� between bias and variance [9]
so that a high value of one implies a low value of the other.

In this paper we use the concepts of bias and variance to investigate the
reasons for the di�erences in the accuracy achieved by di�erent classi�cation
methods.

The ideas of bias, variance and noise originally emerged from regression the-
ory. In this context they can be de�ned in such a way that the squared loss
can be expressed as the sum of noise, bias (squared) and variance. The goal of
generalising these concepts to classi�cation problems, using a 0-1 or other loss
function, has proved elusive and several alternative de�nitions have been pro-
posed (see [10] for a summary). In fact it is shown in [10] that, for a general
loss function, these concepts cannot be de�ned in such a way as to possess all
desirable properties simultaneously. For example the di�erent sources of error
may not be additive, or it may be possible for variance to take negative values.
In this study we adopt the Kohavi-Wolpert de�nitions [11]. These have the ad-
vantage that bias and variance are non-negative and additive. A disadvantage,
however, is that no explicit allowance is made for Bayes error and it is, in e�ect,
incorporated into the bias term.

The remainder of this paper is structured as follows. The technique of CSEP
weighting is described in detail in section 2. Here we also derive an alternative
probabilistic interpretation of the method. Section 3 then describes the exper-
imental results obtained from each of the three classi�cation methods: random
forest, ECOC and ECOC-BW. Finally, section 4 summarises the conclusions to
be drawn from this work.

2 ECOC Weighted Decoding

The ECOC method consists of repeatedly partitioning the full set of N classes
Ω into L super-class pairs. The choice of partitions is represented by an N × L
binary coding matrix Z. The rows Zi are unique codewords that are associated
with the individual target classes ωi and the columns Zj represent the di�erent
super-class partitions. Denoting the jth super-class pair by Sj and Sj , element

2 Bias is actually measured as the quantity bias2 .



Zij of the coding matrix is set to 1 or 0 depending on whether class ωi has been
put into Sj or its complement3. A separate base classi�er is trained to solve each
of these 2-class problems.

Given an input pattern vector x whose true class y (x) ∈ Ω is unknown, let
the soft output from the jth base classi�er be sj (x) ∈ [0, 1]. The set of outputs
from all the classi�ers can be assembled into a vector s(x) = [s1(x), . . . , sL(x)]T ∈
[0, 1]L called the output code for x. Instead of working with the soft base clas-
si�er outputs, we may also �rst harden them, by rounding to 0 or 1, to obtain
the binary vector h(x) = [h1(x), . . . , hL(x)]T ∈ {0, 1}L. The principle of the
ECOC technique is to obtain an estimate ŷ (x) ∈ Ω of the class label for x from
a knowledge of the output code s(x) or h(x).

In its general form, a weighted decoding procedure makes use of an N × L
weights matrix W that assigns a di�erent weight to each target class and base
classi�er combination. The class decision, based on the L1 metric, is made as
follows:

ŷ (x) = arg min
ωi

L∑
j=1

Wij |sj (x)− Zij| , (1)

where it is assumed that the rows of W are normalised so that
∑L

j=1 Wij =
1 for i = 1 . . . N . If the base classi�er outputs sj (x) in Eqn. 1 are replaced
by hardened values hj (x) then this describes the weighted Hamming decoding
procedure.

The values of W may be chosen in di�erent ways. For example, if Wij = 1
L

for all i, j then the decoding procedure of Eqn. 1 is equivalent to the standard
unweighted L1 or Hamming decoding scheme. In this paper we make use of the
class separability measure [7,5] to obtain weight values that express the ability
of each base classi�er to distinguish members of a given class from those of any
other class.

In order to describe the class-separability weighting scheme, the concept of a
correctness function must �rst be introduced: given a pattern x which is known
to belong to class ωi, the correctness function for the j'th base classi�er takes
the value 1 if the base classi�er makes a correct prediction for x and 0 otherwise:

Cj (x) =

{
1 if hj (x) = Zij

0 if hj (x) 6= Zij

. (2)

We also consider the complement of the correctness function Cj (x) = 1−Cj (x)
which takes the value 1 for an incorrect prediction and 0 otherwise.

For a given class index i and base classi�er index j, the class-separability
weight measures the di�erence between the positive and negative correlations of
base classi�er predictions, ignoring any base classi�ers for which this di�erence

3 Alternatively, the values +1 and -1 are often used.



is negative:

Wij = max


0,

1
Ki


∑

p ∈ ωi

q /∈ ωi

Cj (p)Cj (q)−
∑

p ∈ ωi

q /∈ ωi

Cj (p)Cj (q)




, (3)

where patterns p and q are taken from a �xed training set T and Ki is a
normalisation constant that ensures that the i'th row of W sums to 1. The
algorithm for computing W is summarised in �g. 1.

Inputs: matrix of training patterns T ∈ RP×M , binary coding matrix Z ∈
{0, 1}N×L, trained ECOC coding function E : RM 7→ [0, 1]L .
Outputs: weight matrix W ∈ [0, 1]N×L where

PL
j=1 Wij = 1, for i = 1 . . . N .

Apply E to each row of T and round to give prediction matrix H ∈ {0, 1}P×L.
Initialise W to 0.
for c = 1 to N
for i = indices of training patterns belonging to class c
for j = indices of training patterns not belonging to class c
let d be the true class of the pattern Tj .
for k = 1 to L
if Hik = Zck and Hjk = Zdk, add 1 to Wck

as the predictions for both patterns Ti and Tj are correct.
if Hik 6= Zck and Hjk 6= Zdk, subtract 1 fromWck

as the predictions for both patterns Ti and Tj are incorrect.
end

end
end

end
Reset all negative entries in W to 0.
Normalise W so that each row sums to 1.

Figure 1. Pseudo-code for computing the class-separability weight matrix for ECOC.

The weights matrix Wij of Eqn. 3 was derived from a consideration of the
spectral properties of the Boolean functions that map base classi�er outputs to
the ensemble decisions. In this interpretation base classi�ers are weighted by
their ability to distinguish the members of a given class from patterns which
do not belong to that class. An alternative interpretation may also be given in
terms of base classi�er accuracy probabilities. Let

Pij =
1
Mi

∑
x∈ωi

cj (x) , Qij =
1

(M −Mi)

∑
x′ /∈ωi

cj (x′) (4)



whereM is the total number of training patterns andMi is the number of belong-
ing to class ωi. Then Pij and Qij respectively represent estimates of the prob-
ability that the jth base classi�er makes correct decisions for patterns belong-
ing to and not belonging to class ωi. By substituting MiPij and (M −Mi)Qij

for
∑

x∈ωi
cj (x) and

∑
x′ /∈ωi

cj (x′) in Eqn. 3 and making use of the fact that
cj (x) = 1 − cj (x), it can be easily shown that an alternative de�nition of the
CSEP weights is given by:

Wij = max
{

0,
1
K

′
i

[Pij +Qij − 1]
}
, (5)

where K
′

i = Ki/Mi (M −Mi) is a modi�ed normalisation constant.
From Eqn. 5 it can be seen that CSEP weighting rewards those base classi�ers

that have a high true detection rate and a low false detection rate for class ωi.
Any base classi�er that cannot outperform random guessing, where Pij = Qij =
0.5, will be zero weighted under this algorithm.

3 Experiments

In this section we present the results of performing classi�cation experiments
on 11 multi-class datasets obtained from the publicly available UCI repository
[4]. The characteristics of these datasets in terms of size, number of classes and
number of features are given in table 1 All experiments were based on a 20/80
training/test set split and each run used a di�erent randomly chosen strati�ed
training set. These training sets were �rst normalised to have zero mean and
unit variance.

Table 1. Experimental datasets showing the number of patterns, classes, continuous
and categorical features.

Dataset Num. Num. Cont. Cat.
Patterns Classes Features Features

dermatology 366 6 1 33

ecoli 336 8 5 2

glass 214 6 9 0

iris 150 3 4 0

segment 2310 7 19 0

soybean 683 19 0 35

thyroid 7200 3 6 15

vehicle 846 4 18 0

vowel 990 11 10 1

waveform 5000 3 40 0

yeast 1484 10 7 1

For each dataset, ECOC ensembles of 200 base classi�ers were constructed.
Each base classi�er consisted of a multi-layer perceptron (MLP) neural network



with one hidden layer. The Levenberg-Marquardt algorithm was used for base
classi�er training as this has been shown to converge more rapidly than back-
propagation. Base classi�er complexity was adjusted by varying the hidden node
counts and training epochs. Each such combination was repeated 10 times and
the lowest mean test error was obtained. Random variations between each run
were introduced by generating a di�erent random code matrix and by randomly
setting the initial MLP weights. The code matrices were constructed in such a
way as to place an approximately equal number of target classes in the super-
classes Sj and Sj .

The ECOC experiments were repeated using ECOC-BW (i.e. with CSEP
weighting and bootstrapping being applied). Each base classi�er was trained on
a separate bootstrap replicate drawn from the full training set for that run. The
CSEP weight matrix was computed from the full training set each time so its
value was determined in part by patterns (the OOB set) that were not used in
the training of the base classi�er.

The random forest experiments were conducted in a similar way to ECOC
except that it was found necessary to repeat each experiment 100 times in order
to obtain stable results. The number of decision trees in each forest was varied up
to 400 and the optimal number required to minimise test error was obtained. The
number of random features selected at each node was chosen using Breiman's
heuristic log2 F + 1 where F is the total number of features available4. This has
been shown to yield near optimal results [12].

The outcome of these experiments on individual datasets is shown graphi-
cally in Fig. 2. This shows a bar chart of the lowest test error attained by the
three classi�cation methods. Also shown is the average test error taken over all
datasets.

Inspection of Fig. 2 shows that no single classi�cation algorithm gave the best
results on all datasets. Indeed, random forest gave the lowest generalisation error
on glass and soybean, ECOC gave the lowest error on segment and vowel whilst
ECOC-BW was optimal on dermatology, ecoli, iris, thyroid, vehicle, waveform
and yeast.

Comparing the di�erent algorithms, it can be seen that ECOC gave a lower
error than random forest on 7/11 datasets and also had a lower average error
taken over all datasets. ECOC-BW yielded lower error than random forest on
9/11 datasets and also beat standard ECOC on 9/11 datasets. ECOC-BW also
had the lowest mean error over all datasets. The evidence from these experiments
is then that the ECOC-BW algorithm tends to give the best generalisation per-
formance out of the three methods. There is also evidence that standard ECOC
tends to perform a little better random forest but the advantage is not so con-
sistent.

One further consideration that is worth taking into account when comparing
these classi�cation methods is that of computational overheads. The decision
tree base classsi�ers used by random forest are of a more lightweight nature that

4 Another commonly used heuristic is
√

F . For these datasets, however, both formulae
selected a very similar, and in many cases identical, number of features.
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Figure 2. The lowest percentage ensemble test error attained by di�erent classi�ers
on 11 datasets.

the MLP base classi�ers that were used in ECOC classi�cation and this was
re�ected in the elapsed times of the experiments which were, typically, about 15
times greater for the ECOC-based methods than for random forest.

It is interesting to look at the performance of these classi�ers in terms of a
bias-variance decomposition of the error. Table 2 shows a breakdown of the error
incurred by each ensemble type when averaged over all datasets.

Inspection of table 2 suggests that when ECOC is compared with random
forest, the variances of the two algorithms are the same and the slightly greater
accuracy of ECOC may be attributed to a lower level of bias. It seems likely that
lower bias of ECOC is due to the fact that the MLP base classi�ers themselves
will tend to have lower bias due to the fact that they are able to model non-linear
decision boundaries between classes. By contrast, random forest uses decision
trees as base classi�ers are thus constrained to model decision boundaries as
segments of hyperplanes that run parallel to the feature-space axes.

When ECOC-BW is used, variance is also reduced, leading to a further re-
duction in classi�cation error. This is consistent with previous work [13] which
has demonstrated that the use of CSEP weighting and bootstrapping tends to



make the ECOC ensemble less prone to over-�tting the data so that classi�er
decisions become less sensitive to variations in the training set.

Table 2. A comparison of percentage bias, variance and total error incurred by di�erent
classi�ers. The values are averaged over 11 datasets.

Bias2 Variance Total
Error

Random Forest 9.8 7.5 17.4

ECOC 9.1 7.5 16.5

ECOC-BW 9.1 6.7 15.8

4 Discussion and Conclusions

In this paper we have compared experimentally the generalisation performance
of three types of ensemble classi�er on general multi-class datasets. The classi�er
types were random forest, ECOC and ECOC-BW in which ECOC is enhanced
by the application of class-separability weighting and bootstrapping. The evi-
dence from this set of experiments is that, although each classi�er type can be
optimal on some datasets, in general ECOC-BW tends to yield better accuracy
than either random forest or ECOC. There is evidence that accuracy of ECOC
is slightly better than that of random forest but the advantage cannot be so
consistently observed as for ECOC-BW.

A breakdown of the error into bias and variance components reveals that
standard ECOC has similar variance properties to random forest but bene�ts
from slightly lower bias. It is suggested that this is due to the lower bias of the
MLP base classi�ers that were used with ECOC, when compared to the decision
tree base classi�ers of the random forest algorithm. For ECOC-BW the variance
is also lower than for random forest and this leads to a further reduction in
overall classi�cation error.

Although ECOC-BW tends to yield greater classi�cation accuracy, it is worth
noting that random forest has an advantage over the ECOC-based algorithms
in the sense that it has substantially reduced computational requirements.
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