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Abstract. This paper presents an overview on the advances of water-
shed processing algorithms executed on GPU architecture. The program-
ming model, memory hierarchy and restrictions are discussed, and its in-
fluence on image processing algorithms detailed. The recently proposed
algorithms of watershed transform for GPU computation are examined
and briefly described. Its implementations are analyzed in depth and
evaluations are made to compare them both on the GPU, against a CPU
version and on two different GPU cards.

1 Introduction

The watershed transform is a well known image segmentation tool, used to com-
pute connected components, generally out of the gradient of the input image.
Several algorithms exist to process the transform sequentially [4], [§], and since
the development of the first fast transforms, effort is put on research of par-
allel algorithms and architectures. This has led to the recent development of
techniques used on clusters [1] and FPGA [9].

The rise of GPU cards programmable for generic purposes, with low cost and
high computational power, and with a trend of improvement of the hardware
without severe changes to the architecture and programming model, has estab-
lished a new platform of interest. These features sets the direction of advances
on the watershed algorithms for improving performance, using the concepts and
definitions established on literature, exploring the architecture for the procedures
that best fit, and showing some new and revisited approaches [3], [13], [12].

This paper works on studying this architecture and the advances made on the
watershed processing and the algorithms that use it. The usage of such models
influences how the problems must be treated, algorithms designed and programs
implemented. The watershed transform is implemented on two forms: one with
four steps, with different levels of division of tasks, ranging from the neighbor-
hood to global processing; and one that uses only a neighborhood operation,



switching values until the optimal solution is found and stabilizes. These dif-
ferent levels of decomposition are analyzed, and the implementation strategies
described.

This paper is organized as follows: Sec. 2 discusses the influence of the GPU
architecture on the development of image processing algorithms; Sec. 3 reviews
the literature of parallel watershed algorithms and discusses the two algorithms
evaluated in this work; Sec. 4 discusses in details the implementation of both
algorithms; Sec. 5 discusses the measurements made, and exposes the perfor-
mance obtained on two GPU cards and a CPU; and lastly, Sec. 6 presents the
conclusions drawn from this work.

2 Architecture Influence

Given many threads executing, each one having a small computing power, with
some shared resources and high bandwidth for communication, the GPU archi-
tecture is well suited for parallel algorithms of fine granularity, where each thread
will process one or a few pixels of the output image. Regarding the communica-
tion between threads, as they share a common memory, this area is used when
any kind of information needs to be transferred between them. Also, whenever
using GPU memory to communicate with the host CPU, there is a considerable
overhead on the copy operation that may degrade the speedup obtained.

As many image processing algorithms, the watershed transform processes
a neighborhood around every pixel. Also, as the blocks of threads divide the
image on sub-images that are loaded on shared memory, these must have a
border with the pixels from the adjacent blocks. This concept is illustrated on
[7] as the apron for each block. The apron is constituted such that blocks are
processed with overlapped data, with each block responsible for processing an
area of the image, but loading data from adjacent blocks.

The modern GPU architecture evolved to a point where there are several
forms of running programs on it, with the most noticeable frameworks and lan-
guages being CUDA and OpenCL, which are very similar to C and C++. Both
models provide access to the same memory model with similar instructions. The
programs developed for this work used CUDA, and the source codes are available
on the Internet at http://wuw.adessowiki.org.

3 Parallel Watershed Algorithms

The watershed transform is a very data intensive task, that even with quasi-
linear algorithms is time-consuming. Since its introduction by Vincent and Soille
[10] effort is put on researching faster algorithms as well as parallel approaches.
An extensive survey on parallel approaches is given by Roerdink and Meijster
[8]. Since then, faster algorithms have been created, as well as new parallel
approaches [9], [1]. On the past few years, other parallel watershed algorithms
have been introduced, specifically for GPU architectures [3], [13], [12], using
different strategies, designed for the restrictions of the platform.



This paper analyzes two algorithms: one inspired by the drop of water paradigm
and depth-search approaches, based on [12], named DW; and one based on cellu-
lar automata to process a shortest-path forest with sum cost function [3], named
CA.. Both algorithms are tuned to better suit the architecture of modern GPUs.

The DW algorithm uses different steps of processing, which allows faster
processing of operations with different levels of data independence. These steps
are briefly: (i) identification of the neighbor with the lowest gray level for each
pixel (this corresponds to finding the downstream for each pixel, see [6], [8]); (ii)
propagation of the downstream of the plateau border pixels to inner pixels ac-
cording to the geodesic distance; (iii) labeling of regional minima by union-find;
and (iv) labeling of non-minima pixels by the path created to every minima.
These steps are organized and designed to maximize performance on a GPU
architecture. Step (i) processes each pixel independently, scanning the neighbor-
hood for the lowest gray level; step (ii) is the step less suited for parallelism,
caused by the need to uniformly calculate the geodesic distances, creating syn-
chronization barriers on the threads; step (iii) consists of labeling the regional
minima pixels using the union-find strategy for merging connected components;
step (iv) consists on compressing paths from each pixel to the regional minima
associated with the path.

The CA algorithm is based on the algorithm of Ford-Bellmann to calculate
a shortest-path forest, using a single relaxing procedure, performed until conver-
gence of the solution. Therefore, the proposed implementation consists of a single
step, executed until stabilization of the solution. Nevertheless, for the CA algo-
rithm produce a correct watersheds transform, its cost function must be adapted
to consider the weight of each edge as the topographic distance [6]. Also, as this
function does not manage plateaus, either the image must be preprocessed by
lower completion, or the cost function must be further modified to consider the
lexicographic cost as a secondary component [5]. For greater adherence with the
original proposal, the lower completion is used prior to watershed execution.

4 Implementation Details

This section discuss the implementation of watershed algorithms on the SPMD
and SIMD models, considering the access to the memory layers of the GPU, that
constitutes the problem of communication between blocks. It is also presented
the methodology used for development, highlighting the border treatment, the
replication of data, and the data flow between memories.

The GPU memory model is hierarchically divided, and programs must con-
sider these different levels and its characteristics to take advantage of its features,
ultimately to reach the best performance. Using the CUDA framework, the code
that is executed on the GPU does not have access to the CPU RAM memory,
being an area of access exclusive of the host code. Therefore, for any processing
on the GPU, the data must be transferred between host (CPU) memory and
device (GPU) memory. The GPU global memory is the area writeable by the
CPU, and it also provides special access modes of texture and constant, which



are cached and only readable by the device code. There are three other mem-
ory areas available to the device code: the registers, the local and the shared
memory. These memories have very limited size, but are located close to each
stream multiprocessor of the GPU, and provide high speed of access. Registers
and local memory are bound to the scope of each thread, whereas the shared
memory, with scope on the block, is used for cooperation and communication
between threads, with also a high speed access.

Based on the communication relations between different types of memory, the
host and device code that composes the watershed processing steps are modeled
to use as most as possible the shared memory area. Initially the image is loaded
by the host on a texture memory, and the neighborhood relation data on the
constant memory. As the blocks process parts of the image, it is loaded to the
shared memory. From this, the results are computed on registers, and finally
written on the global memory. This flow is used on all kernels of the algorithms
developed, except those that do not use a neighborhood relation, where the
global memory is used directly.

With the decomposition of the image on sub-images arises the problem of
management of the borders of each block, as each pixel demands data from the
neighbors that may be contained on another block, to complete its computation.
The strategy used is to load an overlapping area, called the apron, as described
on [11], [7], according to the neighborhood relation used. The borders values are
either the values of pixels of the adjacent block, or in the case of image borders,
a constant and predefined mask value is used.

The overlapping scheme, with borders loaded for every block by the device
code, is presented on Fig. 1. This scheme is divided on two phases: the first
one loads the data to the shared memory, while the second processes the shared
memory and stores the results back on global memory. The loading is performed
on blocks of BLOCK _TILFE width and height, which corresponds to the size of
blocks of threads used on the CUDA device code invoking. The processing is per-
formed on fewer threads, on a block of REAL TILFE width and height, which
corresponds to the dimensions of the block of data that is actually processed,
without overlapping, ignoring border pixels.

4.1 Algorithm DW

The DW algorithm is based on the four steps described on Sec. 3 and exten-
sively detailed on [12]. To implement this algorithm, six programs of device code
(kernels) were created:

— donwstreamCalc: calculates the downstream for each pixel and then uses the
data already loaded on memory to propagate it to plateaus internal pixels,
until stability inside the block. This kernel is executed once and is associated
to the first and second steps of the algorithm.

— plateauPropagate: continues the propagation of the downstream to plateaus
internal pixels inside the block, respecting the geodesic distance to the bor-
ders. As the distance propagation may require block communication, this
kernel is invoked until stabilization and is associated with the second step.
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Fig. 1. Overlapping of data loaded on shared memory to process border pixels correctly.
It is used extra threads inside each block to load data, which are discarded and do not
perform the computation.

— mergeRegions: creates connected components with the minima pixels, using
the index as the reference for the group. The regional minima may spread
across different blocks, so this kernel is invoked until stability, paired with
the pathCompression kernel. This kernel is associated with the third step of
the algorithm.

— pathCompression: updates the reference of each pixel directly to the con-
nected component root. This avoids unnecessary memory accesses when
labeling the image and merges connected components that spread across
blocks. This kernel is associated with the third and fourth steps of the al-
gorithm. On the third step this is invoked until stabilization of the solution,
and only once for the fourth step.

— labelPizel: updates the label of each pixel, according to the reference of its
group. For regional minima processing, this connects minima that spread on
more than a single block, unifying the labels. This kernel is associated with
the third step of the algorithm.

— indezAdjust: updates the references matrix to allow the pathCompression
kernel to work on all pixels, rather than only on the regional minima, as a
preparation for the fourth step.



The minima and paths labeling problem is addressed in many ways on both
sequential and parallel algorithms, being a usual bottleneck, where common
strategies have not obtained success on the GPU [12]. For that matter, these steps
on the current approach are performed using the labeling algorithm of [2] , based
on a reference list for path compressing and representative propagation. This
algorithm is implemented through the kernels mergeRegions, pathCompression
and labelPizel presented before.

To better understand the bottlenecks of this algorithm, each kernel and API
call is timed, and a profile of the amount of time spent on each step is produced,
shown on Fig. 2. The first kernel executed, downstreamCalc, takes around 60%
of the total time of execution. This is expected, as this step calculates both the
downstream and solves small plateaus that are contained inside a block. The next
kernel invokes, for plateau propagation, take around 16% of the total time, with
8 calls, each with a smaller computation time, until stabilization. The regional
minima and catchment basin labeling are solved with a small percentage of the
total time, indicating an algorithm highly adapted for the task in parallel. The
first kernel may look as a severe bottleneck, compared to the second. However, it
was observed that this kernel solves many small plateaus, reducing the amount
of work to be done on the plateau propagation kernel.

Algorithm DW profile

downstreamCalc (1)
plateauPropagate (8)
mergeRegions ( 4)
pathCompression (4 )
memcpyHtoA (1)
memcpyDtoH (13 )
memcpyDtoA (4 )
indexAdjust (1)
labelPixel (3)
memcpyHtoD (1)

0.00% 6.21% 12.41% 18.62% 24.82% 31.03% 37.23% 43.44% 49.64% 55.85% 62.05%

Percentage of total execution time

Fig. 2. Percentage of the total execution time taken by each kernel and API call of the
DW algorithm.

Clearly the division of the algorithm on steps described on Sec. 3 does not
match exactly the kernels described on this section, as these are designed to
minimize the amount of time consumed on memory copies and maximize the
processing on each pixel on a single call. However, those steps divide the problem
logically, leading to other solutions, such as the sequential algorithm that is used
on the comparisons of the next section. This implementation is also based on
the drop of water principle and is divided on the aforementioned steps, and is
not parallelized on CPU threads, thus running on a single core. The solutions
provided by both algorithms are equivalent and valid.



4.2 Algorithm CA

The CA is based on the algorithm described on Sec. 3 and detailed on the work
of Kauffmann and Piche [3]. This algorithm, inspired on the algorithm of Ford-
Bellmann for calculating shortest-path forests with the sum path cost function,
iterates performing changes on the solution whenever a path of less cost is found,
until stabilization. To apply this concept on the watershed transform, the weight
of each edge of the inner graph must be associated with the topographical dis-
tance, as described by Meyer [6]. To address the issue of the cost on each edge
depending on the minimal value of the neighborhood, the implementation is
based on two kernels:

— initialization: initializes the cost for each pixel, depending on whether they
are a regional minima or not. Also, scans the neighborhood to store the mini-
mal value, necessary to compute the cost on each edge, during the processing
stage.

— iterate: process each pixel looking for paths of less cost. This kernel process
each block until stabilization of the sub-image solution, and also is invoked
as many times as necessary for stabilization of the whole image solution.

To use this algorithm, it is necessary to provide markers, either defined by the
user or the regional minima. However, as the kernel that propagates the solution
is invoked as many times as necessary, the greatest path on the inner graph will
bind the execution time. Thus, the performance is proportional to the ratio of
the area of catchment basins by the area of regional minima. To implement this
algorithm efficiently, the greatest improvement is the preprocessing of the cost,
which leads to several less memory accesses.

5 Performance Measurements

This section presents the experiments performed with the watershed algorithms
discussed on this paper, divided on three subsections: first, the algorithms are
measured and compared one against the other on the GPU; second, algorithm
DW is compared against a sequential implementation also based on the drop of
water principle; third the algorithm DW is timed on two different GPU cards,
to evaluate the impact of the evolution of hardware.

The hardware used is: an NVIDIA GTX 295 GPU card with 240 cores run-
ning CUDA 2.30; an NVIDA GTX 470 GPU card with 448 cores running CUDA
3.20; and a CPU AMD Phenom IT X3 CPU of 2.6Ghz clock and 7.5Mb of cache
with 4 GB of RAM. The measurements of GPU algorithm execution also con-
sider memory transfer from CPU to GPU. For the CA algorithm, the compu-
tation of regional minima is discarded. This computation is not measured as it
is out of scope of this work and would implicate on an additional processing
that may not be useful if it is supplied markers obtained from other methods,
such as user input. The algorithms were run on the images lena, cameraman,
peppers and baboon. These images have different profiles, with varying number



of regional minima and extension of plateaus. The measurements were averaged,
and the standard deviation presented indicates the variation on each image size.

The images were resized to 64x64, 128x128, 256x256, 512x512, 1024x1024 and
2048x2048.

5.1 GPU comparison

This experiment intends to compare the algorithms DW and CA executing on
the GTX 295 card. Tab. 1 shows the average times obtained for each image size,
and the standard deviation (STD) for both algorithms. Clearly, the algorithm
DW produces results much faster and with smaller variation of time. The large
standard deviation observed for CA is a direct consequence of its single-step
propagation that will take as long to execute as the longer path on the image.

Image size |Alg. DW (ms) |[STD |Alg. CA (ms) | STD
64x64 1.065 0.064 1.099 0.094
128x128 1.224 0.126 1.871 0.320
256x256 2.431 0.624 4.872 0.946
512x512 5.801 1.035 19.290 5.224
1024x1024 19.918 3.866 109.532 33.655
2048x2048 88.262 23.322 657.115 253.307

Table 1. Comparison of times of algorithm DW and CA running on GTX295

The data of Tab. 1 is also shown as a chart, on Fig. 3, where the difference
of times measured is better visualized. This chart presents the measured times
in milliseconds (ms) by the total number of pixels on the image.

Alg. DW vs Alg. CA

700
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400

300

—g—DW
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== CA
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Fig. 3. Chart comparison between algorithms DW and CA running on GTX295.



The results of this experiment may also be compared with the results of the
algorithm of Wagner and Godehardt [13], which was executed on a GTX280,
a card very similar to the GTX295. This comparison is possible only for the
1024x1024 image size, which has nearly the same number of pixels of the cube
of dimension 100 reported by the authors, with an execution time of 550ms.

5.2 GPU and CPU comparison

This experiment compares the algorithm DW running on the GTX 470 card
against the CPU version. The measurements obtained on the executions are
shown on Tab. 2. The speedup calculated is the ratio of the CPU by the GPU
time. It is seen that for images smaller than 256x256, the speedup is less than
two, and given that the absolute times measured are very small, the usage of a
GPU algorithm may not prove useful. However, for images larger than that, the
speedup is increased up to 6.5, and the absolute times make this acceleration
even more useful, which can be seen on the chart of Fig. 4.

Image size |GPU (ms) [STD [CPU (ms) [STD |Speedup
64x64 0.646 0.043 0.311 0.003 0.481
128x128 0.776 0.068 1.237 0.059 1.594
256x256 1.213 0.156 4.838 0.337 3.988
512x512 3.365 0.285 18.744 1.414 5.571
1024x1024 10.889 0.873 72.087 3.510 6.620
2048x2048 46.487 8.200 307.067 |14.208| 6.605

Table 2. Comparison of times between GPU GTX470 and CPU implementations
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Fig. 4. Chart comparison of times between GPU and CPU implementations.




5.3 GPU evolution comparison

This experiment intends to show how the evolution of GPU cards impact the
execution of the same code. On Tab. 3 it is shown the execution times of the
algorithm DW on both cards. The speedup is calculated as the ratio of the
measurement on the GTX 295 by the timing of GTX 470. The average of the
speedup of the images is 1.780. This might be associated with the increase of the
number of cores from 240 to 448, which gives a ratio of 1.86. However, it must
be noted that there are several other improvements on the architecture of GTX
470, such as enhancing cache capabilities and the operation of atomic functions.

Image size |GTX 295 (ms) [STD |GTX 470 (ms) |STD |Speedup
64x64 1.065 0.064 0.646 0.043 | 1.649
128x128 1.224 0.126 0.776 0.068 1.578
256x256 2.431 0.624 1.213 0.156 2.004
512x512 5.801 1.035 3.365 0.285 1.724
1024x1024 19.918 3.866 10.889 0.873 | 1.829
2048x2048 88.262 23.322 46.487 8.200 1.899
Table 3. Comparison of times between two different GPU cards

5.4 Algorithm scalability comparison

This experiment focuses on how the algorithms DW and CA perform on the
same images, filtered to have less regional minima. To evaluate this, the four
images were used on the size of 512x512 and filtered to have different number
of regional minima, ranging from 562 to 24848. However, as the images have
different profiles, only the image Lena is used to show the effect of filtering,
as its results were the most affected. The times measured are presented on the
chart of Fig. 5. This chart shows the measured times by the number of regional
minima. This chart confirms the first experiment, that algorithm DW is faster
that algorithm CA., and shows that the algorithm DW is more stable, with
most times bound between 10 and 20 ms, with a standard deviation of 4.4 ms,
while algorithm CA is bound between 20 and 50 ms, with a standard deviation
of 9.3 ms. The effect of severe variation of running time observed on algorithm
CA is not observed for every image tested. Nevertheless, such variation was not
observed for algorithm DW for any of the images.

6 Conclusion

This paper presented an analysis of modern watershed algorithms designed for
GPU architectures with some considerations on the implementation and design
of such algorithms. The issues of implementing a parallel watershed algorithm
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were discussed, and two implementations using the CUDA framework were de-
tailed.

On the performance measurements, three scenarios were used, comparing al-
gorithms on the GPU, the GPU against the CPU and GPU cards of different
configurations. The comparison on the GPU showed that having steps special-
ized for each task, and less dependence on stabilization produces faster results.
The comparison with the CPU showed that studies of GPU algorithms - i.e.
algorithms that use the SPMD model - may lead to reasonable speedups. The
comparison of evolution of cards showed that using the number of cores of a
board is a reasonable measure of normalization of times, and that the evolu-
tion of hardware may further reduce the execution times and restrictions that
currently exist.

Also, it has been observed that, because of the levels of speedup achieved,
especially when considering the evolution of the GPUs, the cost of implementa-
tion of these algorithms is rewarded. In fact, the usage of CUDA and/or OpenCL
technologies, with comprehension of the general architecture, enables the devel-
opment, of programs that are not strictly bound to the hardware, and may run
on several cards with the benefits of speedup. As a consequence, future works
are seen on the investigation of more algorithms focused on the SPMD model,
with implementations not dependent on special hardware configuration and also
suitable for 3D volumes.
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