Counting Problems and the Inclusion-Exclusion
Principle.™

Sriram Sankaranarayanan®, Huxley Bennett?®

% Department of Computer Science, University of Colorado, Boulder, CO.
firstname. lastname@colorado. edu

Abstract

In this paper, we present improved techniques for computing and getting
bounds on the cardinality of a union of sets using the inclusion-exclusion princi-
ple and Bonferroni inequalities. We organize the terms involved in the inclusion-
exclusion sum as a tree, showing that a set inclusion between a parent and its
children yields a cancellation, where we may prune an entire subtree. Next,
we provide a straightforward extension to the standard Bonferroni inequalities
where we obtain upper and lower bounds by pruning the tree of terms at arbi-
trary odd and even depths, respectively. We conclude by showing how our work
can be applied to the problem of counting the number of solutions to a given
propositional SAT formula.

1. Introduction

The inclusion-exclusion principle gives a formula for computing the cardi-
nality of the union of a collection of sets: |U_; A;|. The formula, expressed as
an alternating sum, plays an important role in combinatorics and probability.
Bonferroni inequalities generalize the inclusion-exclusion principle by showing
that truncactions of the sum at odd (even) depths give upper (lower) bounds.
The inclusion-exclusion sum includes a term for each subset in the powerset of
{41,...,A,} and therefore requires exponentially many computations in the
worst case.

Work on improving Bonferroni inequalities, either in terms of generalization
or reduced computation, is prevelant in the literature [2, 3]. In this paper
we obtain a generalization of Bonferroni inequalities, and then give a novel
technique for identifying cancellations in the inclusion-exclusion sum, leading
to large reductions in computation. Throughout the paper we represent the
terms in an inclusion-exclusion sum as a tree, which is useful in giving our
results concisely.

*This work was partially supported by the National Science Foundation (NSF) award
CNS-1016994.

Preprint submitted to Elsevier April 18, 2015

Our work was motivated by a desire to solve #SAT, the problem of counting
the number of models of a propositional formula. Because #SAT belongs to the
class of #P-complete problems it is thought to be highly intractible in the worst
case. Ever since Valiant introduced counting complexity in his seminal paper [6],
determining the best ways to compute exact and approximate solutions to #P-
complete problems has intrigued theoreticians. More recently researchers have
also been interested in solving these problems because of their applications in
artificial intelligence [4] and formal verification.

Gomes et al. provide a comprehensive survey of model counting algorithms
and implementations for solving #sAT both exactly and approximately in [4].
These largely build on existing SAT-solving paradigms. Using DPLL is espe-
cially prevelant [1], and forms the core of the elementary CDP algorithm. As the
survey authors point out, both approximate and exact model counters can only
handle formulas with several orders of magnitude fewer variables than modern
SAT solvers.

To the best of our knowledge, Linial and Nisan in [7] first introduced the idea
of using the inclusion-exclusion principle to count the models of a propositional
formula, also showing that past depth O(y/n) an inclusion-exclusion sum con-
verges rapidly. This work was furthered by Iwama [5] and Lonzinskii [8], both of
which take advantage of the structure of CNF SAT to analyze the average time
complexity required for exactly computing the number of models of a random
CNF formula with fixed clause length. However, as [7] points out, the idea of
using inclusion-exclusion to solve hard counting problems goes back to [9] in
which Ryser uses it in an algorithm for computing the permanent of a matrix
before the problem’s complexity was formally defined.

2. Inclusion-Exclusion Principle

In this section we present some preliminary ideas on the Inclusion-Exclusion
Principle and Bonferroni inequalities.

Given a family A of n > 0 sets Ay, ..., A,, the inclusion-exclusion principle
provides us with a technique to count the number of elements in their union

AU A

| = YimilAil = XicicjenlAin Ayl 4+ (DM AN A2 NN A

The sum can be written succinctly as

_ Z (_1)1+\S\

SC[n),5#0

n

U4

i=1

(4

i€S

. (1)

Given a family A4 with n sets, the summation in Equation 1 has 2" terms.

Figure 1: IE tree for a family A = {4, A2, A3} consisting of three sets. Leaves of the tree
are shaded in green.

2.1. Inclusion-FExclusion Tree

We will now present a simple organizational device that views the terms in
the inclusion exclusion principle summation from Equation 1 as nodes of a tree.
This tree will be called the Inclusion-Exclusion (IE) Tree.

Definition 2.1 (IE Tree). Given a family A of n > 0 sets Ay,..., A, the IE
tree corresponding to the family has node for each subset S C [n].

1. The root of the IE tree is denoted by []. Each non-root node is written as

S fin; e 54, such that 1 <ip <o < -+ < ig < mn.
2. For each node S : [i1;--+ ;i4], we have an edge from S to a node of the
form S’ : [i1;- -+ ;iaq;i441]. For convenience we will write S’ as [S;idq41].

Note that, by our node naming convention, igy1 > iq.

3. For each node S : [i1;- - ;i4), we assume that its children are ordered from
left to Tight using a lexicographic ordering as

Sy [Siiq+ 1], So:[S;ia+2], ... ,S;:[S;n], whereinl=n—iq4.

Each node S in the IE tree is associated with the term
t(S) = (-1)" 181 nies Ayl

in Eq. (1). By convention, we set ¢([#]) = 0. For a given non-root node S # 0,
t(S) = 0 if and only if N;csA; = 0. Furthermore, all nodes in the subtree rooted
at S will also lead to an empty intersection.

Figure 1 illustrates an example IE tree for a family A with three sets.

For each node S in the IE tree, let subtree(()S) denote the subtree rooted at
S (including S and all its proper descendents in the tree) and let subtreef(S) =
subtree(S) — {S}. We extend the valuation function to subtrees as the sum over
all the nodes in the subtree:

t(subtree(S)) = Z t(S") and t(subtreef(S)) = t(subtree(S)) — (S) .
S’ €esubtree(S)

Algorithm 1: Algorithm for computing cardinality using simple IE tree
exploration.
Data: Family of sets A= {A;,...,A,}
Result: |[J!", 4]
S+ 0;
queue «— {S};
sum < 0;
while not isEmpty(queue) do
S < head(queue) ;
sum < sum + £(S);
if S=0 v ¢S) >0 then
| queue < queue U Children(S);

return sum;

Given an IE tree, the overall cardinality of the union is given by t(subtree([()])).
Algorithm 1 shows the basic IE tree exploration for computing the cardinality of
a family A. The algorithm uses a queue structure to store the set of unexplored
nodes. At each step, a node is taken out of the queue and its contribution added
to the summation. Next, the children of the node are added to the queue if it
is empty or its contribution to the summation is strictly positive. This step has
the effect of pruning nodes and their subtrees whenever the intersection of the
corresponding sets is empty.

We will now observe a key observation that arises from the structure of the
IE tree. Let S = [i1;...;44] be a non-root node (i.e, d > 0) of the IE tree with
k > 0 children T} : [S;iq 4+ 1],..., Tk : [S;n], where n = ig + k. Recall that the
contribution of the proper subtree rooted at S is given by

t(subtree’(9)) = Z t(subtree([S;iq + 7))

j=1
Lemma 2.1. The following identity holds:

(—1)%(subtree’(S)) = O (Intersect(S) N A4;)| ,

Jj=ta+1

wherein Intersect(S) = (), 4i-

€S
Proof. Proof follows by application of the inclusion exclusion principle to the
term on the RHS of the identity and matching up each resulting term with a
node in subtreef(S). Specifically, each term in the inclusion exclusion sum for
the RHS will be of the form

(—1"1)|Intersect(S) N Aj, N--- Aj,|, werein, ji, ..., Ji > iq.

Such a term will be mapped bijectively onto the term (—1)%([S; Aj;...; 4;,])

involved in the LHS summation, wherein [S;Aj,;---;A;,] € subtreel(S). It
remains to verify that the terms themselves are identical:
(=D)([S; Ay 5 A;D) = (=D)3(=1)" "+ Intersect(S) N Aj, N -+ N Ay,
(=1 1)|Intersect(S) N A, N -+ Ay, |
Therefore, the identity is verified. O

2.2. Subsumption Pruning

We now augment the basic tree search by a technique to prune based on
subsumed sets. As observed in [2], many terms in the inclusion-exclusion sum
have equal magnitude but opposite sign. Our technique exploits a symmetry
that often arises in the inclusion-exclusion sum which allows us to cancel the
contribution of an entire subtree.

The idea behind subsumption pruning is based on the following idea:

We always have that [¢(S)| > |t(subtreeT(S))‘ by Lemma 2.1. When S
is contained in the union of the sets introduced by its children we also have
|t(S)| < |t(subtreef(S))|, so t(S) = —t(subtree’(S)) and t(subtree(S)) = 0.

We now formally define subsumption of a node by its children and then prove
the main result of this section.

Definition 2.2 (Subsumption). We say that a node S is subsumed by its chil-
dren
Children(S) = {T1 : [S; A,], ..., Tk : [S; Ai]} if
Intersect(S) C U A; (2)
jE{il,...,ik}

Remark 2.1. A simple instance of subsumption occurs when for a child T; of
a node S, we have Intersect(S) = Intersect(T}).

We now prove the main result that shows that if subsumption occurs at a
node S then the contribution of the entire subtree rooted at S vanishes.

Theorem 2.1. Let S be a node in the IE tree that is subsumed by its children.
It follows that t(subtree(S)) = 0.

Proof. By Lemma 2.1 we have that

(—1)!5It(subtreef(9)) = U Intersect(T)
T; €Children(S)
Combining this with the definition of subsumption and noting that S has the
opposite sign of ¢(subtree’(S)) we have that
t(subtree(S)) = t(S) + t(subtreef(S))
1151 {Intersect(S P

(—
(—

= (=15l |Intersect(S (—1)*151 |Intersect(S)|
0

(—1)HHISH” (Intersect(S) N A;)

(S +
1)!¥!Intersect(S)| + (—=1)'*19! [Intersect(S) NUj_;, 41 (4;)
(S +

Algorithm 2: Improved algorithm for computing cardinality using IE tree
exploration and subsumption pruning.

Data: Family of sets A= {A;,...,A,}
Result: |[J!", 4]
S+ 0;
queue «— {S};
sum < 0;
while not isEmpty(queue) do
S < head(queue) ;
if not checkSubsumption(S) then
sum < sum + £(S);
if S=0 v #S) >0 then
| queue < queue U Children(S);

return sum;

O

The idea of subsumption can be used to potentially improve the running time
of the IE tree exploration algorithm (Algorithm 1) by checking if a subsumption
occurs at each node and backtracking whenever subsumption is encountered.

Algorithm 2 shows the use of a subsumption check to limit the number of
nodes explored during a search. For each node S : [i1;--- ;i4], the function

checkSubsumption(S) checks that (,c5 Ai C U, <<, 4j-

3. Bonferroni Inequalities

In this section, we generalize Bonferroni inequalities using the IE tree to
yield upper and lower bounds on the cardinalities of the union of a family of
sets.

Let A = {A;,...,A,} be a family of sets. For convenience, let By denote
the summation in Equation (1) restricted to subsets of size at most k:

Bi= Y ()" A (3)

SCln],1<|S|<k ies
The Bonferroni inequalities state that
UAi, < Bg41, and Usz > By, 1<I1< {gJ . (4)
i=1 i=1

In other words, the truncated summation By for odd values of k yields an upper
bound to the summation whereas By, for even values of k yields a lower bound.

In general, the Bonferroni inequalities may be interpreted in the light of the
IE tree search framework as follows:

1. For a given depth cutoff 1 < d < n, let Ty denote the set of IE tree
obtained by removing all nodes of the full IE tree of depth strictly greater
than d.

2. If the cutoff depth d is odd then the sum of terms in the truncated tree
form an upper bound of the cardinality of the union

S€eTq

3. Similarly for even cutoff depths, the sum of terms in the truncated tree
forms a lower bound:

S€eTq

Note that all the cutoffs have to occur at the same depth d. Using the ideas
developed so far, we extend the standard Bonferroni bounds by allowing entire
subtrees subtree’(S) to be cut off at different depths, provided all the cutoffs
are either at odd depths, or all the cutoffs are at even depths.

Definition 3.1 (Cutoff IE Tree). An odd (even) depth cutoff IE tree T is ob-
tained by selecting a set of non-root nodes {Si,...,Sk} such that

1. All the nodes S;, 1 < i < K, occur at odd (even) depths.

2. The tree T is obtained by removing the nodes in the subtrees subtreel(S;)
from the original IE tree.

Figure 2 illustrates three different cutoff trees for the IE tree from Figure 1.
Note that the trees (A) and (B) in the figure yield bounds corresponding the
the classic Bonferroni inequalities, whereas the tree (C) has one node at depth
1 whose children are cut off whereas other nodes at the same depth retain their
children.

Let us define ¢(T) for a cutoff IE tree as the sum over all the terms that
occur in the tree, i.e, ¢(T) = > g t(S5).

Theorem 3.1. The following hold for cutoff trees:
1. If T is an odd depth cutoff tree then t(T) > | Ji; Ai.
2. If T is an even depth cutoff tree then t(T) < |Ji, A;].

Proof. For any node S in the full IE tree that occurs at depth d > 0, we observe
by Lemma 2.1 that
t(subtree’(S)) = (=1)¢|C4| ,

for some set Cj. If the depth d is odd then t(subtree(S)) < 0 and likewise, if
the depth d is even, then t(subtreef(S)) > 0.

1 0] eTCe——— - LN,
T N 0] B m/m 3]
A R R I I N R N N ;
N A - N A E N 16 :
L2 L3 8] - s | :
e ’ (B) [152:3]

. e

(C)

Figure 2: Three examples of depth cutoff trees for the IE tree from Figure 1. Leaves of the
tree are shaded green and nodes whose children are cutoff are shaded red. (A) Subtree of
node [1; 2] at depth 2 is cut off, yielding a lower bound to the overall summation, (B) Subtrees
of nodes [1], [2] at depths 1 are cutoff yielding an upper bound and (C) Subtree of node [2]
at depth 1 is cut off yielding an upper bound. Notice that (A) and (B) are legal cutoff trees
using established Bonferroni inequalities, while (C) requires our generalization.

Let T be an odd depth cutoff tree where cutoffs are carried out at nodes
S1,...,SK. Without loss of generality, we may assume that no S; in the set is
an ancestor or a descendent of some other node ;. Using the inclusion-exclusion
principle, we observe that

K

- Z t(subtreel(S;)).

i=1

n

U

i=1

#(T) =

However, since each node S; occurs at an odd depth, we have Zfil t(subtree’(S;)) <
0. Therefore, we conclude that

The proof for an even depth cutoff tree is very similar. O

Remark 3.1. The odd (even) depth cutoff trees induced by subsumption give
upper (lower) bounds.

4. Application: Propositional Model Counting

‘We now present an algorithm for the #SAT problem using inclusion-exclusion
principle, following Iwama [5] and Lozinskii [8]. The #SAT problem seeks the
number of satisfying solutions to a given Boolean formula in the conjunctive
normal form (CNF).

Let ¢ be a k-CNF formula consisting of variables x1,...,z, and clauses
C1,...,Cnm. Each clause lits(C;) : {€(1 x),.--, L@k} is a set of k literals, each

Algorithm 3: Basic algorithm for #UNSAT using inclusion-exclusion.

Input: ¢: CNF SAT formula with variables x1, ..., z, and clauses

Ci,...,Cn
Output: #UNSAT(p)
begin

count := 0

for (each subset S C {C1,...,Cp}, S #0) do
Compute lits(.S)
if (lits(S) has no interfering literals) then
| count := count + (—1)+ISlgn-llitsS]

end

literal of the form ¢; : x; or ¢; : —~x;. Using the inclusion-exclusion principle, we
count the number Ny : #UNSAT(p) of solutions that do not satisfy ¢. Given
Ny, we may compute the number of satisfying solutions as 2" — Nyy. We now
present the basic approach for expressing the count of the number of satisfying
solutions to ¢ using the inclusion-exclusion principle.

Let A; denote the set of all valuations to x1,...,x, that do not satisfy the
clause C;. If C; has k distinct literals, we note that |A;| = 27—k This is because,
there is exactly one (partial) truth assignment to the literals in C; that does not
satisfy C;. Such a partial truth assignment fixes the value of k£ variables in the
original formula, allowing n—k variables to be assigned arbitrarily, giving a total
of 2% such assignments. Therefore, the number of dis-satisfying solutions for
C; is given by 2"~% assuming that all literals in C; are distinct.

Similarly, consider a subset S C {Cy,...,C),} of the clauses appearing in
the formula ¢. Let lits(S) be the union of all the literals that appear in each of
the clauses in S, lits(S) = UCjeS lits(C;).

Definition 4.1 (Interfering Clauses). Given two clauses C;,C; in ¢, we say
that C; interferes with C; iff C; contains a literal £ and C; contains its negation
—f. A set of clauses S C {C1,...,Cp} is interfering iff there are two interfering
clauses in S.

Using inclusion-exclusion bounds to compute the number of dis-satisfying
solutions for a given CNF SAT formula ¢.

0 if 34, {z;,-z;} Clits(S)
Ny = Z t(S) where t(S) = { ((71)|S|+1 . 2Jn7||itjs(s)\) otherwise

Likewise, using Bonferroni inequalities, it is possible to estimate upper and
lower bounds for the number of dis-satisfying solutions.

Algorithm 3 shows the basic algorithm for #SAT. We note that since S must
range over y .-, (T) = 2™ —1 clause sets that the running time of the algorithm

is exponential in m. By limiting the summation in Algorithm 3 to clause sets

of size up to B, we may obtain an upper bound or a lower bound depending on
whether B is odd or even.

Subsumption Checking We now present the idea of subsumption checking
to prune away further terms from consideration in Algorithm 3.

Lemma 4.1. The improved #UNSAT algorithm has worst case O(n) running
time.

Notice that the naive algorithm 3 requires worst case O(m) time.
Proof. Because ¢ has only n variables any sequence of n + 1 clauses must [

Proof. Suppose we have a clause-set S with non-interfering literals lits(S). By
subsumption and the conflict rule if adding a new clause C' to S introduces no
new literals, or if lits(C' U S) is conflicting then we prune subtree(()C). Then
because ¢ has only n variables adding an n 4 1th clause to S will induce either
a subsumption or conflict.

If adding a new clause C' to S introduces no new literals or C' is subsumed
or lits(C' U S) is conflicting then we terminate.

If a new clause introduces no new literals then it is subsumed. Furthermore,
if a clause contains an interfering literal then it is pruned. However a set of
non-interfering literals is of size at most n, so its

O

References

[1] E. Birnbaum and E. L. Lozinskii. The good old Davis-Putnam procedure
helps counting models. J. Artificial Intelligence Research, 10:457-477, 1999.

[2] K. Dohmen. Improved Bonferroni Inequalities via Abstract Tubes: Inequali-
ties and identities of the Inclusion-FExclusion Type. Lecture Notes in Math-
ematics. Springer—Verlag, 2003.

[3] J. Galambos. Bonferroni inequalities. The Annals of Probability, 5(4):pp.
577 581, 1977.

[4] C. P. Gomes, A. Sabharwal, and B. Selman. Model counting. In Handbook
of Satisfiability, chapter 20. IOS Press, 2008.

[5] K. Iwama. CNF-satisfiability test by counting and polynomial average time.
SIAM Journal on Computing, 18(2):385-391, 1989.

[6] L.G. and Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189 — 201, 1979.

[7] N. Linial and N. Nisan. Approximate inclusion-exclusion. Combinatorica,
10(4):349-365, 1990.

[8] E. L. Lozinskii. Counting propositional models. Information Processing
Letters, 41:327-332, 1992.

10

[9] H. Ryser. Combinatorial mathematics. Carus mathematical monographs.
Mathematical Association of America; distributed by Wiley New York, 1963.

11

