Skip to main content

A Flexible Framework for Local Phase Coherence Computation

  • Conference paper
Image Analysis and Recognition (ICIAR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6753))

Included in the following conference series:

Abstract

Local phase coherence (LPC) is a recently discovered property that reveals the phase relationship in the vicinity of distinctive features between neighboring complex filter coefficients in the scale-space. It has demonstrated good potentials in a number of image processing and computer vision applications, including image registration, fusion and sharpness evaluation. Existing LPC computation method is restricted to be applied to three coefficients spread in three scales in dyadic scale-space. Here we propose a flexible framework that allows for LPC computation with arbitrary selections in the number of coefficients, scales, as well as the scale ratios between them. In particular, we formulate local phase prediction as an optimization problem, where the object function computes the closeness between true local phase and the predicted phase by LPC. The proposed method not only facilitates flexible and reliable computation of LPC, but also demonstrates strong robustness in the presence of noise. The groundwork laid here broadens the potentials of LPC in future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proceedings of the IEEE 69(5), 529–541 (1981)

    Article  Google Scholar 

  2. Morrone, M.C., Burr, D.C.: Feature detection in human vision: a phase-dependent energy model. Proceedings of the Royal Society of London, Series B 235(128), 221–245 (1988)

    Article  Google Scholar 

  3. Morrone, M.C., Owens, R.A.: Feature detection from local energy. Pattern Recognition Letters 6(5), 303–313 (1987)

    Article  Google Scholar 

  4. Kovesi, P.: Image features from phase congruency. Journal of Computer Vision Research 1(3), 1–26 (1999)

    Google Scholar 

  5. Fleet, D.J.: Phase-based disparity measurement. CVGIP: Image Understanding 53(2), 198–210 (1991)

    Article  MATH  Google Scholar 

  6. Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. International Journal of Computer Vision 5(1), 77–104 (1990)

    Article  Google Scholar 

  7. Wang, Z., Li, Q.: Statistics of natural image sequences: temporal motion smoothness by local phase correlations. In: Human Vision and Electronic Imaging XIV, January 19-22. Proc. SPIE, vol. 7240 (2009)

    Google Scholar 

  8. Portilla, J., Simoncelli, E.P.: A Parametric Texture Model based on Joint Statistics of Complex Wavelet Coefficients. International Journal of Computer Vision 40, 49–71 (2000)

    Article  MATH  Google Scholar 

  9. Daugman, J.: Statistical richness of visual phase information: update on recognizing persons by iris patterns. International Journal of Computer Vision 45(1), 25–38 (2001)

    Article  MATH  Google Scholar 

  10. Zeng, K., Wang, Z.: Quality-aware video based on robust embedding of intra- and inter-frame reduced-reference features. In: IEEE International Conference on Image Processing, Hong Kong, China, September 26-29 (2010)

    Google Scholar 

  11. Wang, Z., Simoncelli, E.P.: Local phase coherence and the perception of blur. In: Adv. Neural Information Processing Systems, NIPS 2003, pp. 786–792. MIT Press, Cambridge (2004)

    Google Scholar 

  12. Hassen, R., Wang, Z., Salama, M.: Multi-sensor image registration based-on local phase coherence. In: IEEE International Conference on Image Processing, Cairo, Egypt, November 7-11 (2009)

    Google Scholar 

  13. Hassen, R., Wang, Z., Salama, M.: Multifocus image fusion using local phase coherence measurement. In: International Conference on Image Analysis and Recognition, Halifax, Canada, July 6-8 (2009)

    Google Scholar 

  14. Hassen, R., Wang, Z., Salama, M.: No-reference image sharpness assessment based on local phase coherence measurement. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, TX, March 14-19 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hassen, R., Wang, Z., Salama, M. (2011). A Flexible Framework for Local Phase Coherence Computation. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2011. Lecture Notes in Computer Science, vol 6753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21593-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21593-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21592-6

  • Online ISBN: 978-3-642-21593-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics