Skip to main content

Gender Classification Using a Novel Gait Template: Radon Transform of Mean Gait Energy Image

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6754))

Abstract

Any information about people such as their gender may be useful in some secure places; however, in some occasions, it is more appropriate to obtain such information in an unobtrusive manner such as using gait. In this study, we propose a novel method for gender classification using gait template, which is based on Radon Transform of Mean Gait Energy Image (RTMGEI). Robustness against image noises and reducing data dimensionality can be achieved by using Radon Transformation, as well as capturing variations of Mean Gait Energy Images (MGEIs) over their centers. Feature extraction is done by applying Zernike moments to RTMGEIs. Orthogonal property of Zernike moment basis functions guarantee the statistically independence of coefficients in extracted feature vectors. The obtained feature vectors are used to train a Support Vector Machine (SVM). Our method is evaluated on the CASIA database. The maximum Correct Classification Rate (CCR) of 98.94% was achieved for gender classification. Results show that our method outperforms the recently presented works due to its high performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sarah, V.S., Mark, S.N., Kate, V.: Visual analysis of gait as a cue to identity. Applied Cognitive Psychology 13(6), 513–526 (1999)

    Article  Google Scholar 

  2. Li, X., Maybank, S.J., Yan, S., Tao, D., Xu, D.: Gait components and their application to gender recognition. IEEE Transactions on systems, Man, And Cybernetics-Part C 38(2) (2008)

    Google Scholar 

  3. Haihong, S., Liqun, M., Qishan, Z.: Gender categorization based on 3D faces. In: International Conference on Advanced Computer Control (ICACC), vol. 5, pp. 617–620 (2010)

    Google Scholar 

  4. Yoo, J.-H., Hwang, D., Nixon, M.S.: Gender classification in human gait using support vector machine. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS, vol. 3708, pp. 138–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Maodi, H., Yunhong, W.: A New Approach for Gender Classification Based on Gait Analysis. In: Fifth International Conference on Image and Graphics, pp. 869–874 (2009)

    Google Scholar 

  6. Lee, L., Grimson, W.E.L.: Gait Analysis for Recognition and Classification. In: Fifth IEEE International Conference on Automatic Face and Gesture Recognition (FG), pp. 148–155 (2002)

    Google Scholar 

  7. Sarker, S., jonathon Phillips, P., Liu, Z., Vega, I.R., Grother, P., Bouyer, K.W.: The Human ID Gait Challenge problem: data sets, performance and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2) (February 2005)

    Google Scholar 

  8. Ju, H., Bir, B.: Individual Recognition UsingGait Energy Imag. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(2) (2006)

    Google Scholar 

  9. Xiang-tao, C., Zhi-hui, F., Hui, W., Zhe-qing, L.: Automatic Gait Recognition Using Kernel Principal component Analysis. In: IEEE Int. Conference on Biomedical Engineering and Computer Science, Wuhan, pp. 1–4 (April 2010)

    Google Scholar 

  10. Ye, B., Peng, J.: Invariance analysis of improved Zernike moments. Journal of Optics A: Pure and Applied Optics 4(6), 606–614 (2002)

    Article  Google Scholar 

  11. Ye, B., Peng, J.: Improvement and invariance analysis of Zernike moments using as a region-based shape descriptor. Journal of Pattern Recognition and Image Analysis 12(4), 419–428 (2002)

    MathSciNet  Google Scholar 

  12. Chong, C.W., Raveendran, P., Mukundan, R.: Translation invariants of Zernike moments. Pattern Recognition 36(8), 765–773 (2003)

    Article  MATH  Google Scholar 

  13. Maofu, L., Yanxiang, H., Bin, Y.: Image Zernike Moments Shape Feature Evaluation Based on Image Reconstruction. Geo-spatial Information Science 10(3), 191–195 (2007)

    Article  Google Scholar 

  14. Maodi, H., Yunhong, W., Zhaoxiang, Z., Yiding, W.: Combining Spatial and Temporal Information for Gait Based Gender Classification. In: International Conference on Pattern Reconition (ICPR), Istanbul, pp. 3679–3682 (2010)

    Google Scholar 

  15. Huang, G., Wang, Y.: Gender classification based on fusion of multi-view gait sequences. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 462–471. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Yu, S., Tan, T., Huang, K., Jia, K.: X. Wu.: A study on gait-based gender classification. Image Processing Journal, IEEE T-IP 18(8), 1905–1910 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bagher Oskuie, F., Faez, K. (2011). Gender Classification Using a Novel Gait Template: Radon Transform of Mean Gait Energy Image. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2011. Lecture Notes in Computer Science, vol 6754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21596-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21596-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21595-7

  • Online ISBN: 978-3-642-21596-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics