Skip to main content

Multiple Classifier System for Urban Area’s Extraction from High Resolution Remote Sensing Imagery

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6754))

Abstract

In this paper, a land-cover extraction thematic mapping approach for urban areas from very high resolution aerial images is presented. Recent developments in the field of sensor technology have increased the challenges of interpreting images contents particularly in the case of complex scenes of dense urban areas. The major objective of this study is to improve the quality of land-cover classification. We investigated the use of multiple classifier systems (MCS) based on dynamic classifier selection. The selection scheme consists of an ensemble of weak classifiers, a trainable selector, and a combiner. We also investigated the effect of using Particle Swarm Optimization (PSO) based classifier as the base classifier in the ensemble module, for the classification of such complex problems. A PSO-based classifier discovers the classification rules by simulating the social behaviour of animals. We experimented with the parallel ensemble architecture wherein the feature space is divided randomly among the ensemble and the selector. We report the results of using separate/similar training sets for the ensemble and the selector, and how each case affects the global classification error. The results show that selection improves the combination performance compared to the combination of all classifiers with a higher improvement when using different training set scenarios and also shows the potential of the PSO-based approach for classifying such images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 28(5), 823–870 (2007)

    Article  Google Scholar 

  2. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  3. Stathakis, D., Vasilakos, A.: Comparison of computational intelligence based classification techniques for remotely sensed optical image classification. IEEE T. Geosci. Remote Sens. 44(8), 2305–2318 (2006)

    Article  Google Scholar 

  4. Omran, M., Engelbrecht, A.P., Salman, A.: Particle swarm optimization method for image clustering. International Journal of Pattern Recognition and Artificial Intelligence 19(3), 297–321 (2005)

    Article  Google Scholar 

  5. XiaoPing, L., Xia, L., XiaoJuan, P., HaiBo, L., JinQiang, H.: Swarm intelligence for classification of remote sensing data. Science in China Series D: Earth Sciences 51(1), 79–87 (2008)

    Article  Google Scholar 

  6. Benediktsson, J.A., Chanussot, J., Fauvel, M.: Multiple Classifier Systems in Remote Sensing: From Basics to Recent Developments. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 501–512. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Yu-Chang, T., Kun-Shan, C.: An adaptive thresholding multiple classifiers system for remote sensing image classification. Photogrammetry Engineering and Remote Sensing 75(6), 679–687 (2009)

    Article  Google Scholar 

  8. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  9. Giacinto, G., Roli, F.: Dynamic classifier selection. In: Proceedings of the First International Workshop on Multiple Classifier Systems, pp. 177–189 (2000)

    Google Scholar 

  10. Wanas, N., Dara, R., Kamel, M.S.: Adaptive Fusion and Co-operative Training for Classifier Ensembles. Pattern Recognition 39(9), 1781–1794 (2006)

    Article  MATH  Google Scholar 

  11. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks (ICNN 1995), Australia, vol. 4, pp. 1942–1948. IEEE Service Center, Perth (1995)

    Chapter  Google Scholar 

  12. Sousa, T., Neves, A., Silva, A.: A particle swarm data miner. In: 11th Portuguese Conference on Artificial Intelligence, Workshop on Artificial Life and Evolutionary Algorithms, pp. 43–53 (2003)

    Google Scholar 

  13. Tri-Cities and Surrounding Communities Orthomosaics 2006 [computer file]. Waterloo, Ontario:  The Regional Municipality of Waterloo (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bedawi, S.M., Kamel, M.S. (2011). Multiple Classifier System for Urban Area’s Extraction from High Resolution Remote Sensing Imagery. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2011. Lecture Notes in Computer Science, vol 6754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21596-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21596-4_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21595-7

  • Online ISBN: 978-3-642-21596-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics