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Abstract—The need for controlled (privacy-preserving)
sharing of sensitive information occurs in many different and
realistic everyday scenarios, ranging from national security
to social networking. A typical setting involves two parties:
one seeks information from the other without revealing the
interest while the latter is either willing, or compelled,
to share only the requested information. This poses two
challenges: (1) how to enable this type of sharing such
that parties learn no information beyond what they are
entitled to, and (2) how to do so efficiently, in real-world
practical terms. This paper explores the notion of Privacy-
Preserving Sharing of Sensitive Information (PPSSI), and
provides two concrete and efficient instantiations, modeled in
the context of simple database querying. Proposed techniques
function as a privacy shield to protect parties from disclosing
more than the required minimum of their respective sensitive
information. PPSSI deployment prompts several challenges,
that are addressed in this paper. Extensive experimental
results attest to the practicality of attained privacy features
and show that they incur quite low overhead (about 10%
slower than standard MySQL).

I. INTRODUCTION

In today’s increasingly digital world, there is often a

tension between safeguarding privacy and sharing infor-

mation. On the one hand, sensitive data needs to be kept

confidential; on the other hand, data owners are often

motivated or forced to share sensitive information. Consider

the following examples:

• Aviation Safety: The Department of Homeland Secu-

rity (DHS) checks whether any passengers on each

flight from/to the United States must be denied board-

ing or disembarkation, based on several secret lists,

including the Terror Watch List (TWL) [23]. Today,

airlines surrender their passenger manifests to the

DHS, along with a large amount of sensitive infor-

mation, including credit card numbers [44]. Besides

its obvious privacy implications, this modus operandi

poses liability issues with regard to mostly innocent

passengers’ data and concerns about possible data loss.

(See [10] for a litany of recent incidents where large

amounts sensitive data were lost or mishandled by

government agencies.) Ideally, the DHS would obtain

information pertaining only to passengers on one of

its watch-lists, without disclosing any information to

the airlines.

∗ Work done while at UC Irvine.

• Law Enforcement: An investigative agency (e.g., the

FBI) needs to obtain electronic information about a

suspect from other agencies, e.g., the local police, the

military, the DMV, the IRS, or the suspect’s employer.

In many cases, it is dangerous (or simply forbidden)

for the FBI to disclose the subjects of its investigation.

Whereas, the other party cannot disclose its entire

dataset and trust the FBI to only extract desired

information. Furthermore, FBI requests might need to

be pre-authorized by some appropriate authority (e.g.,

a federal judge). This way, the FBI can only obtain

information related to authorized requests.

• Healthcare: A health insurance company needs to

retrieve information about its client from other entities,

such as other insurance carriers or hospitals. The latter

cannot provide any information on other patients and

the former cannot disclose the identity of the target

client.

Other examples of sensitive information sharing include

collaborative botnet detection [38] (i.e., service providers

share their logs for the sole purpose of identifying common

anomalies), interest sharing from smartphones [16], or

preventing cheating in online gaming [7].

Motivated by above examples, this paper develops the

architecture for Privacy-Preserving Sharing of Sensitive

Information (PPSSI), and proposes two efficient and

secure instantiations that function as a privacy shield to

protect parties from disclosing more than the required

minimum of sensitive information. We model PPSSI in the

context of simple database-querying applications with two

parties: a server, in possession of a database, and a client,

performing disjunctive equality queries. In terms of one of

the examples above, the airline company (the server) has a

database with passenger information, while the DHS (the

client) poses queries corresponding to the TWL.

Intended Contributions. In this paper, we explore the no-

tion of Privacy-Preserving Sharing of Sensitive Information

(PPSSI). Our main building blocks are efficient Private Set

Intersection (PSI) techniques. During the design of PPSSI,

we address several challenges stemming from adapting PSI

to realistic database settings. Our extensive experimental

evaluation demonstrates that our techniques incur very low

overhead compared to standard (non privacy-preserving)
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MySQL. All source code is publicly available.1

Organization. In next section, we introduce PPSSI syn-

tax, along with its privacy requirements, and review PSI

definitions. After reviewing related work in Section III, in

Section IV, we discuss the insecurity of a strawman ap-

proach obtained with a naı̈ve adaptation of PSI techniques

to PPSSI. Then, Section V introduces a secure PPSSI

approach using a novel database encryption mechanism.

Next, in Section VI, we consider another approach geared

for very large databases. Section VII presents our experi-

mental analysis, and Section VIII concludes the paper by

discussing future work.

II. PRELIMINARIES

This section introduces Privacy-Preserving Sharing of

Sensitive Information (PPSSI), formalizes its privacy re-

quirements, and overviews Private Set Intersection (PSI) –

our main building block.

A. PPSSI Syntax & Notation

We model PPSSI in the context of simple database query-

ing. In it, a server maintains a database, DB, containing

w records with m attributes (attr1, · · · , attrm). We denote

DB = {(Rj)}
w
j=1. Each record Rj = {valj,l}

m
l=1

, where

valj,l is Rj’s value for attribute attrl. A client poses simple

disjunctive SQL queries, such as:

SELECT * FROM DB

WHERE (attr∗1 = val∗1 OR · · · OR attr∗v = val∗v) (1)

As a result of the query, the client gets all records in

DB satisfying where clause, and nothing else. Whereas,

the server learns nothing about any {attr∗i , val∗i }1≤i≤v. We

assume that the database schema (format) is known to the

client. Furthermore, without loss of generality, we assume

that the client only queries searchable attributes.

In an alternative version supporting authorized queries,

we require the client to receive query authorizations from a

mutually trusted offline Certification Authority (CA) prior

to interacting with the server. That is, the client outputs

matching records only if the client holds pertinent autho-

rizations for (attr∗i , val∗i ).
Our notation is reflected in Table I. In addition, we use

Enck(·) and Deck(·) to denote, respectively, symmetric

key encryption and decryption (under key k). Public key en-

cryption and decryption, under keys pk and sk, are denoted

as Epk(·) and Esk(·)−1, respectively. σ = Signsk(M)
denotes a digital signature computed over message M
using secret key sk. Operation Vrfypk(σ, M) returns 1
or 0 indicating whether σ is a valid signature on M .

Z
∗
N refers to a composite-order RSA group, where N

is the RSA modulus. We use d to denote RSA private

key and e to denote corresponding public key. We use

Z
∗
p to denote a cyclic group with a subgroup of order q,

where p and q are large primes, and q|p − 1. Let G0,

1Source code is available at http://sprout.ics.uci.edu/projects/iarpa-app/
index.php?page=code.php.

G1 be two multiplicative cyclic groups of prime order

p. We use ê : G0 × G0 → G1 to denote a bilinear

map. ZKPK is used to denote zero-knowledge proof

of knowledge. We use H(·), H1(·), H2(·), H3(·) to denote

different hash functions, modeled as random oracles. In

practice, we implement H(m), H1(m), H2(m), H3(m) as

SHA-1(0||m), SHA-1(1||m), SHA-1(2||m), SHA-1(3||m).

B. Informal Privacy Requirements

We now define PPSSI privacy requirements for both

standard and authorized queries.2 We consider both Honest-

but-Curious (HbC) adversaries and malicious adversaries.

An HbC adversary faithfully follows all protocol’s specifi-

cations (but might attempt to infer additional information

during or after protocol execution). Whereas, malicious

adversaries may arbitrarily deviate from the protocol.

Privacy requirements are as follows:

• Server Privacy. The client learns no information about

any record in server’s database that does not satisfy the

where (attr∗i = val∗i ) clause(s).

• Server Privacy (Authorized Queries). Same as ”Server

Privacy” above, but, in addition, the client learns no

information about any record satisfying the where

(attr∗i = val∗i ) clause, unless the (attr∗i , val∗i ) query

is authorized by the CA.

• Client Privacy. The server learns nothing about any

client query parameters, i.e., all attr∗i and val∗i (nor

about its authorizations, for authorized queries), except

the number of queried attributes.

• Client Unlinkability. The server cannot determine

(with probability non-negligibly exceeding 1/2)

whether any two client queries are related.

• Server Unlinkability. For any two queries, the client

cannot determine whether any record in the server’s

database has changed, except for the records that are

learned (by the client) as a result of both queries.

• Forward Security (Authorized Queries). The client

cannot violate Server Privacy with regard to prior

interactions, using authorizations obtained later.

Note that Forward Security and Unlinkability requirements

are crucial in many practical scenarios. Referring to one

example in Section I, suppose that the FBI queries an

employee database without having authorization for a given

suspect, e.g., Alice. Server Privacy (Authorized Queries)

ensures that the FBI does not obtain any information about

Alice. However, unless Forward Security is guaranteed,

if the FBI later obtains authorization for Alice, it could

inappropriately recover her file from the (recorded) protocol

transcript. On the other hand, Unlinkability keeps one party

from noticing changes in other party’s input. In particular,

unless Server Unlinkability is guaranteed, the client can

always detect whether the server updates its database be-

tween two interactions. Unlinkability also minimizes the

2To ease clarity, our definitions hereby are only informal – formal security
arguments (as well as proofs), are presented later in the paper, along
with protocol constructions, following traditional ideal model/real world
arguments.

http://sprout.ics.uci.edu/projects/iarpa-app/index.php?page=code.php
http://sprout.ics.uci.edu/projects/iarpa-app/index.php?page=code.php
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risk of privacy leaks. Without Client Unlinkability, if the

server learns that the client’s queries are the same in two

interactions and one of these query contents are leaked, the

other query would be immediately exposed.

Finally, note that, on a conservative stance, we have

assumed that the database contains no publicly-known

records, however, public records can be queried using

standard techniques, orthogonally to our privacy-preserving

techniques presented in the rest of the paper.

C. Private Set Intersection (PSI)

Private Set Intersection (PSI) [26] constitutes our main

building block. It allows two parties – a server and a client

– to interact on their respective input sets, such that the

client only learns the intersection of the two sets, while the

server learns nothing beyond client’s set size.

PSI with Data Transfer (PSI-DT): It involves a server,

on input a set of w items, each with associated data record,

S = {(s1, data1), · · · , (sw, dataw)}, and a client, on input

of a set of v items, C = {c1, · · · , cv}. It results in the

client outputting {(sj , dataj) ∈ S | ∃ci ∈ C s.t. ci = sj}
and the server – nothing except v. This variant is useful

whenever the server holds a set of records, rather than a

simple set of elements.

Authorized PSI-DT (APSI-DT): It ensures that client

input is authorized by a mutually trusted offline CA.

Unless it holds pertinent authorizations, the client does

not learn whether its input is in the intersection. At the

same time, the server does not learn whether client’s

input is authorized, i.e., verification of client authoriza-

tions is performed obliviously. More specifically, APSI-

DT involves a server, on input of a set of w items:

S = {(s1, data1), · · · , (sw, dataw)}, and a client, on

input of a set of v items with associated autho-

rizations (typically, in the form of digital signatures),

C = {(c1, σi) · · · , (cv, σv)}. It results in client out-

putting {(sj, dataj) ∈ S | ∃(ci, σi) ∈ C s.t. ci = sj ∧
Vrfypk(σi, ci) = 1} (where pk is CA’s public key).

We also distinguish between (A)PSI-DT protocols based on

whether or not they support pre-distribution:

(A)PSI-DT with pre-distribution: The server can “pre-

process” its input set independently from client input. This

way, the server can pre-distribute its (processed) input

before protocol execution. Both pre-processing and pre-

distribution can be done offline, once for all possible clients.

(A)PSI-DT without pre-distribution: The server cannot

pre-process and pre-distribute its input.

Note that pre-distribution precludes Server Unlinkability,

since server input is assumed to be fixed. Similarly, in

the context of authorized protocols with pre-distribution,

Forward Security cannot be guaranteed.

III. RELATED WORK

A number of cryptographic primitives provide privacy

properties resembling those listed in Section II-B. We over-

view them below.

Secure Two-Party Computation (2PC). 2PC allows two

parties, on input x and y, respectively, to privately compute

the output of a public function f over (x, y). Both parties

learn nothing beyond what can be inferred from the output

of the computation. Although one could implement PPSSI

with generic 2PC, it is usually far more efficient to have

dedicated protocols, as 2PC incurs high computational

overhead and involves several communication rounds.

Oblivious Transfer (OT). OT [42] involves a sender

holding n secret messages and a receiver willing to retrieve

the i-th among sender’s messages. It ensures that the sender

does not learn which message is retrieved, and the receiver

learns no other message. While the OT functionality some-

how resembles PPSSI requirements, note that, in PPSSI,

receiver’s inputs are query keywords, whereas, in OT, they

are indices.

Oblivious Keyword Search [40]. This primitive is akin to

a special case of PSI-DT, where Client input is a singleton

and Server input is a multi-set. We discuss how to handle

multi-sets using PSI-DT in Section V-D.

Private Information Retrieval (PIR). PIR [12] allows a

client to retrieve an item from a server database, (1) without

revealing which item it is retrieving, and (2) incurring a

communication overhead strictly lower than O(n), where

n is the database size. Observe that, in PIR, privacy

of server’s database is not protected – the client may

receive additional bits of information, besides the records

requested. Symmetric PIR (SPIR) [28] additionally offers

server privacy, thus achieving OT with communication

overhead lower than O(n). However, similar to OT, a client

of a symmetric PIR needs to input the index of the desired

item in server’s database – an unrealistic assumption for

PPSSI. An extension to keyword-based retrieval is known

as Keyword-PIR (KPIR) [11]. However, KPIR still does not

consider server privacy and it involves multiple rounds of

PIR executions.

Searchable Encryption (SE). Symmetric Searchable En-

cryption (SSE) [45], [14], [15] allows a client to store, on

an untrusted server, messages encrypted using a symmetric-

key cipher under its own secret key. Later, the client can

search for specific keywords by giving the server a trapdoor

that does not reveal keywords or plaintexts. Boneh et

al. [6] later extended SSE to the public-key setting, i.e.,

anyone can use client’s public key to encrypt and route

messages through an untrusted server (e.g., a mail server).

The client can then generate search tokens, based on its

private key, to let the server identify messages including

specific keywords. We conclude that Searchable Encryption

targets related yet different scenarios compared to PPSSI.

Privacy-Preserving Database Query (PPDQ). PPDQ

techniques can be distinguished into two kinds. The first

one is similar to SSE: the client encrypts its data, outsources

encrypted data to an untrusted service provider (while not

maintaining copies), and queries the service provider at

will. In addition to simple equality predicates supported

by SSE, solutions like [29], [31], [5] support general SQL

operations. Again, this setting is often different from PPSSI,
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attrl lth attribute in the database schema ctrj,l number of times where valj′ ,l = valj,l,∀j
′ <= j

Rj jth record in the database tagj,l tag for attrl , valj,l
valj,l value in Rj corresponding to attrl k′

j,l key used to encrypt kj

kj key used to encrypt Rj k′′
j,l key used to encrypt index j

erj encryption of Rj ekj,l encryption of key kj

tkj,l token evaluated over attrl , valj,l eindj,l encryption of index j

TABLE I: Notation.

as that data, although stored by the server, belongs to

the client; thus, there is no privacy restriction against the

client. Moreover, these solutions do not provide provably-

secure guarantees, but are based on statistical (probabilistic)

methods.

The second kind of PPDQ is closely related to private

predicate matching. Olumofin and Goldberg [41] propose

a transition from block-based PIR to SQL-enabled PIR. As

opposed to PPSSI, however, server’s database is assumed

to be public, thus, its privacy is not protected. Then,

Kantarcioĝlu and Clifton [33] consider a scenario where

client matches classification rules against server’s database.

However, they assume the client’s rule set to be fixed

in advance and known to the server. Additional work,

such as [43], [13], requires several independent, mutually-

trusted, and non-colluding parties. Murugesan et al. [37]

also allow “fuzzy” matching, yet their solution requires

a number of (expensive) cryptographic operations (i.e.,

public-key homomorphic operations) quadratic in the size

of parties’ inputs, while we aim at constructing scalable

solutions with linear complexity.

IV. A STRAWMAN APPROACH

Looking at definitions in Section II-C, it seems that

PPSSI can be realized by simply instantiating PSI-DT

protocols (or APSI-DT for authorized queries). We outline

this strawman approach below and show that it is not

secure.

For each record, consider the hash of every attribute-

value pair (attrl, valj,l) as a set element, and Rj as its

associated data. Server “set” then becomes:

S = {(H(attrl, valj,l), Rj)}1≤l≤m,1≤j≤w

Client “set” is: C = {H(attr∗i , val∗i )}1≤i≤v, i.e., elements

corresponding to the where clause in Equation 1. Option-

ally, for authorized queries, C is accompanied by signatures

σi over H(attr∗i , val∗i ), following the APSI-DT syntax.

Parties engage in an (A)PSI-DT interaction; at the end of

it, the client obtains all records matching its query.

The strawman approach faces two security issues:

Challenge 1: Multi-Sets. While most databases in-

clude duplicate values (e.g., “gender=male”), PSI-DT and

APSI-DT definitions assume that sets do not include

duplicates.3 If server set contains duplicated values, the

corresponding messages (pseudorandom function values

3Note that some PSI constructs (e.g., [35]) support multi-sets, however,
their performance is not promising as they incur quadratic computational
overhead (in the size of the sets), as opposed to more recent (A)PSI-DT
protocols with linear complexity (e.g., [32], [20], [17]). Also, they support
neither data transfer nor authorization.

computed over the duplicated values) to the client would

be identical and the client would learn all patterns and

distribution frequencies. This raises a serious concern, as

actual values can be often inferred from their frequencies.

For example, consider a large database where one attribute

reflects “employee blood type”: since blood type frequen-

cies are well-known for general population, distributions for

this attribute would essentially reveal the plaintext, similar

to deterministic encryptions.

Challenge 2: Data Pointers. To enable querying by any

attribute, each record – Rj – must be separately encrypted

m times, i.e., once for each attribute. As this would result in

high storage/bandwidth overhead, one could encrypt each

Rj with a unique symmetric key kj and then using kj

(instead of Rj) as data associated with H(attrl, valj,l).
Although this would reduce the overhead, it would trigger

another issue: in order to use the key – rather than the actual

record – as the associated “data” in the (A)PSI-DT protocol,

we would need to store a pointer to the encrypted record

alongside each H(attrl, valj,l). This would allow the client

to identify all H(attrl, valj,l) corresponding to a given

encrypted record by simply identifying all H(attrl, valj,l)
with associated data pointers equal to the given records.

Such a (potential) privacy leak would be aggravated if

combined with the previous “attack” on multi-sets: given

two encrypted records, the client could establish their

similarity based on the number of equal attributes.

Remark. We stress that the above issues do not only

apply to the naı̈ve adaptation of Private Set Intersection

techniques to the specific PPSSI setting but also to privacy-

preserving data mining [22], information sharing across

databases [1].

V. THE FIRST PPSSI APPROACH

We now present our PPSSI construction that is both se-

cure and reasonably practical. Like the strawman approach,

it relies on (A)PSI-DT. However, it addresses aforemention-

ed challenges by introducing a novel database-encryption

technique. In order to guarantee both Server Unlinkability

and Forward Security, we use (A)PSI-DT without pre-

distribution.

Our approach is illustrated in Figure 1. In step 1, the

client and the server engage in the oblivious computation

of Token function: at the end of it, the client obtains

tki = Token(ci), where ci = H(attr∗i , val∗i ). Note that

the server learns nothing about ci or tki. Token function

is computed using an (A)PSI-DT protocol, thus, different

(A)PSI-DTs instantiate it differently. We introduce it to

provide a level abstraction independent from the underlying

(A)PSI-DT instantiation.
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• Client’s input: {ci, σi}1≤i≤v , where: ci = H(attr∗i , val∗i ). σi is only used for APSI-DT protocols.
• Server’s input: {sj,l}1≤j≤w,1≤l≤m, {Rj}1≤j≤w , where: sj,l = H(attrl , valj,l)

1) Client ks
Obliviously computes:{tki←Token(ci)}∀i

+3 Server

2) Server: EDB← EncryptDatabase(Token(·), {Rj}1≤j≤w)

3) Server
EDB

// Client

4) Client: ∀1≤i≤vRi ← Lookup(tki,EDB), Output R1 ∪ · · · ∪Rv.

Fig. 1: Outline of our first PPSSI approach.

Scheme name Token definition PSI category

DT10-1 (Figure 3 of [20]) Token(c) = ([(
Qv

i=1 ci) · gRc ]/c)Rs mod p PSI-DT without pre-distribution

DT10-APSI (Figure 2 of [20]) Token(c) = ([(
Qv

i=1 σi)
2

· gRc ]e/c2)Rs mod N APSI-DT without pre-distribution

TABLE II: Token definition for (A)PSI-DT without pre-distribution (ci, σi is defined in Figure 1 and c ∈ {ci}1≤i≤v)

In step 2, the server runs EncryptDatabase proce-

dure – described in Algorithm 1 and discussed in Sec-

tion V-A – and creates the encrypted database, EDB that

is transferred to the client in step 3. Finally, in step 4, the

client runs Lookup procedure – illustrated in Algorithm

2 and discussed in Section V-B – using tki tokens over

EDB; at the end of it, the client obtains the set of records

satisfying its query.

Our protocol can be used with any (A)PSI-DT, how-

ever, we use the variants without pre-distribution, since

they provide Server Unlinkability and Forward Security.

Following a thorough experimental analysis (shown in

Appendix of [19]), we select the PSI-DT protocol from [20]

(denoted as DT10-1) and its APSI-DT counterpart from

[20] (denoted as DT10-APSI) for authorized queries. These

protocols were proven secure against HbC adversaries

[20]. However, it was later shown that, with very similar

overhead, they can be extended to achieve security against

malicious adversaries [18].

For the sake of completeness, we define Token function

for the selected (A)PSI-DT constructions in Table II. Note

that both Token definitions involve random values Rc and

Rs contributed by the client and the server respectively.

Token function can be directly evaluated by the server over

its own inputs (as in step 9 of Algorithm 1) only after step

1 of Figure 1 where necessary information regarding Rc

was sent as part of the oblivious computation protocol by

the client to the server. These random values are selected

at the beginning of and kept fixed throughout the PPSSI

protocol execution. They are chosen independently, for each

invocation, in order to guarantee Server Unlinkability and

Forward Security.

We present the complete details of Token’s oblivious

computation in Figure 2 and Figure 3. Both instantiations

incur linear computation overhead with respect to client and

server set size.

Compared to the strawman approach, we modified the

“encryption” technique: rather than (directly) using a sym-

metric-key encryption scheme, the EncryptDatabase

procedure is invoked.

A. Database Encryption with counters

• Public input: p, q
• Client’s private input: {ci}∀i

• All operations are modulo p
1) Client: PCH ←

Qv
i=1 ci, Rc

r
← Z

∗
q , X ← PCH · gRc ,

∀i, PCHi ←
PCH

ci
, Rc,i

r
← Z

∗
q , yi ← PCHi · g

Rc,i

2) Client
X,{yi}∀i

// Server

3) Server: Rs
r
← Z

∗
q , Z ← gRs ,∀i, zi ← yRs

i

4) Server
Z,{zi}∀i

// Client

5) Client: ∀i,Token(ci)← zi · ZRc · Z−Rc,i

Fig. 2: Oblivious computation of Token(·) using DT10-1.

• Public input: e, N • Client’s private input: {ci}∀i
• CA’s private input: d • All operations are modulo N
1) CA: ∀i, σi ← (ci)d

2) CA
{σi}∀i

// Client

3) Client: PCH ←
Qv

i=1 ci, PCH∗ ←
Qv

i=1 σi, Rc
r
← Zn/4,

∀i, PCH∗
i ← PCH∗/σi, yi ← (PCH∗

i )2 · gRc,i

X ← (PCH∗)2 · gRc

4) Client
X,{yi}∀i

// Server

5) Server: Rs
r
← Zn/4, Z ← ge·Rs ,∀i, zi ← ye·Rs

i

6) Server
Z,{zi}∀i

// Client

7) Client: ∀i,Token(ci)← zi · ZRc · Z−Rc,i

Fig. 3: Oblivious computation of Token(·) using DT10-APSI.

We illustrate EncryptDatabase procedure in Algo-

rithm 1. It takes as input the definition of the Token func-

tion, and server’s record set. It consists of two “phases”:

(1) Record-level and (2) Lookup-Table encryptions.

Record-level encryption is relatively trivial (lines 1–6):

first, the server shuffles record locations; then, it pads each

Rj up to a fixed maximum record size, picks a random

symmetric key kj , and encrypts Rj as erj = Enckj
(Rj).

Lookup-Table (LTable) encryption (lines 8–15) pertains

to attribute name and value pairs. It enables efficient lookup

and record decryption. In step 8, the server hashes an

attribute-value pair and uses the result as input to Token

function in step 9. In step 10, we use the concatenation of

Token output and a counter, ctrj,l, in order to compute the

tag tagj,l, later used as a lookup tag during client query.

We use ctrj,l to denote the index of duplicate value for
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Algorithm 1: EncryptDatabase Procedure.

input : Function Token(·) and record set {Rj}1≤j≤w

output: Encrypted Database EDB

1: Shuffle {Rj}1≤j≤w

2: maxlen← max length among all Rj

3: for 1 ≤ j ≤ w do

4: Pad Rj to maxlen;

5: kj
r
← {0, 1}128 ;

6: erj ← Enckj
(Rj);

7: for 1 ≤ l ≤ m do
8: hsj,l ← H(attrl , valj,l);
9: tkj,l ← Token(hsj,l);

10: tagj,l ← H1(tkj,l||ctrj,l);
11: k′

j,l ← H2(tkj,l||ctrj,l);

12: k′′
j,l ← H3(tkj,l||ctrj,l);

13: ekj,l ← Enck′
j,l

(kj);

14: eindj,l ← Enck′′
j,l

(j);

15: LTablej,l ← (tagj,l, ekj,l, eindj,l);
16: end for

17: end for
18: Shuffle LTable with respect to j and l;
19: EDB← {LTable, {erj}1≤j≤w};

Algorithm 2: Lookup Procedure.

input : Search token tk and encrypted database
EDB = {LTable, {erj}1≤j≤w}

output: Matching record set R

1: ctr← 1;
2: while ∃tagj,l ∈ LTable s.t. tagj,l = H1(tk||ctr) do

3: k′′ ← H3(tk||ctr);
4: j′ ← Deck′′(eindj,l);
5: k′ ← H2(tk||ctr);
6: k ← Deck′(ekj,l);
7: Rj ← Deck(erj′ );
8: R← R ∪ Rj ;
9: ctr← ctr + 1;

10: end while

the l-th attribute. In other words, ctrj,l is the counter of

occurrences of valj′,l = valj,l, ∀j
′ <= j. For example, the

third occurrence of value “Smith” for attribute “Last Name”

will have the counter equal to 3. The counter guarantees

that duplicate (attr, val) pairs correspond to different tags,

thus addressing Challenge 1. Next, the server computes

k′
j,l = H2(tkj,l||ctrj,l) and k′′

j,l = H3(tkj,l||ctrj,l). Note

that k′
j,l is used for encrypting symmetric key kj . Whereas,

k′′
j,l is used for encrypting the index of Rj . In step 13, the

server encrypts kj as ekj,l = Enck′
j,l

(kj). Then, the server

encrypts eindj,l = Enck′′
j,l

(j). The encryption of index

(data pointer) guarantees that the client cannot link two tags

belonging to the same record, thus addressing Challenge 2.

In step 15, the server inserts each tagj,l, ekj,l and eindj,l

into LTable, which is {tagj,l, ekj,l, eindj,l}1≤j≤w,1≤l≤m.

Next, the server shuffles LTable (step 18). The resulting

encrypted database, EDB, is composed of LTable and

{erj}
w
j=1 (step 19).

B. Lookup with counters

We now discuss Lookup procedure shown in Algorithm

2. It is used by the client to obtain the query result, i.e.,

to search EDB for all records that match client’s search

tokens.

In step 1, the client initializes a counter to 1. Next,

it searches LTable for tag tagj,l = H1(tk||counter). If

there is a match, the client attempts to recover the record

associated with tagj,l. To do so, the client needs to locate

the associated record: it computes k′′ = H3(tk||ctr) and

recovers j′ = Deck′′(eindj,l). Note that erj′ now corre-

sponds to the associated record. To decrypt erj′ , the client

first recovers the key k used to encrypt erj′ , by computing

k′ = H2(tk||ctr) and obtaining k = Deck′(ekj,l). Finally,

the client recovers Rj by decryption, i.e., Rj = Deck(erj′ ).
There are several ways for the client to store LTable.

Hash table storage is most efficient as it only requires

constant lookup time. We can also use binary search tree,

which takes sublinear lookup time, but it requires ordering

LTable first.

C. Example of Correctness

Assume that server’s database includes the attribute

“gender” with two occurrences of value “male”. In Algo-

rithm 1, the same tk (step 9) will be generated for the

two occurrences of (”gender”, ”male”). However, for the

first occurrence, tag = H1(tk||1), k′ = H2(tk||1), k′′ =
H3(tk||1) while, for the second occurrence, tag =
H1(tk||2), k′ = H2(tk||2), k′′ = H3(tk||2).

Suppose that the client searches for records matching

“gender = male”, it first derives tk (step 1 of Figure 1).

Next, it matches H1(tk||1) in LTable, derives keys k′ =
H2(tk||1), k′′ = H3(tk||1), and recovers the index in step

4 and the record in step 7 of Algorithm 2. It also looks

for H1(tk||2) and performs the same operations as before,

except that k′ = H2(tk||2), k′′ = H3(tk||2). Finally, the

client looks for H1(tk||3): since it finds no match, it

terminates.

D. Challenges Revisited

We claim that our approach addresses Challenge 1 and

2, discussed in Section IV. The intuition is as follows:

Multi-sets: The use of counters during database encryption

makes each tagj,l (resp. ekj,l, eindj,l) distinct in LTable,

thus hiding plaintext patterns.

Data Pointers: Storing eindj,l (rather than j) in LTable,

prevents the server from exposing the relationship between

an entry LTablej,l and its associated record Rj .

E. Security Analysis of First PPSSI Approach

1) Cryptographic primitive security definition: Below,

we review the standard security definitions for some cryp-

tographic primitives.

First, we define the security for a hash function Hs(·)
based on the following experiment. The experiment:

HashCollA:

1) A key s is generated by a hash key generator.

2) The adversary A is given s and outputs x, x′.

3) The output of the experiment is defined to be 1 if

and only if x 6= x′ and Hs(x) = Hs(x
′).
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Definition 1: We say that a hash function is (t, ǫ) col-

lision resistant if for any adversary A bounded by time t,
there exists a negligible parameter ǫ such that

Pr[HashCollA = 1] ≤ ǫ

Then, we define the security for a semantic encryption

scheme. The experiment: PrivEncA:

1) A outputs a pair of messages m0, m1.

2) A random bit b is chosen. Give c ← Enc(mb) to

A.

3) A may keep querying Enc(·).
4) A outputs b′.
5) The output of the experiment is defined to be 1 if

and only if b = b′.

Definition 2: We say that an encryption scheme is (t, ǫ)
secure if for any adversary A bounded by time t, there

exists a negligible parameter ǫ such that

Pr[PrivEncA = 1] ≤
1

2
+ ǫ

Last, we define the security for an unpredictable function.

The experiment: PrivTokenA:

1) A is allowed to query Token(·) for polynomial

number of times.

2) A outputs a pair (x, y) where x is not queried

before.

3) The output of the experiment is defined to be 1 if

and only if Token(x) = y.

Definition 3: We say that a Token function is (t, ǫ)
unpredictable if for any adversary A bounded by time t,
there exists a negligible parameter ǫ such that

Pr[PrivTokenA = 1] ≤ ǫ

2) Security against Honest-but-Curious/Malicious

Client: We use qi to denote the ith query of the form

(attr, val) issued by the client and use Qi to denote all

records matching query qi.

We define security against Honest-but-Curious/Malicious

client by comparing its view under real model with that

under ideal model. In the ideal model, there is a trusted third

party (TTP) serving as an honest server who, in response

to the query qi, only replies Qi.

We first consider Honest-but-Curious adversary and then

analyze malicious adversary at the end of this section. We

define a simulator SIM that attempts to simulate to a real-

model client based on output from ideal-model TTP as

follows:

Simulator SIM:

SIM is given input {q1, . . . , qn}

1) SIM picks all the secret and public parameters.

2) SIM interacts with A as a real-model server during

oblivious computation of Token (step 1 of Fig-

ure 1).

3) SIM sends {q1, . . . , qn} to the TTP and receives

{Q1, . . . , Qn}.
4) SIM runs some function on {Q1, . . . , Qn} and

outputs the result to the client.

Note that we require SIM to take {q1, . . . , qn} at once

and therefore does not handle adaptive query.

We then define an experiment for any adversary A:

The experiment SPrivC,A:

1) The adversary A outputs to the challenger a list of

queries {q1, . . . , qn}.
2) The challenger chooses a random bit b

r
← {0, 1}

and does one of the following:

a) If b = 0, then the challenger interacts with A
as a real-model server.

b) If b = 1, then the challenger interacts with A
as SIM({q1, . . . , qn}).

3) The adversary A outputs a bit b′.
4) The output of the experiment is defined to be 1 if

b′ = b, and 0 otherwise.

Definition 4: The first PPSSI approach is secure against

honest-but-curious client if, for all probabilistic polynomial-

time adversaries A, there exists a probabilistic polynomial-

time simulator SIM such that

Pr[SPrivC,A = 1] ≤
1

2
+ ǫ

This definition ensures that the client in the real model

does not get more or different information than the ideal

implementation.

Theorem 1: If the hash function H(·), H1(·), H2(·),
H3(·) are (t0, ǫ0), (t1, ǫ1), (t2, ǫ2), (t3, ǫ3) collision re-

sistant, Enc is a (tenc, ǫenc) semantic secure encryption,

and Token is a (tT , ǫT ) unpredictable function, then first

PPSSI approach is (t, ǫ)-secure against any probabilis-

tic polynomial-time honest-but-curious client where t ≤
min(t0, t1, t2, t3, tenc, tT ) − w · m · tToken − w · tenc and

ǫ = ǫ0 + ǫ1 + ǫ2 + ǫ3 + 2ǫT + ǫenc.

Proof: Our goal is to construct a simulator SIM such

that A cannot tell the difference between the view when

interacting with SIM and the view when interacting with

real-model server. Our SIM is constructed as follows:

1) SIM picks all the secret and public parameters on

behalf of a real-model server and publish all public

parameters.

2) SIM interacts with A as a real-model server during

oblivious computation of Token (step 1 of Figure 1).

3) SIM queries TTP for {q1, . . . , qn} and gets back

{Q1, . . . , Qn}.
4) Let Q denote ∪iQi. SIM generates w − |Q| random

records of the same length as any other message in

Q. Let DB′ denote the concatenation of Q and these

random records. Note that |DB′| = w.
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5) Use Algorithm 1 to encrypt DB′ and returns encrypted

database EDB
′ to the client.

6) SIM answers client’s request for

H(·), H1(·), H2(·), H3(·) as a random oracle.

We first analyze A’s view between tags in EDB and

tags in EDB
′. Note that a tag in LTable is computed

as H1(Token(H(attr, val))||ctr). The only time that A
observes difference is when (1) there exists qj , (attr, val)
such that H(qj) = H(attr, val) while qj 6= (attr, val);
(2) there exists two different pairs – (attr′, val′), (attr′′,
val′′) – such that H1(Token(H(attr′, val′))||ctr′) =
H1(Token(H(attr′′, val′′))||ctr′′); (3) A forges

Token(H(attr, val)) for certain (attr, val). This means

finding a collision in H(·) or H1(·), or breaking Token,

which happens with probability at most ǫ′ = ǫ0 + ǫ1 + ǫT

if t + w ·m · tToken + tenc is bounded by min(t0, t1, tT ).

Next we analyze A’s view between ({ekj,l,
eindj,l}1≤l≤m, erj)1≤j≤w in EDB and those in EDB

′.

For all ek, eind, er whose corresponding tags do not match

{q1, . . . , qn}, A cannot tell the difference between them

in EDB and in EDB
′ unless (1) A breaks symmetric

encryption algorithm; (2) finds collision in H2(·) or

H3(·); (3) A can forge Token(H(attr, val)) for certain

(attr, val). All these happen with probability at most

ǫ′′ = ǫenc + ǫ2 + ǫ3 + ǫT if t + w ·m · tToken + w · tenc is

bounded by min(tenc, t2, t3, tT ).

The claim follows when t + w ·m · tToken + w · tenc ≤
min(t0, t1, t2, t3, tenc, tT ).

In order to consider malicious adversary, we need to

change the simulator definition and the experiment. In SIM,

there is no input of {q1, . . . , qn} and, in SPrivC,A, there

is no step 1. Note, for the first PPSSI approach, it is

secure against malicious adversary only if [18] is used for

oblivious computation of Token.

Theorem 2: If oblivious computation of Token protocol

is secure against malicious client, the hash function H(·),
H1(·), H2(·), H3(·) are collision resistant and Enc is a

semantic secure encryption, then first PPSSI approach is

secure against any probabilistic polynomial-time malicious

client.

Proof: SIM construction is the same as that in the

proof for theorem 1 except that, in step 2, SIM extracts

all {q1, . . . , qn} from the ZKPK sent by A, which requires

rewinding of A. Then the proof follows that for Theorem 1.

3) Security against Honest-but-Curious/Malicious

Server: Given that the server gets no output from the

protocol, the definition of client’s privacy requires simply

that the server cannot distinguish between cases in which

the client has different inputs.

We define an experiment for any adversary A:

The experiment SPrivS,A:

1) The adversary A chooses its own database DB
and outputs to the challenger two list of queries –

(q0
1 , . . . , q

0
n) and (q1

1 , . . . , q1
n).

2) The challenger chooses a random bit b
r
← {0, 1}

and does one of the following:

a) If b = 0, then the challenger interacts with A
as an honest client using queries (q0

1 , . . . , q0
n).

b) If b = 1, then the challenger interacts with A
as an honest client using queries (q1

1 , . . . , q1
n).

3) The adversary A outputs a bit b′.
4) The output of the experiment is defined to be 1 if

b′ = b, and 0 otherwise.

Definition 5: The first PPSSI approach is secure against

honest-but-curious/malicious server if, for all probabilistic

polynomial-time adversaries A,

Pr[SPrivS,A = 1] ≤
1

2
+ ǫ

Theorem 3: If oblivious computation of Token function

is secure against any probabilistic polynomial-time honest-

but-curious or malicious server, the first PPSSI approach

is secure against any probabilistic polynomial-time honest-

but-curious or malicious server.

Proof: In the first PPSSI approach, the only mes-

sages A gets from the client is during oblivious Token

computation. If oblivious computation of Token function

is secure against any probabilistic polynomial-time honest-

but-curious or malicious server, the messages A receives

from the client should be hidden by randomness. Therefore

the theorem follows.

Remark:. Our protocols do not consider selective failure

(see [9]), which we leave as part of future work.

VI. THE SECOND PPSSI APPROACH FOR VERY LARGE

DATABASES

The first PPSSI approach in Section V, combines effi-

ciency with provably-secure guarantees. However, in the

context of very large databases, it faces two additional

issues:

Challenge 3: Bandwidth. If server’s database is very large

and/or communication takes place over a slow channel,

the bandwidth overhead incurred by the transfer of the

encrypted database may become prohibitive.

Challenge 4: Liability. The transfer of the encrypted

database to the client also prompts the problem of long-

term data safety and associated liability. An encryption

scheme considered strong today might gradually weaken

in the long term. While we ensure that the client cannot

decrypt records outside its query, it is not too far-fetched

to imagine that the client might decrypt the entire data-

base in reasonably near future, e.g., 10 or 20 years later.

However, data sensitivity might not dissipate over time. For

example, suppose that a low-level DoD employee is only

allowed to access unclassified data. By gaining access to the

encrypted database containing top secret data and patiently

waiting for the encryption scheme to “age”, the employee

might obtain still-classified sensitive information. Further,
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• Public input: e, N
• Client’s private input: {ci}∀i

• Server’s private input: d = e−1 mod φ(N)
where φ(N) denotes the order of Z

∗
N

1) Client: ∀i, ri
r
← Z

∗
N , yi ← (ri)e · ci mod N

2) Client
{yi}∀i

// Server

3) Server: ∀i, zi ← (yi)d mod N

4) Server
{zi}∀i

// Client

5) Client: ∀i, Token(ci)← zi · r
−1
i mod N

Fig. 6: Oblivious computation of Token(·) using DT10-2.

in several settings, parties (e.g., banks) may be prevented,

by regulation, from releasing copies of their databases (even

if encrypted).

In the rest of this section, we introduce a novel architec-

ture to address the challenges for very large databases. Our

new approach incurs very limited overhead (in terms of both

computation and communication), even when compared to

non-privacy preserving querying systems.

A. Introducing the “Isolated Box”

In order to address Challenge 3 and 4, we propose a

system architecture shown in Figure 4. It includes a new

component: “Isolated Box” (IB), a non-colluding, untrusted

party connected with both the server and the client.

The new interaction involving IB is shown in Figure 5.

During the (offline) setup phase, the server encrypts its

database, using EncryptDatabase (Algorithm 1), and

transfers the encrypted database to the IB. Server’s compu-

tation of Token functionality no longer depends on client’s

input, thus, the server can evaluate Token(·) without

involving the client.

To pose a query, the client first engages with the server

in oblivious computation of Token (online step 1). Next,

for each computed token, it runs the IBLookup procedure

(Algorithm 3) to retrieve matching records from the IB.

The Token(·) functionality is now instantiated using

(A)PSI-DT with pre-distribution. Specifically, we select the

construction from [20] (denoted as DT10-2), [32] (denoted

as JL10) and [17] (denoted as IBE-APSI). Again, our

choices are based on these protocols’ efficiency and security

models. Our experiments – in Appendix of [19] – show

that DT10-2, secure in the presence of HbC adversaries,

is the most efficient construction, while JL10 combines

reasonable efficiency with security against malicious adver-

sary. IBE-APSI is the only APSI-DT with pre-distribution,

and it is secure against HbC adversaries. For the sake of

completeness, we define Token function for the selected

(A)PSI-DT constructions in Table III. Note that d, k, z
are server’s secret parameters. Complete details, for each

instantiation of oblivious computation, are presented in

Figure 6, 7 and 8.

Trust Assumptions. The Isolated Box is assumed not to

collude with either the server or the client. (Although, we

discuss the consequences of collusion in Section VI-F.) We

remark that the use of non-colluding parties in the context

• Public input: p, q
• Client’s private input: {ci}∀i

• Server’s private input: k ∈ Z
∗
q

1) Client: ∀i, αi
r
← Z

∗
q ,

yi ← ((ci)(p−1)/q)αi mod p

2) Client
{yi}∀i

// Server

3) Server: ∀i, zi ← yk
i mod Z

∗
p

π ← ZKPK{k|{zi = yk
i }∀i}

4) Server
{zi}∀i,π

// Client

5) Client: Aborts if π doesn’t verify.

∀i,Token(ci)← z
1/αi
i mod p

Fig. 7: Oblivious computation of Token(·) using JL10.

• Public input: P, Q = P s

• Client’s private input: {ci}∀i
• CA’s private input: s.
• Server’s private input: z
1) CA: ∀i, σi ← (ci)

s

2) CA
{σi}∀i

// Client

3) Server: R← P z (Offline)

4) Server
R

// Client

5) Client: ∀i, Token(ci)← ê(R, σi)

Fig. 8: Oblivious computation of Token(·) using IBE-APSI.

of Secure Computation [46] was first suggested by [24],

and then applied in [4], [8], [21], [34], [33], [2].

While our requirement for the presence of IB might

seem like a “strong” assumption, we stress that the IB is

only trusted not to collude with other parties. It simply

stores server’s encrypted database and returns ciphertexts

matching client’s encrypted queries (i.e., tags), without

learning any information about records and queries. Also

note that, in practice, the IB can be either instantiated

as a (non-colluding) cloud server or as a piece of secure

hardware installed on server’s premises: it is only important

to ensure that the server does not learn what the IB reads

from its storage and transfers to the client.

B. Database Encryption

IB’s presence does not really affect database encryption,

i.e., Encryptdatabase procedure presented in Algori-

thm 1. It only uses a different Token(·) function. While in

the first approach (Section V) we rely on (A)PSI-DT with-

out pre-distribution (i.e., the server cannot run Token(·)
before interacting with the client), we now use (A)PSI-

DT with pre-distribution. Thus, the server can evaluate

Token(·) over its own inputs, offline, and then transfer

the encrypted database to the IB.

C. Query lookup
IBLookup procedure is used by the client to obtain

records matching client’s query. It is shown in Algorithm 3.

Similar to our first approach, the client runs the lookup

procedure after obtaining search tokens (via oblivious com-

putation of Token – online step 1 in Figure 5). For each

derived token, tki, it invokes IBLookup to retrieve (from

the IB) all records matching tki.
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Fig. 4: The introduction of the Isolated Box.

• Client’s input: {ci, σi}1≤i≤v , where: ci = H(attr∗i , val∗i )
• Server’s input: {sj,l}1≤j≤w,1≤l≤m , {Rj}1≤j≤w ,

where: sj,l = H(attrl , valj,l)

Offline:

1) Server: EDB← EncryptDatabase(Token(·), {Rj}1≤j≤w)

2) Server
EDB // IB

Online:

1) Client ks
Obliviously computes{tki←Token(ci)}∀i

+3 Server

2) Client ks
{Ri←IBLookup(tki)}∀i

+3 IB

3) Client: ∀R ∈ ∪∀iRi, output R

Fig. 5: Outline of our second PPSSI approach based on IB.

Scheme name Token definition PSI category

DT10-2 (Figure 4 of [20]) Token(c) = (c)d mod N PSI-DT with pre-distribution

JL10 (Figure 2 of [32]) Token(c) = ((c)(p−1)/q)k mod p PSI-DT with pre-distribution

IBE-APSI (Figure 5 of [17]) Token(c) = ê(Q, c)z APSI-DT with pre-distribution

TABLE III: Token for (A)PSI-DT with pre-distribution (ci = H(attr∗i , val∗i ) and c ∈ {ci}1≤i≤v)

Algorithm 3: IBLookup Procedure

Client’s input : tki

IB’s input : EDB = {LTable, {erj}1≤j≤w}
Client’s output: Matching record set R

1) Client: ctr ← 1
2) Client: tagi ← H1(tki||ctr), k′′

i ← H3(tki‖|ctr)}

3) Client
tagi,k

′′
i

// IB

4) IB: If (∃tagj,l ∈ LTablej,l s.t. tagj,l = tagi)
j′ ← Deck′′

i
(eindj,l),

ret← {ekj,l, erj′}
else

ret← ⊥

5) IB
ret // Client

6) Client: If ret = ⊥, abort
else k′

i = H2(tki||ctr), ki = Deck′
i
(ekj,l)

Ri = Decki
(erj′ ), R← R ∪Ri

ctr ← ctr + 1, Goto step 2.

We use the term transaction to denote a complete query

procedure, for each tki (from the time the first query for tki

is issued, until the last response from the IB is received).

Retrieval denotes the receipt of a single response record

during a transaction. A transaction is composed of several

retrievals between the client and the IB. The client retrieves

records one by one from the IB, by gradually incrementing

the counter ctr. In step 1, the client sets ctr to 1. In step

2, the client derives tagi and an index decryption key k′′
i

from token tki. After receiving tagi and k′′
i in step 3, the IB

searches for matching tags in the lookup table in step 4. If

there is a match, the IB recovers the index j′ by decrypting

eindj,l with k′′
i , assembles the corresponding record erj′

and the ciphertext of its decryption key ekj,l into ret
and transmits ret to the client in step 5. Otherwise, ⊥ is

transmitted. If the client receives ⊥, it aborts. Otherwise, it

decrypts ekj,l into ki with k′
i and recovers record Ri from

erj′ using ki. Then, it increments ctr and starts another

retrieval by returning to step 2.

We can use hash table to store LTable for efficiency. If

LTable is too big to be stored in hash table, we can turn

to B-tree. Creating B-tree can be done offline at the server.

D. Optimizations

Since transmission of ret may incur some delay, Algo-

rithm 3 can be sped up by pipe-lining computation of tagi

and k′′
i (step 2) in next retrieval with the transmission of

ret (step 5) in current retrieval.

Note that the computation of ekj,l and eindj,l (steps 13–

14 in Algorithm 1) can also be optimized. Since we use a

counter as input to compute k′
j,l (respectively, k′′

j,l), each

k′
j,l (respectively, k′′

j,l) is different for any j, l. Both k′
j,l

and k′′
j,l are 160-bit values (SHA-1), while kj is 128 bits

and j is clearly smaller. Hence, we can use one-time-pad

encryption (i.e. ekj,l = k′
j,l ⊕ kj and eindj,l = k′′

j,l ⊕ j)

to speed up computation. In Algorithm 3, Deck′′
i
(eindj,l)

becomes k′′
i ⊕eindj,l and Deck′

i
(ekj,l) changes to k′

i⊕ekj,l.

E. Challenges Revisited

Since we use the same encryption procedure discussed in

Section V, Challenge 1 and 2 are already addressed. Thus,

we only consider Challenge 3 and 4.

Bandwidth: Once the server transfers its database (offline)

to the IB, the latter returns to the client only records

matching its query. Therefore, bandwidth consumption is

minimized.

Liability: Since the IB holds the encrypted database, the

client only obtains the result of its queries, thus, ruling out

any potential liability issues.



11

Finally, the introduction of the IB enables Server Un-

linkability and Forward Security, despite the fact that we

use (A)PSI-DT with pre-distribution techniques. Indeed,

records not matching a query are never available to the

client, thus, it does not learn whether they have changed.

Similarly, the client cannot use future authorizations to

maliciously obtain information from previous (recorded)

interactions.

F. Discussion

Privacy Revisited. The introduction of the IB and the use

of counter mode in database encryption provide additional

privacy properties. If the client performs only one query

transaction, as in Algorithm 3, the IB can link all tag
values in step 3 to the same (attr, val) pair. This may

pose a similar risk to that discussed in the “multi-set”

challenge, with respect to the IB. However, the counter

allows the client to retrieve matching records one by one.

Therefore, the client can choose to add a random delay

between two subsequent retrievals in a single transaction.

If the distribution of additional delay is indistinguishable

from time gaps between two transactions, the IB cannot tell

the difference between two continuous retrievals within one

transaction from two distinct transactions. As a result, the

IB cannot infer whether two continuously retrieved records

share the same (attr, val) pair and the distribution of the

attribute value remains hidden.

Also note that the introduction of the IB does not

violate Client or Server Privacy. Client Privacy is preserved

because the client (obliviously) computes a token, which is

not learned by the server. The IB does not learn client’s

interests, since client’s input to the IB (tag) is statistically

indistinguishable from a random value, in the random

oracle model. Server Privacy is preserved because the client

does not gain any extra information by interacting with the

IB. Finally, the IB only holds the encrypted database and

learns no plaintext.

Removing Online Server. Although it only needs to per-

form oblivious computation of tokens, we still require the

server to be online. Inspired by [30] and [25], we can

replace the online server with a tamper-proof smartcard,

dedicated to computing Token function. The server only

needs to program its secret key into the smartcard, which

protects the key from being accessed by the client. This

way, after handing the smartcard to the client, the server

can go offline. The smartcard is assumed to enforce a limit

on the number of Token invocations.

Limitations. We acknowledge that our second PPSSI ap-

proach has some limitations. Over time, as it serves many

queries, the IB gradually learns the relationship between

tags and encrypted records through pointers associated with

each tag. This issue can be mitigated by letting the server

periodically re-encrypt the database. IB also learns database

access patterns generated by query executions. Nonetheless,

without knowing the distribution of query predicates, the

access pattern of encrypted data leaks very little information

to the IB. Next, if the server and the IB collude, Client

Privacy is lost, since the IB learns tag that the client seeks,

and the server knows the (attr, val) pair each tag is related

to. On the other hand, if the client and the IB collude,

the client can access the entire encrypted database, thus,

liability (long-term data safety) may be endangered. Last,

Server Unlinkability is protected only with respect to the

client. Server Unlinkability with respect to the IB is not

guaranteed, since the IB learns about all changes in server’s

database. Finally, note that PPSSI (with all approaches)

currently supports only equality and disjunctive queries.

Enabling conjunctive queries would require treating all

combinations of (attr, val) pairs as server’s set elements.

Thus, client’s input would become exponential in terms

of the number of attributes. This remains an interesting

challenge left as part of future work.

Dynamic Databases.. So far, the database is assumed to be

static. We emphasize that our second approach can also deal

with dynamic database with some small modifications. To

be specific, we require the server, for each different pair

of (attr, val), store the max counter, ctrmaxattr,val ←
maxattrl=attr,valj,l=val(ctrj,l). This data is proportional to

the number of different (attr, val) pairs and can be huge.

Instead of saving it on its own, the server can outsource this

data as a new encrypted database to the IB. When the server

needs to add4 a new record, it fetches the max counter

for each (attr, val) in the new record and then encrypt

it according to Algorithm 1(line 8-15) after incrementing

corresponding max counters by one. Then the server pushes

the new encrypted record and updated ctrmaxattr,val to the

IB. To delete a record, the server first needs to query and

locate the record. Then it updates its content with a special

mark ‘D’, re-encrypts the record and pushes it to the IB.

When client retrieves a deleted record, it does not process

the record but continues to retrieve the next one.

G. Security Analysis of Second PPSSI Approach

Since we do not consider collusion, the security against

Honest-but-Curious/Malicious client and server follows ex-

actly from Theorem 1, 2, 3. So we only discuss security

against Honest-but-Curious/Malicious Isolated Box.

Like Section V-E, we use qi to denote the ith query of the

form (attr, val) issued by the client and use Qi to denote

all records matching query qi.
1) Security against Honest-but-Curious/Malicious Iso-

lated Box (IB): We define security against Honest-but-

Curious/Malicious Isolated Box (IB) by comparing its view

when interacting with an honest client and an honest server

with its view when interacting with a simulator SIM.

Simulator SIM:
SIM is given |XU | for all U ⊆ {0, . . . , n} where XU =
∩i∈UQi.

1) SIM outputs an encrypted database EDB
′ to A.

2) SIM interacts with A as a client, simulating

queries {q1, . . . , qn} (even though SIM does not

know {q1, . . . , qn}).

4We only consider ’append’ operation since it would not present different
answers than ’insert’ operation to our supported database queries.
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Note, in the above definition, the only information SIM

knows is the cardinality of XU which is defined as the

intersection of a subset of query answers.

We then define an experiment for any adversary A:

The experiment SPrivIB,A:
1) The adversary A outputs to the challenger a data-

base DB and a list of queries {q1, . . . , qn}.
2) The challenger chooses a random bit b

r
← {0, 1}

and does one of the following:

a) If b = 0, then the challenger interacts with A as

an honest client and an honest server.

b) If b = 1, then the challenger computes {Q1, . . . ,
Qn} based on DB, derives all intersections XU

for all U ⊆ {1, . . . , n} and interacts with A as

SIM({|XU |}∀U⊆{1,...,n}).

3) The adversary A outputs a bit b′.
4) The output of the experiment is defined to be 1 if

b′ = b, and 0 otherwise.

Definition 6: The second PPSSI approach is secure

against honest-but-curious/malicious IB if, for all proba-

bilistic polynomial-time adversaries A, there exists a prob-

abilistic polynomial-time simulator SIM such that

Pr[SPrivIB,A = 1] ≤
1

2
+ ǫ

Theorem 4: If the hash function H(·), H1(·), H2(·),
H3(·) are (t0, ǫ0), (t1, ǫ1), (t2, ǫ2), (t3, ǫ3) collision re-

sistant, Enc is a (tenc, ǫenc) semantic secure encryption,

and Token is a (tT , ǫT ) unpredictable function, then the

second PPSSI approach is (t, ǫ)-secure against any prob-

abilistic polynomial-time honest-but-curious/malicious IB

where t ≤ min(t0, t1, t2, t3, tenc, tT )−w·m·tToken−w·tenc

and ǫ = ǫ0 + ǫ1 + ǫ2 + ǫ3 + 2ǫT + 2ǫenc.

Proof: Our goal is to construct a simulator SIM such

that A cannot tell the difference between the view when

interacting with SIM and the view when interacting with an

honest client and an honest server. Our SIM is constructed

as follows:

1) SIM creates EDB
′:

• Pick w random messages of same length as en-

crypted messages.

• Then create LTable
′ = {(tag′j,l, ek

′
j,l,

eind′j,l)}1≤j≤w,1≤l≤m where tag′j,l ∈R {0, 1}lh ,

ek′
j,l ∈R {0, 1}le , eind′j,l ∈R {0, 1}le , lh is the

output length of hash function, le is the output

length of encryption function.

2) For each query qi, SIM prepares the matching tag set

Ti = {tagi
1 . . . tagi

|Qi|
} such that | ∩i∈U Ti| = |XU |

∀U ⊆ {0, . . . , n} as follows:

• ∀U ⊆ {0, . . . , n}, compute |X̂U | where X̂U =
XU\ ∪|U ′|>|U| XU ′ , i.e., the fraction of the inter-

section determined by U without being covered in

any U ′ such that |U ′| > |U |. Given |XU |, |X̂U | can

be computed as

|X̂U | = |XU | − |X
′
U |

where |X ′
U | = |XU ∩

(∪|U ′|>|U|XU ′)| =
∑

|U ′|>|U|

|XU ∩ XU ′ | −
∑

|U ′
1
|>|U|,|U ′

2
|>|U|,U ′

1
6=U ′

2
|(XU ∩

XU ′
1
) ∩ (XU ∩ XU ′

2
)| + · · · + (−1)(

n

n)+···+( n

|U|+1) ·
| ∩|U ′|>|U| (XU ∩ XU ′)|). The above formula is

attributed to the inclusion-exclusion principle [3].

Note that |XU1
∩ · · · ∩ XUi

| = |XU1∪···∪Ui
| and

therefore we can compute |X̂U | for any U .

• Randomly pick
∑

∀U |X̂U | different tags from

LTable
′ and store them in Y . Note that∑

∀U |X̂U | = | ∪
n
j=1 Qj|. For each U , initialize Q̂U

as follows:

a) Pick |X̂U | distinct tags from Y and add them to

Q̂U .

b) Update Y ← Y \Q̂U .

• For i = 1, . . . , n, set Ti = ∪i∈U Q̂U . Note that

| ∩i∈U Ti| = |XU | due to the above construction

of Q̂U .

3) SIM plays the role of a client as follows: for the λth

query, make |Tλ| probes where θth probe is the θth

element in Tλ.

We first analyze the view of A between tags in EDB

and those in EDB
′. The distribution of tags in EDB and

those in EDB
′ is the same unless one of the following

happens: (1) there exists (attri, vali) 6= (attrj , valj) but

H(attri, vali) = H(attrj , valj); (2) H(attri, vali) 6=
H(attrj , valj) but H1(Token(H(attr′, val′))||ctr′) =
H1(Token(H(attr′′, val′′))||ctr′′); (3) A forges

Token(H(attr, val)) for certain (attr, val). This means

finding a collision in H(·) or H1(·), or breaking Token,

which happens with probability at most ǫ′ = ǫ0 + ǫ1 + ǫT

if t + w ·m · tToken + tenc is bounded by min(t0, t1, tT ).

Next we analyze A’s view between ({ekj,l,
eindj,l}1≤l≤m, erj)1≤j≤w in EDB and those in EDB

′.

The only time that A observes difference is when (1) A
breaks semantic secure encryption algorithm; (2) A finds

collision in H2(·) or H3(·) (which breaks one-time-pad

encryption); (3) A forges Token(H(attr, val)) for certain

(attr, val). All these happen with probability at most

ǫ′′ = ǫenc + ǫ2 + ǫ3 + ǫT if t + w ·m · tToken + w · tenc is

bounded by min(tenc, t2, t3, tT ).

Last we show that A cannot distinguish the way that an

honest client’s queries are answered using EDB and the

way that SIM’s queries are answered using EDB
′. For an

honest client’s query qi, there are |Qi| matches in EDB.

For the SIM’s ith query, it makes |Ti| probes (excluding

the last failed probe) and there will be |Ti| matches. Since

|Ti| = |Qi| and ∀U , | ∩i∈U Ti| = |XU | = | ∩i∈U Qi|, A
cannot distinguish erj from er′j unless A breaks semantic

secure encryption which happens with probability ǫenc if

t + w ·m · tToken + w · tenc is bounded by tenc.

Putting it all together, the second PPSSI approach

is (t, ǫ)-secure if t + w · m · tToken + w · tenc ≤
min(t0, t1, t2, t3, tenc, tT ) and ǫ = 2ǫenc + ǫ0 + ǫ1 + ǫ2 +
ǫ3 + 2ǫT
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VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our

PPSSI approaches. First, we benchmark step-by-step cost

of proposed techniques. Next, we compare our first PPSSI

approach to PIR. Finally, we build a (limited) database man-

agement system to compare our second PPSSI approach to

a non privacy-preserving MySQL database.

A. Benchmarking All PPSSI Components

The following benchmark refers to executions on an Intel

Harpertown server with Xeon E5420 CPU (2.5 GHz, 12MB

L2 Cache) and 8GB RAM inside. We build the benchmark-

ing tool based on OpenSSL library (ver.1.0.0c) [47] and

PBC library (ver.0.5.11) [36].

1) PPSSI Operations: We now evaluate the performance

of all operations involved in both of our PPSSI approaches.

Remark that we use 2048-bit modulus and records of fixed

2KB length.

Figure 9 measures the time needed to perform the obliv-

ious computation of Token function, for every possible

(A)PSI-DT instantiation. Observe that the cost always in-

creases linearly with client’s query size. As for protocols

without pre-distribution, DT10-APSI is unsurprisingly more

expensive than DT10-1. Whereas, DT10-2 and JL10 are, re-

spectively, the most and the least efficient ones of protocols

with pre-distribution.

Then, Figure 10 evaluates the performance of the Look-

up-Table encryption, performed by the server. This opera-

tion includes server’s computation of Token function over

its own input (Note that this is not oblivious computation).

Again, running time always increases linearly with the

product of the number of records (w) and the number of

attributes (m).

In Figure 11, we report the cost of the Record-level

encryption. This only depends on the number of records.

Compared to the Lookup-table encryption, the Record-level

encryption incurs a negligible overhead.

Finally, Figure 12 presents the running time of the

Lookup procedures (Algorithm 2 and Algorithm 3 with-

out consideration of communication delay). Unsurprisingly,

cost is identical for both algorithms and increases linearly

with the number of matching records (vm). This is because

we use a hash table to store all server computed tags in

LTable and matching one client tag takes only constant

time.

We conclude that, as all operations have linear complex-

ity, our approaches scale efficiently for larger databases and

query sets. All above experiments are done in small scale

because it is easy to pinpoint exact numbers in such scale.

One can easily infer results for super large parameters and

hence we omit them here.

B. First PPSSI Approach vs PIR

We now aim at comparing the efficiency of proposed first

PPSSI approach (Section V) to that of related work – SPIR.

Recall that first PPSSI approach provides very similar pri-

vacy properties of SPIR. Indeed, both PPSSI and SPIR hide
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Fig. 13: Performance comparison between the first PPSSI

approach (Section V) and GR-PIR [27].

client’s access patterns to the server and also protect privacy

of server’s data (with respect to records not matching

the queries). However, one possible criticism against our

side is that the communication overhead is linear in the

size of the database size, whereas, SPIR incurs sub-linear

communication overhead. Remark, however, that: (1) SPIR

does not support keyword search, and (2) SPIR introduces

a remarkably higher computation overhead, which ends

up “overshadowing” the advantage in the communication

complexity. To support the latter claim, we compare the

overall performance of our first PPSSI approach with that of

Gentry and Ramzan’s single-database PIR (GR-PIR) [27],

which is, to the best of our knowledge, the most efficient

single-database PIR. Specifically, GR-PIR [27], assuming

a database with n records, incurs O(k +d) communication

complexity (where k ≤ log n and d is the bit-length of each

record), and O(n) computation overhead. Also recall that,

according to [39], any single-database PIR can be extended

to SPIR/OT and we are not aware of any SPIR/OT that is

more efficient than GR-PIR.

In our comparison, we use a database with w = 1024
records and m = 5 attributes. Each record has size 2KB.

We assume the client’s query size is v = 1024 and there

will be 10 (1%) records matching the query (vm). On a

conservative stance, we choose a relatively slow connection

between the client and the server, i.e., a 10Mbps link.

Remark that we choose 2048-bit modulus and use RC4

and SHA1 as symmetric encryption and hash function,

respectively.

The result of our comparison is showed in Figure 13 and

confirms that our approach is significantly more efficient

than GR-PIR. We break down the results into client, server

and network transmission cost. Note that, for all schemes,

network cost (at the top stack in each bar) is negligible

compared to client and server cost. Also observe that GR-

PIR imposes a significant overhead on both client and

server. We do not show results for larger databases, since:

(1) both server and client computational costs will always

increase linearly for all schemes, and (2) for very large

database, we prefer the approach with the Isolated Box

(whose overall performance is evaluated next).



14

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1  2  3  4  5  6  7  8  9  10O
bl

iv
io

us
 C

om
pu

ta
tio

n 
of

 T
ok

en
 (m

s)

Client query set size (v)

DT10-1
DT10-APSI

DT10-2
JL10

IBE-APSI

Fig. 9: Token Oblivious Computation.

 0

 20

 40

 60

 80

 100

 120

 140

 1  2  3  4  5  6  7  8  9  10

Lo
ok

up
-ta

bl
e 

en
cr

yp
tio

n 
(m

s)

w * m

DT10-1
DT10-APSI

DT10-2
JL10

IBE-APSI

Fig. 10: Lookup-Table Encryption

(line 8-15 of Algorithm 1).

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 1  2  3  4  5  6  7  8  9  10

R
ec

or
d-

le
ve

l e
nc

ry
pt

io
n 

(m
s)

Server set size (w)

Record-level Encryption

Fig. 11: Record-level Encryption

(line 1-6 of Algorithm 1).

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 1  2  3  4  5  6  7  8  9  10

Lo
ok

up
 c

os
t (

m
s)

matching records

Lookup (Alg.2)
IBLookup (Alg.3)

Fig. 12: Lookup (Alg. 2) and IBLookup (Alg. 3).

C. Second PPSSI approach vs MySQL

To the best of our knowledge, there is no available

approach to PPSSI that combines efficiency with prov-

ably secure guarantees and that relies on a non-colluding,

untrusted party, such as the Isolated Box. Therefore, we

cannot compare our second PPSSI approach for very large

databases (Section VI) to any prior work. Nonetheless, we

evaluate its performance by measuring it against standard

(non privacy-preserving) MySQL.

On a conservative stance, we use MySQL with

indexing enabled on each searchable attribute. We

run the IB and the server on the same machine.

Client is connected to the server and the IB through

a 100Mbps link. The testing database has 45

searchable attributes and 1 unsearchable attribute

(type “LARGEBLOB”) used to pad each record to

a uniform size. There are, in total, 100, 000 records.

All records have the same size, which we vary during

experiments. The IB is preloaded with LTable into

memory. All results are averaged over 10 runs.

First, we compare the index lookup time, defined as the

time between SQL query issuance and the receipt of the

first response from the IB. We select a set of SQL queries

that return 0, 1, 10, 100, 1000, 10000 (±10%) responses,

respectively, and fix each record size at 500KB. Figure

14(a) shows index lookup time for our PPSSI approach

(with respect to all underlying (A)PSI-DT instantiations),

as well as MySQL, with respect to the response set size. All

proposed schemes’ cost are slightly more expensive than

MySQL and are independent of the response size.

Next, we test the impact of the response set size on the

total query time, which we define as the time between SQL

query issuance and the arrival of the last response from the

IB. Figure 14(b) shows the time for the client to complete

a query for a specific response set size divided by the time

taken by MySQL (again, with respect to all underlying

(A)PSI-DT instantiations). Results gradually converge to

1.1 for increasing response set sizes, i.e., our approach is

only 10% slower than standard MySQL. This is because

the extra delay incurred by cryptographic operations (in the

oblivious evaluation of Token) is amortized by subsequent

data lookups and decryptions. Note that we can also infer

the impact of various client query set size by multiplying

the client query set size with each single query delay.

Last, we test the impact of record size on the total query

time. We fix response set size at 100 and vary each record

size between 100KB and 100MB. Figure 14(c) shows the

ratio between our PPSSI approach and MySQL, once more

with respect to all underlying (A)PSI-DT instantiations.

Again, results gradually converge well below 1.1 with

increasing record size. This occurs because, with bigger

records, the overhead of record decryption becomes the

“bottleneck”.

VIII. CONCLUSION

In this paper, we proposed secure and efficient techniques

for Privacy-Preserving Sharing of Sensitive Information

(PPSSI), which enable a client and a server to exchange in-

formation without leaking more than the required minimum

of information. Privacy guarantees are formally defined and

achieved with provable security.

We implemented two variants of PPSSI: one is geared

for small/medium-size data sets, while the other minimizes

communication overhead, as well as liability issues, for
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Fig. 14: Performance comparison between the second PPSSI approach (Section VI) and MySQL.

very large databases. The latter introduces a non-colluding,

untrusted party – the Isolated Box – which can be imple-

mented as a piece of secure hardware.

Finally, we presented extensive experimental results,

which confirmed that our PPSSI approaches are efficient

enough to be used in real-world applications. Our future

work includes supporting versatile query predicates (e.g.,

conjunctive queries) as well as fuzzy queries over non-

normalized data.
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