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Abstract

Tensors are of great interest to many applications in engineering and in medical
imaging, but a proper analysis and visualization remains challenging. Physics-
based visualization of tensor fields has proven to show the main features of sym-
metric second-order tensor fields, while still displaying the most important in-
formation of the data, namely the main directions in medical diffusion tensor
data using texture and additional attributes using color-coding, in a continuous
representation. Nevertheless, its application and usability remains limited due
to its computational expensive and sensitive nature. We introduce a novel ap-
proach to compute a fabric-like texture pattern from tensor fields on arbitrary
non-selfintersecting surfaces that is motivated by image space line integral con-
volution (LIC). Our main focus lies on regaining three-dimensionality of the data
under user interaction, such as rotation and scaling. We employ a multi-pass ren-
dering approach to estimate proper modification of the LIC noise input texture to
support the three-dimensional perception during user interactions.
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Archimedes of Syracuse, *287 BC - †212 BC.
The greatest mathematician of his age. 1

Introduction

Visualization is not an invention of our time. Far from it! It is as old as science
itself. Even Archimedes, one of the most famous Greek mathematicians, is said
to be killed by a roman soldier in 212 AC while drawing geometric figures in the
sand. Over the centuries scientists, geographers, and engineers improved their
methods and began to draw more complex maps, astronomical charts, and data
plots. One of the famous images, visualizing multivariate data, is Minard’s map
from 1861 of Napoleon’s invasion of Russia. In the last century, Conrad Zuse
opened a totally new way to the scientific world. The Z3 was the first modern
computer intended to be used for aerodynamic calculations during World War II.
From then, the rapid development of computers took care that the number of data
that mathematical models could produce increased tremendously and the demand
for better possibilities of information perception led to a rapid development in
graphics hardware and software. So, the foundation for visualization, as own
discipline, was set in the late 1980’s. One of the pioneers was the american Yale
professor Edward Rolf Tufte. Edward Rolf Tufte wrote two books [Tuf83, Tuf90],
that firstly explained many of the visualization techniques used over centuries.

The push in the development of graphics hardware, last but not least triggered
by Hollywood, significantly discovered the potential of visualization in scientific
applications. Today, it is possible to do even complex visualizations with stan-
dard desktop computers. Engineers design and test cars, planes, or space ships in
laboratories with large projection walls, physicians visualize the universe’s largest
phenomenons like supernova explosions, chemists draw molecular structures, and
scientists are able to discover their models and data even in 3D using 3D shutter
glasses. Besides this, visualization has many medical applications. Medical re-
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searchers use visualization to discover the reasons of deceases like Altzheimer’s or
multiple sclerosis, moreover, radiologists or surgeons use modern medical imag-
ing methods, like Magnetic Resonance Imaging (MRI), to plan operations.

This diploma thesis contributes to the area of medical visualization by in-
troducing a novel method to render a fabric-like pattern on arbitrary, non-
selfintersecting surfaces using line integral convolution in image space. One of
the goals is to achieve real time user interaction while still visualizing physical-
based features of tensor fields.

First, Chapter 2 introduces the mathematical foundations, needed to get a basic
understanding of tensors, tensor fields, and their properties. Then, the magnetic
resonance imaging method, as well as diffusion tensor imaging, gets shortly de-
scribed to show where the data, we are using, comes from. To complete the intro-
ductional chapter, the subsequent sections finally describe some very commonly
used visualization methods for MRI and Diffusion Tensor Imaging (DTI) data.
After the basic theoretical background is disclosed, Chapter 3 shortly introduces
the work of other researchers and groups relating our method as well as our moti-
vation and goals, subsequently followed by a mathematically introduction of our
method in Chapter 4, with figures in each section to illustrate it. Chapter 5 then
shows our method from the implementational point of view. With Chapter 6 and
Chapter 7, this diploma thesis gets completed with results, possible applications
and a conclusion.
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F. L. Gottlob Frege, *1848 - †1925
Developed first-order predicate calculus,
which is a crucial foundation of computation
theory.

2
Background

In this chapter, we will have a look at the theoretical foundations of tensors and
second-order tensor fields. In addition to that, later required calculations like
fractional anisotropy or eigenvalue decomposition are described. Subsequent to
that the data acquisition gets described. An overview is given how the data that is
used in this thesis has been acquired.

2.1 Mathematical Foundations
In modern physics tensors play an important role. They are used to describe many
physical phenomena, like stress and strain in solid materials, or as a basic math-
ematical concept in general relativity, introduced by Einstein in 1915. Medical
imaging is using tensor fields to describe the directional diffusion behavior of wa-
ter inside the brain. In [WH06], a comprehensive overview of processing and
visualization of tensor fields is given.

In this thesis, tensor data plays a fundamental role, since our technique fo-
cuses on second-order tensor field visualization. That is why we begin with the
mathematical foundations of tensors and some of their properties.

2.1.1 Tensors

The following introduction is based on an overview given by Smirnov et
al. [Smi04]. To understand the concept of a tensor we assume an n-dimensional
space over the set of real numbers: V ⊆ Rn.

3



2.1 Mathematical Foundations

Definition 2.1 (Coordinate System) Let V be an n-dimensional subspace in Rn.
Then, a coordinate system is defined as

{xi}i=1···n.

To transform a coordinate system to another system with the same dimension
n, lets say {x̃ j} j=1···n, we have to apply the rule

x̃ j = x̃ j(x1 . . .xn). (2.1)

By applying the partial differentiation rules to Equation 2.1 it is possible to trans-
form a small displacement dxi in coordinate system xi to another coordinate sys-
tem x̃ j using

dx̃ j =
δ x̃i

δx j dx j. (2.2)

This, furthermore, can be generalized to vectors

Ãi =
δ x̃i

δx j A j (2.3)

or by using common matrix notation:

Ãi = ai jA j with transformation matrix ai j :=
δ x̃i

δx j . (2.4)

Definition 2.2 (Contravariant Vectors) Let A be a vector conforming to Equa-
tion 2.3. A is then called contravariant vector.

This transformation rule does not apply to all vectors in the space V . The
partial derivatives δ

δxi are an example for that. They transform with the rule

δ

δ x̃i =
δ

δ x̃i
δx j

δx j =
δx j

δ x̃i
δ

δx j . (2.5)

Analogous to Equation 2.3, we can now generalize this rule to vectors

Ãi =
δx j

δ x̃i A j. (2.6)
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2.1 Mathematical Foundations

order no. components common representation
0 1 single scalar value
1 3 three-dimensional vector
2 9 three-times-three matrix

Table 2.1: Exemplification of some tensor orders and their more commonly known
representation.

Definition 2.3 (Covariant Vectors) Let A be a vector conforming to Equa-
tion 2.6. A is then called covariant vector.

In Definition 2.3, covariant vectors differ to their notation to contravariant
vectors. Covariant vectors have lower indices, whereas contravariant vectors have
upper indices.

Now we have the required tools to define the tensor itself.

Definition 2.4 (Tensor) A tensor T = T j1,..., jl ,..., js
i1,...,ik,...,ir is now defined as a mathemat-

ical object with a dimension n and an order m = r + s, the sum of contravariant
and covariant indices s and r. Thereby, each index ik and jl , goes from 1 to n.

Every index of T that complies to the contravariant transformation rule
in Equation 2.3 is called contravariant index. Analog to this, every index that
complies to the rule in Equation 2.6 is called covariant index of T . Those indices
describe the type (r,s) of a tensor.

Definition 2.4 also brings some implications along. A tensor is practically
described by an array of real numbers that is indexed using m indices. As each
of these indices i, j, k, . . . is an integer number between 1 and n, a tensor is de-
termined by np real number components. As tensors are most commonly seen
as generalization of scalars, vectors, and matrices, Table 2.1 gives an overview
of some very common three-dimensional tensors and their representation in com-
monly used mathematical terms. As a special case, there are tensors whose trans-
formation matrix, from Equation 2.4, satisfies this relation with the Kronecker
delta tensor from Definition 2.5

ak
i ak

j =
δ x̃k

δxi
δ x̃k

δx j =
δxi

δx j = δi j. (2.7)
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2.1 Mathematical Foundations

Definition 2.5 (Kronecker Delta Tensor) Let δ be a tensor of second order.
Then, the Kronecker delta tensor is defined by

δi j =
δxi

δx j =

{
1 if i = j
0 else.

Definition 2.6 (Cartesian Tensor) Let T be a tensor and ai j its transformation
matrix. If Equation 2.7 is applicable to ai j, T is called cartesian tensor.

Immediately following from Definition 2.6, in a cartesian coordinate system,
the equation

δ x̃i

δx j =
δx j

δ x̃i (2.8)

applies and the transformation rules in Equation 2.3 and Equation 2.6 are, as well
as the transformation matrices, equal, thus vanishing the difference between co-
variant and contravariant indices.

2.1.2 Tensor Calculus

Now, that the tensor is defined formally, it is possible to define operations on two
tensors or tensors and scalars. Using group theory, it is possible to define a tensor
space W with the operations in Definition 2.7 over the field of real numbers, as de-
scribed in [Ibe95]. In the following definitions, we assume n to be the dimension
and m to be the order of the tensors.

Definition 2.7 (Tensor calculus) Let S and T be two tensors, both with the same
type (r,s), where m = r + s and a tensor U with an arbitrary type (u,v) and order.
Furthermore, let x be scalar. Then, the following operations are defined:

operation definition resulting type
Addition R j1... js

i1...ir = S j1... js
i1...ir +T j1... js

i1...ir (r,s)
Scalar Multiplication R j1... js

i1...ir = x ·S j1... js
i1...ir (r,s)

Dyadic Product R
j1... js, js+1... js+s′
i1...ir,ir+1...ir+r′

= S j1... js
i1...ir ⊗U l1...ls′

k1...kr′
(r+u, s+v)

6



2.1 Mathematical Foundations

Now we assume W to be the set of all tensors with arbitrary type and order,
as well as W ∗ ∈ W to be the set of all tensors with the same type. The defined
operations (addition, scalar multiplication, and dyadic product) now have the
following properties:

Addition, W ∗×W ∗→W ∗:

(f1) ∀A,B ∈W ∗ : A+B ∈W ∗ (Closure)

(f2) ∀A,B,C ∈W ∗ : A+(B+C) = (A+B)+C (Associativity)

(f3) ∀A,B ∈W ∗ : A+B = B+A (Commutativity)

(f4) ∀A ∈W ∗ : A+O = O+A = A (Identity)

(f5) ∀A ∈W ∗ : A+(−A) = (−A)+A = O (Inverse)

Scalar Multiplication, R×W →W :

(g1) ∀x,y ∈ R∧∀A ∈W : x · (y ·A) = (x · y ·A) (Associativity)

(g2) ∀x,y ∈R∧∀A,B ∈W : (x+y) ·A = x ·A+y ·A∧x · (A+B) = x ·A+
x ·B (Distributivity)

(g3) ∀A ∈W : A ·1 = 1 ·A = A (Identity)

Dyadic Product, R×W →W :

(d1) ∀x ∈ R∧∀A,B,C ∈ W : x · (A⊗B) = (x ·A)⊗B = A⊗ (x ·B)∧A⊗
(B⊗C) = (A⊗B)⊗C (Associativity)

(d2) ∀A ∈W∧∀B,C ∈W ∗ : A⊗ (B+C) = A⊗B+A⊗C (Distributivity)

Definition 2.8 (Tensor space) Let W be the set of all tensors with arbitrary type
and W ∗ ∈ W the set of all tensors with the same type. The algebraic structure
(W ,+, ·,⊗) is called tensor space over the field of real numbers, when the oper-
ations +, · and ⊗ comply to the rules (f1) to (f5), (g1) to (g3) and (d1) to (d2).

The operations and Definition 2.8 differ from vector spaces in an important point:
the addition operator is only defined over the real subset W ∗ ⊂ W . So, only the
set W ∗ builds a vector space over the field of real numbers K .

7



2.1 Mathematical Foundations

2.1.3 Second-Order Tensor Fields

In this thesis, we focus on second-order tensors only. That is why the general
tensor definition from Section 2.1.1 will be used to show some special aspects of
second-order tensors and second-order tensor fields. First, we define second-order
tensors in general and then, the special case of symmetric second-order tensors.

Definition 2.9 (Second-Order Tensor) Let T be a tensor. Then T is called sec-
ond order tensor, if it is one of either types (2,0), (1,1), or (0,2). In cartesian
space, the difference between contravariant and covariant indices disappears, so
the tensor Ti j is represented by n2 values.

Definition 2.10 (Second-Order Tensor as Matrix) Let Ti j be an arbitrary sec-
ond order tensor in an nth-dimensional cartesian space. Then, the tensor can be
interpreted as n×n-matrix with all its properties and rules.

In the following, we interpret the second-order tensors as matrices, since the
used coordinate system is irrelevant for our purposes. As Definition 2.10 implies,
we also rely on the common matrix operations and rules. One common matrix
operation we will use with second order tensors later on is matrix transponation:

A =
(
ai j
)
→ AT =

(
a ji
)

with An×n. (2.9)

With the matrix toolset, it is now possible to define several properties for second-
order tensors in a similar way they are defined for matrices.

Definition 2.11 (Second-Order Symmetric Tensor) Let Ti j be a second order
tensor. Then, it is called symmetric, if and only if Ti j = T T

i j = Tji.

As every three-times-three matrix, arbitrary second-order tensors can be seen
as the sum of a symmetric and an anti-symmetric part:

T =
1
2
(T +T T )︸ ︷︷ ︸
symmetric

+
1
2
(T −T T )︸ ︷︷ ︸

antisymmetric

. (2.10)

For an arbitrary second-order tensor T , the characteristic equation encodes its
eigenvalues, its determinant and the tensor’s trace. The characteristic equation is
then defined as

det |T −λδii|. (2.11)

8



2.1 Mathematical Foundations

The solutions of the characteristic equation are the tensor’s eigenvalues. In
second-order case, the Kronecker tensor δii equals the identity matrix of the same
dimension n as the tensor.

Definition 2.12 (Trace) Let T be a second order tensor. The trace of T then is
defined as the sum of its diagonal elements:

tr(T ) = ∑
0<i<n

Tii.

Definition 2.13 (Determinant) Let T be a second order tensor. Then the value
det(T ), or |T |, is defined by the Leibnitz formula (Leibnitz equation)

det(T ) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

Ti,σ(i)

and is called determinant of T .

Definition 2.13 uses the Leibnitz formula to define the determinant for arbi-
trary n× n-matrices, where sgn is the sign function of permutations in the per-
mutation group Sn. In our case, a fast method to calculate the determinant of
three-times-thee matrices is the rule of Sarrus. It is a special case of the Leibnitz
formula and since we assume our second order tensors to be n× n-matrices, is
defined for three-dimensional second-order tensors by

det(T ) = aei+b f g+ cdh−gec−h f a− idb. (2.12)

with T defined in matrix notation:

T =

a b c
d e f
g h i


Definition 2.14 (Eigenvalues) Let T be a second-order tensor and let e1, . . .en ∈
Rn be an orthonormal basis. Furthermore, let R be a rotation matrix. Then, T
can be written as

T = R


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

RT ,

9



2.1 Mathematical Foundations

where λ1 . . .λn are called eigenvalues. As convention the eigenvalues are sorted:
λ1 ≥ λ2 ≥ . . .≥ λn.

In cartesian case, the rotation matrix R is defined by the n unit-vectors, one for
each dimension, ei with i ∈ [1,n].

R = E = {e1,e2,e3}. (2.13)

The eigenvalues can be calculated using the characteristic polynom in Equa-
tion 2.11, from which they are the solutions. Using the eigenvalues, it is possible
to calculate every eigenvector of the tensor t.

Definition 2.15 (Eigenvector) Let T be a second order tensor of dimension n and
λ1 . . .λi . . .λn its eigenvalues. Then, the solution vectors x0 . . .xi . . .xn of dimension
n of:

(T −λiR)xi = 0

and are called eigenvectors.

In the cases, where T is a symmetric tensor of dimension n, the eigenvalues
λ1 . . .λn are real and the eigenvectors to different eigenvalues are even orthogo-
nal. Another common property of second-order tensors is positive definiteness. A
tensor is called positive definite, if all eigenvalues λ1 . . .λn are positive.

With the use of Definition 2.9, it is now possible to extend the definition of
second-order tensors to fields.

Definition 2.16 (Second-Order Tensor Field) Let S ⊆ Rn be a subset in carte-
sian space of dimension n and W 2 the set of all second-order tensors with the
same dimension. Then, the mapping

f : S→W 2

is called second-order tensor field of dimension n.

Alternatively, the definition can be modified to symmetric second-order ten-
sors and is then called symmetric second-order tensor field. If the tensors in W 2,
have real eigenvalues, which is always the case if the tensor field is symmetric,
the tensor field can also be described by n (eigen-) vector fields of dimension n
and n (eigenvalue-) scalar fields.

10



2.1 Mathematical Foundations

2.1.4 Tensor Interpolation

Since the subset S ∈ Rn may not be continuous inside some given borders, it is
necessary to think about interpolating tensors. The practical importance of tensor
interpolation is implied by the discrete nature of tensor field datasets. For scalar
fields, it is obvious to use a linear interpolation to calculate the value of every
point in a discrete field. In vector fields, component wise trilinear interpolation is
most commonly used. But it is not as obvious in second-order (and higher) tensor
fields. One possibility is to interpolate the raw data acquired directly from an MRI
scanner and therefore calculate the tensor at an arbitrary point (inside the field) by
using the interpolated raw data. The computational effort is enormous, especially
if thousands of tensors are needed in realtime, which disqualifies this method for
our approach, although the results would be the best and most accurate.

Since many approaches to visualize tensor fields, do not rely on the tensor
directly, but on some derived quantity, like eigenvalues, eigenvectors, or some
anisotropy measures like those in Section 2.1.5, it suggests itself to directly in-
terpolate these quantities. This reduces the interpolation problem to interpolation
of scalar- or vector fields. However, this could lead to several problems. Assume
two adjacent points p1 and p2 in the discrete tensor field f . Furthermore assume,
that f is a diffusion tensor field, which means the eigenvectors are orientationless.
If two eigenvectors, one at each point pi, have contrary orientations, the inter-
polation between these points produces eigenvectors, that are not equal to these
eigenvectors, that would be interpolated if the orientation in p1 and p2 is the same
(apart from orientation difference). This problem gets illustrated in Figure 2.1,
where the two vectors v1 and v2 get interpolated while ignoring their different ori-
entation. An interpolation without taking care of the vector’s orientation, causes a
rotation of the vectors, which also could lead to zero vectors in the middle of the
interpolation domain due to numerical instabilities.

Another obvious problem is, that the linear interpolation of two unit vectors is
not a unit vector anymore. Interpolated eigenvectors would leave the vectorspace
of unit vectors. Kindlmann et al. [KWH00] introduced a scheme for interpolating
eigenvalues and eigenvectors in three dimensions directly by using their corre-
spondence. The correspondence in [KWH00] is defined by the sorted eigenvalues
and the pairs of eigenvalues (λ1,λ2) and (λ2,λ3). This correspondence can then
also be applied to eigenvectors. Kindlmann et al. also states, that other, more
complex, schemes for computing correspondence are possible to avoid problems,
for example with critical points.

In our case, it is sophisticated to use component wise interpolation of ten-
sors. Since the interpolation coefficients are independent from the tensor indices,
the interpolation of a three-dimensional, second-order tensor in cartesian space
(no difference between covariant and contravariant indices) can now be written
as the linear combination of the edge tensors of the surrounding volume element.

11



2.1 Mathematical Foundations
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Figure 2.1: Naive interpolation of two vectors v1,v2 (blue) with different orientations.
The green vectors are the correctly interpolated vectors if v2’s orientation would be pos-
itive just as the orientation of v1. The red vectors are the wrongly interpolated vectors if
v2’s orientation is different from v1’s.

Second-order tensors are closed under linear combination and in special, linear
combination of symmetric tensors remains a symmetric tensor. The addition and
scalar multiplication rules from Definition 2.1.2 can be used to proof it. Defini-
tion 2.17 shows interpolation of a tensor T on the plane of a triangle with the edge
points (p1, p2, p3) and the corresponding tensors.

Definition 2.17 (trilinear interpolation on triangle plane) Let β1...3 ∈ [0,1] be
the barycentric coordinates of a point p inside a triangle in three dimensions
and T 1, T 2 and T 3 the corresponding three-dimensional second-order tensors at
the triangles edges. The interpolated tensor T at point p is then componentwise
defined by:

Ti j =
∑0<k<3 βkT k

i j

∑0<k<3 βk

This definition can easily be extended to more complex grid structures, by
calculating barycentric coordinates for a point p inside the volume element.

2.1.5 Diffusion Tensors

To complete this chapter, we give an overview to diffusion tensors and their in-
terpretation and characteristics. In [HJ05], a more detailed overview to diffusion
tensor imaging is given. It is also used as foundation of this section, but we limit
ourselves to some basics of diffusion tensors and diffusion tensor imaging.

In medical visualization, second-order diffusion tensor fields played and play
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an important role. Several methods have been introduced to visualize second order
diffusion tensor fields and many tensor quantities where introduced in the past.
First we define the diffusion tensor and its properties distincting it from the general
tensor.

Definition 2.18 (Diffusion tensor) A diffusion tensor is defined using the three-
times-three matrix notation as

D =

Dxx Dxy Dxz
Dyx Dyy Dyz
Dzx Dzy Dzz



As can be seen in Definition 2.18, the diffusion tensors D are symmetric and
therefore they have three positive real eigenvalues λ1, λ2, and λ3. Its positive
definiteness ensures that there are three eigenvectors (except it is a critical point)
vλ1 , vλ2 , and vλ3 associated with the eigenvalues. These eigenvectors are, since the
diffusion tensor field is in cartesian space, orthogonal to each other, which makes
their pairwise inner product zero:

< vλ1,vλ2 >=< vλ2,vλ3 >=< vλ1,vλ3 >= 0 (2.14)

vλ1× vλ2 = vλ3. (2.15)

In practice, this is a great advantage and can be used to reduce calculation effort.
Another feature is that they are orientationless, which means the eigenvectors just
have an absolute value and direction but no orientation. This can cause problems,
for example during interpolation which is handled in Section 2.1.4.

With all euphemism about diffusion tensors, there is something to take care
about: critical points.

Definition 2.19 (critical point) Let D be a diffusion tensor with two equal eigen-
values λi and λ j (i 6= j). Then D is called critical point.

In other words, at these points, at least one of the anisotropy measures cl or
cp becomes zero. The eigenvectors for those equal eigenvalues are therefore not
uniquely defined at such a point.

The diffusion tensor can now be interpreted as ellipsoid describing the shape
to which water diffuses from a given point in a given time. The eigenvectors of
a diffusion tensor D are the spanning radii of this ellipsoid. This is also one of
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(a) Isotropy (b) Linear anisotropy (c) Planar anisotropy

Figure 2.2: Diffusion tensor shapes illustrating ellipsoidal interpretation of diffusion
tensors

the foundations on which the method in this thesis is based on. The eigenvec-
tors describe the main diffusion directions but not their orientation, since they are
orientationless. Figure 2.2 illustrates this interpretation.

The ellipsoidal interpretation leads to a characterization of a tensor inside
some kind of a space of shapes, defined by three barycentric coordinates, each
representing one distinct kind of ellipsoid shape. Westin et al. [WPG+97] intro-
duced such an intuitive domain that spans all possible shapes of tensors using
geometric anisotropy metrics

cl =
λ1−λ2

λ1 +λ2 +λ3
,

cp =
2(λ2−λ3)

λ1 +λ2 +λ3
, and

cs =
3λ3

λ1 +λ2 +λ3
.

(2.16)

Assuming the eigenvalues are sorted, this defines a triangular domain with the
barycentric coordinates cl,cp,cs defining linear, planar, and spherical certainity.

As a direct tensor quantity, the apparent diffusion coefficient uses the diffusion
tensor, unlike the shape domain, to describe the diffusion along a given direction.

Definition 2.20 (Apparent diffusion coefficient (ADC)) Let D be a diffusion
tensor and v be a normalized direction vector. Then, the apparent diffusion coef-
ficient (ADC) along v for D is defined as:

av = vT Dv

Basser et al. [BP96] introduced several rotationally invariant anisotropy met-
rics like the relative anisotropy or the fractional anisotropy. It measures the degree
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of anisotropy in a given voxel, whereas mean diffusivity MD(D) = trace(D)
3 is a

measure of total diffusion within a voxel.

Definition 2.21 (Fractional Anisotropy) Let D be a diffusion tensor, MD its
mean diffusivity, and λ1,λ2,λ3 its eigenvalues. Then, the scalar function defined
by

FA(D) =

√
3
2

√
∑i(λi−MD(D))2

∑i λi
∈ [0,1]

is called fractional anisotropy.

A value of 0 is the perfect isotropic diffusion, whereas a value of 1 represents
the (hypothetical) case of an infinite cylinder. As FA is calculated using only one
tensor, it is prone to noise conditions. The main difference in application of mean
diffusivity and fractional anisotropy directly results from the following. The mean
diffusivity MD can be used to distinguish between brain tissue and its surrounding
fluid, the cerebrospinal fluid, where high diffusion leads to a high MD. The FA
can be used where the mean diffusivity is not able to distinguish different types of
brain tissue; a high FA, for example, often indicates white matter tissue.

As we will see later in Section 2.3, most diffusion tensor field visualization
methods use combinations of scalar measures, like those above and several vector
fields (like eigenvectors) derived from the tensor field to show the structure or
special features of tensor fields.
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Figure 2.3: Nuclei in a homogeneous magnetic field. Some of the protons are aligned
parallel to field lines and some are aligned anti-parallel.

2.2 Data Acquisition
In the previous section, diffusion tensors and tensor fields have been introduced.
But how are these fields created? In this section we will have a look at the basic
ideas behind diffusion tensor data and how it can be processed to extract interest-
ing regions.

2.2.1 Magnetic Resonance Imaging

In this chapter, we overview the method of magnetic resonance imaging. We
abstain all the details of MRI, not necessarily needed to get a basic understanding
of this method, since it would require a deep knowledge of quantum physics and
field theory. In [Nes09] such a simplified overview is given, which, at the same
time, is the base of this section together with Preim and Bartz [PB07].

In magnetic resonance imaging (MRI) the properties of hydrogen nuclei in
strong magnetic fields are exploited. Protons and neutrons have a natural spin
which gives the nucleus a magnetic moment. These small dipole magnets can
be aligned either parallel or anti-parallel to a strong homogeneous magnetic field.
Protons aligned anti-parallel and parallel cancel each other but a slight excess
of protons align parallel to the field which generates a measurable magnetiza-
tion. Figure 2.3 illustrates this. A complete explanation of why some protons align
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Figure 2.4: Illustration of a nucleon rotating around its own magnetic axe, while a
Larmor frequency field is applied, which causes the nucleon to spiral down to the XY-
plane.

against and some parallel the magnetic field can only be done by using quantum
mechanics. Here it suffices to say that the alignment parallel the magnetic field is
the lower energetic state. The larger the external field, the larger the difference in
energy levels and the larger the excess number of protons aligned parallel to the
field. That is also the reason high field scanners have a better signal/noise ratio.

To measure the magnetization, a second, perpendicular magnetic field must be
applied. If the field has a special frequency, the Larmor frequency, which is the
resonance frequency of the protons, the protons absorb a part of the fields energy
and enter a higher quantum energy level and begin to spiral into the XY-Plane
(assuming the initial magnet field to be along the Z-Axis) as shown in Figure 2.4.
This precession is in sync for all protons; they are in phase.

After releasing the field, basically three things happen. First, the absorbed
energy gets retransmitted as RF waves, since rotating magnetic fields produce
electromagnetic radiation, which induces electrical energy in nearby coils. This
so called NMR signal is proportional to the proton density, which is actually the
volumetric information.

While radiating RF waves, the protons return to the lower quantum energy
level and, therefore, begin to realign with the initial Z-Axis aligned magnetic field,
at the expense of the XY component. Since not all the prior absorbed energy is
emitted as RF signal, some energy is heating up the surrounding tissue, which
is called lattice. This spin-lattice relaxation can be described by an exponential
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(a) T1 (b) T2

Figure 2.5: The gray values in these MRI images, relate to the T1 (left) and T2 (right)
relaxation times. It is easy to distinguish between cerebrospinal fluid, gray, and white
matter. For example, in the T1 image on the left, corpus callosum is nearly white whereas
it is dark in the T2 image. Images by courtesy of Mario Hlawitschka.

curve and the time t, where 63.2% of the original magnetization is restored, is
called T1.

The third thing to happen after removing the RF field is called spin-spin re-
laxation. Since the spinning protons create magnetic fields, neighboring protons
begin to influence each others, while de-phasing. These random, local interactions
cause a cumulative de-phasing across the protons and therefore resulting in a loss
of the signal. This loss of signal can be described by an exponential curve, just
as T1. Analogous to T1, T2 is defined as the time t where a decay of 63.2% in
signal amplitude is reached. Both, spin-lattice relaxation and spin-spin relaxation
are called free induction decay (FID).

The times T1 and T2 can now directly be used to distinguish tissue, since
water has a long T1 and T2 relaxation time, tissue with a high water portions has
higher relaxation times than other tissue types.

The method described above is not quite usable without spatial information.
A MRI scanner is able to address volume elements using two additional gradi-
ent magnetic fields. During the RF field pulse, a gradient magnetic field is ap-
plied to select a slice in Z direction of the scanned volume. This guarantees,
that only one slice of protons suffices the Larmor frequency of the RF field. A
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second gradient field applied during de-phasing encodes XY information in the
frequency and phase of the signal, allowing it to be decoded using Fourier trans-
formation [LOPR97, CJS93]. In Figure 2.5 a T1 and a T2 image of a human
brain dataset is shown for comparison. The method can be modified using several
protocols, like EPI often used for DTI. These protocols describe various RF pulse
sequences and measurement methods to achieve different images, emphasising
several structures. In [PB07] a more detailed overview of different protocols and
T1/T2 weighting modifications is given.

2.2.2 Diffusion Tensor Imaging

After introducing MRI, we now shortly introduce diffusion tensor MRI. Diffusion
tensor imaging, abbreviated DTI, is a often used modality of MRI, besides fMRI.
In contrast to functional MRI (fMRI), which measures changes in blood flow and
oxygen metabolism during neural activity, DTI detects water diffusion and re-
presents it in a diffusion tensor, as described in Section 2.1.5. Therefore it is an
generalization of diffusion-weighted MRI, which detects the amount of diffusion
in a volume.

To measure nuclei motion, instead of density as in standard MRI, another gra-
dient magnetic field gets applied. Initially introduced by Basser et al. [BML94],
the idea behind this additional gradient is similar to the fields used in Section 2.2.1
to select volumes in the scanning area. The MRI scanner applies this field in mul-
tiple directions one after one to only address nuclei moving along a certain direc-
tion. The number of moving nuclei along these directions and the overall number
of nuclei specifies a diffusion profile, which is used to calculate a symmetric,
three-dimensional second-order tensor, the diffusion tensor D.

The data generated by DT-MRI scanners is challenging in processing and vi-
sualization. The spatial resolution is lower than in standard MRI and the artifacts,
already known from MRI, can get even worse due to the longer scanning time ra-
mifications (like movement of or in the scanned object). Diffusion tensor MRI is
also not able to measure very small fibers, due to its limited resolution, as well as
crossing fiber paths. To detect crossing or bifurcating fibers, another method like
HARDI (High Angular Resolution Diffusion Imaging), is needed, which is able
to measure the diffusion in an volume element from more angles than DT-MRI
can do.

In spite of its problems, DTI finds many applications. In neurology, diffu-
sion tensor imaging enables scientists and radiologists to find connection paths
(fiber tracts) in the brain’s white matter between functional areas in the gray
matter, or diagnose their absence and therefore neurodegenerative deceases like
Alzheimer’s. So, DTI is useful to characterize water diffusion anisotropy and dif-
fusion directions in certain tissues, which allows reconstruction of neurological
structures and their connection paths inside the brain [ZB02]. These connection
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paths, or fiber tracts, coincide with the direction of highest diffusion. This trac-
tography methods are not limited to structures in the brain. It is also possible
to extend these methods to find muscle fibers in the heart using diffusion tensor
MRI [ZB03].

In the next sections we will introduce some common methods for process-
ing and visualizing diffusion tensor fields. For further details on diffusion tensor
imaging, Bartz et al. [PB07] gave a comprehensive overview.
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2.3 MRI and DT-MRI Visualization Methods
In the previous sections, the basic mathematical foundations and data sources got
described, we now take a short look at some common and nearly omnipresent
tensor field visualization techniques.

2.3.1 Color Mapping

Color mapping is a famous visualization method, not limited to medical visualiza-
tion. It is a general-purpose technique, able to visualize all kinds of data for which
a transfer function is available, mapping the input data to a vector in an arbitrary
color space. We already have seen color mapping in action: in Figure 2.5, the T1
and T2 relaxation times during magnetic resonance imaging got directly mapped
to gray values representing them. These colormaps are mapping a scalar value to
a two-dimensional, arbitrary slice in the dataset. Of course color mapping is not
limited to this two dimensional case. Color mapping can be applied to slices in
datasets, glyph visualizations or complex three-dimensional structures. In general
color mapping is a method to map a nth-order tensor at every point p in a space
S ∈ Rm,m ∈ {1,2,3, . . .} spanning the data field to an arbitrary color space using
a transfer function appropriate for the n-dimensional value. An important require-
ment for colormaps is to have similar colors for similar, connected areas, since
areas with similar colors are interpreted as being connected by the human visual
system.

Definition 2.22 (Color mapping) Let S⊆Rm be an m- dimensional Space, most
commonly m ∈ {2,3} and let C be an arbitrary color space. Then, a function

cp : W n→C

is called colormap or transfer function.

Definition 2.22 can be interpreted as a function that maps a tensor to a color.
In the case of diffusion tensor images, there are many color mappings available.
We will mention only the most commonly used. In Section 2.1.5 some metrics
have been introduced for second-order tensors. This leads to the first application,
the color coding of anisotropy and diffusion metrics like

cFA
p (T ) = FA(T ) · (1,1,1),

cMD
p (T ) = MD(T ) · (1,1,1), and

cλ
p(T ) = (λ1,λ2,λ3)

(2.17)
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(a) cMD
p (b) cλ

p

(c) cFA
p (d) c

FA·vλi
p

Figure 2.6: Example colormaps showing a slice of a human brain DTI dataset. In these
images, mean diffusivity is used to clip noise outside the cranium. As described above,
each colormap emphasises several parts in the dataset.

to mention only some of the possibilities. Note that here, only the RGB color
space is used. Another widely used application of color mapping is to use di-
rectional information extracted from tensors to color each point. Like the color
mappings above, the directional information, the eigenvectors need to be extracted
from the tensor, since the symmetric tensor’s six values can not be mapped to color
directly. A first naive approach is to directly map the eigenvectors of T to a color
value as in

c
vλi
p (T ) =

|vλi|
‖vλi‖

. (2.18)
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This can now be scaled using, for example, fractional anisotropy, to filter out
directional information in isotropic regions, where it is useless:

c
FA·vλi
p (T ) =

|vλi|
‖vλi‖

·FA(T ). (2.19)

Not explicitly mentioned in the equations above, it is also useful to threshold mean
diffusivity or the fractional anisotropy, to blend out several areas not interesting,
similar to the effect reached with scaling by FA as in Equation 2.19.

In Figure 2.6, several colormaps are compared. Mean diffusivity is used to
clip areas not inside the cranium. Figure 2.6(d) shows one of the most common
colormaps, which is also used in our method since it helps to find areas of similar
diffusion direction.

We leave this topic now since many more mappings have been introduced,
which are not needed in our method. For example, the simple linear mapping
in RGB space can be replaced by other variants, like cylindric colormaps or just
simple grayscale mappings.

2.3.2 Tensor Glyphs

Colormaps have a limitation, tensor glyphs do not have: It is limited to display
three distinct metrics at max or one direction for each point. Glyphs are able to fill
this gap. Glyphs are objects at every data point in space representing scalar, vecto-
rial, or tensorial information. In the case of diffusion tensor imaging the informa-
tion to display are the eigenvalues and eigenvectors, as well as the anisotropy or
diffusivity metrics in a glyphs color (see Section 2.3.1). In DTI, a glyph’s direc-
tional transformation is then defined by the eigenvectors, representing the major,
medium, and minor diffusion directions and the glyph is scaled by the eigenvalues
λ1,λ2, and λ3.

Definition 2.23 (Tensor glyph) Let G be a glyph geometry and R be a rotation
matrix. Then, G can be transformed to a tensor glyph geometry GT by using

GT = R−1

λ1 0 0
0 λ2 0
0 0 λ3

RG,

which uses the tensors eigenvectors to span an orthogonal coordinate system.

Although glyphs may be (geometrically) defined in any possible way, Kindl-
mann [Kin04b] mentioned some criteria glyphs should match to:
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(a) Hedgehog (b) Cuboid

(c) Ellipsoid (d) Superquadrics

Figure 2.7: Different kinds of glyphs in a small part of a slice in a human brain DTI
dataset. Colorization is based on the color mapping function in Equation 2.19. Hedgehog
glyphs are nearly unusable for humans to recognize tensor field structures. The color
coded glyphs offer the possibility to find areas of similar diffusion directions, although
they may be hard to distinguish in their shape.

(g1) Continuity. Minimal changes of neighboring tensors should not lead
to discontinuities in neighboring tensor glyph geometry.

(g2) Uniqueness. The mapping from a tensor shape to a glyph geometry
has to be unique.

(g3) Unambiguity. Tensor geometry needs to be unambiguous and recog-
nizable after projection to image space, regardless of viewing direc-
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tion.

Many glyph geometries have been explored, but many of them collide with
at least one of the above criteria. So, for example using boxes, which represent
the diffusion directions, matches (g1) and (g2), but boxes are not distinguishable
from every view direction. Using ellipsoids suffers the same problem as cuboids
but match the tensor interpretation very well. A solution that meets all the crite-
ria and therefore maps the barycentric tensor shape space spanned by cl,cp, and
cs from Equation 2.16 very well, besides being distinguishable from every view
direction, are superquadrics. Superquadrics where introduced by A. H. Barr in
1981 [Bar81] and suggested for visualizing DTI data by Kindlmann [Kin04a] in
2004. Since superquadrics are implicit surfaces, triangulation of thousands of su-
perquadrics is a challenging task, even for modern CPU and GPU. Hlawitschka
et al. [HES08] introduced a fast, GPU based raytracing method, which allows
rendering of thousands of superquadric glyphs in realtime, making superquadric
glyphs very usable in interactive exploration of large DTI datasets. In Figure 2.7,
superquadrics are compared to ellipsoids, cuboid glyphs, and hedgehog glyphs,
which are arrays representing the scaled eigendirections.

2.3.3 Isosurfaces

An isosurface is a surface connecting points of similar properties in space. It is
the higher-dimensional correspondent to isolines in two-dimensional space, where
points with an equal, fixed isovalue get connected.

Mathematically, it can be described as implicit function over an n-dimensional
scalar field.

Definition 2.24 (Isosurface) Let ϕ : S→ R be a scalar field in an n-dimensional
cartesian space S⊆ Rn. Then, the set

Sc = {p ∈ Rn|ϕ(v) = c}

is called isosurface with an isovalue c. As implicit function, an isosurface is
defined as the solutions of

ϕ(p)− c = 0, with p ∈ S

The implicit character of isosurfaces and the discrete nature of the underlaying
scalar field requires complex methods to triangulate them. The famous marching
cubes technique to triangulate isosurfaces was introduced 1987 by Lorensen et
al. [LC87]. The basic idea behind marching cubes is, as the name already implies,
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(a) T2 dataset with isovalue 0.72 (b) FA of DTI dataset at isovalue 0.7

Figure 2.8: Two isosurfaces triangulated using marching cubes, one using a T2 dataset
(left) and another using the fractional anisotropy (right) from a second-order tensor field
as the isosurface’s scalar property. The dataset in image (b) will be used for demonstra-
tion of our method.

to build the isosurface cube by cube, which makes it a classic divide and conquer
approach. In a DTI dataset, the marching cubes algorithm interpolates values
inside a cube using trilinear interpolation and on the cube edges using linear in-
terpolation. This causes the isosurface to cut each edge at most one times. The
exact values at each corner are not needed. For each cube corner it is just stored
whether the value is larger or lower. This information and the corner number is
used to make a table lookup, storing each possible upper/lower configuration in a
cube. In addition to this, there is also an edge table, containing a triangulation for
each possible configuration.

The standard marching cubes algorithm suffers an ambiguity during corner
based table lookup. In a cube, where each cube corner is in inverse state to
its neighboring corners (positive/negative alternation), where it is not decidable
whether to connect the positive or negative corners. Several approaches where
explored to improve the algorithm and solve this problem [Dü88, NH91]. Besides
approaches to solve ambiguity problems of marching cubes, there where also sev-
eral speed improvements explored. So it is possible to divide the data volume
using octrees [WVG92] or span spaces [LSJ96], assigning each cube a minimum
and maximum to decide whether to take a cell into account before touching the
cell.

For a more complete overview to isosurfaces, it is advised to read the corre-
sponding chapter in [HJ05]. We close this section with an image of an isosurface
of a human brain in Figure 2.8.
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Figure 2.9: Schematic illustration of the general idea behind direct volume rendering in
discrete case. A ray S is sent through the volume and crosses the media, bordered by the
blue oval. The sampling density described by ∆s mainly depends on the used interpolation
and lighting model. The sampling theorem thereby sets the minimal sampling frequency.

2.3.4 Direct Volume Rendering

In the previous section, isosurfaces where introduced, which belongs to a class of
techniques called indirect volume rendering. In contrast to direct volume render-
ing, indirect volume rendering creates intermediate representation of the volume
data and renders it.

In the 1980’s several method where introduced to avoid triangulation of
clouds, dusty surfaces, or other density based volumes. These methods,
namely [Bli82, KVH84], adopted the idea of ray-tracing to visualize volumetric
data and therefore build the foundation of direct volume rendering. It is assumed,
that the volume to be rendered is filled with a media, whose optical properties
are defined by the scalar values inside the volume. To reach maximum flexibility,
the mapping from a value at a given point to a color can be done using transfer
functions, similar to those described in Section 2.3.1. This allows emphasizing
different parts of the volume through varying the emission and absorption prop-
erties of a certain structure. For diffusion tensor images, anisotropy measures
have proven to be appropriate [KWH00] as scalar property to be used in transfer
function definition and, therefore, for color and opacity.

As in ray-tracing, a ray gets send through the volume for each pixel of the
viewport, but the final color is not determined by the first hit of the ray with an
object or maybe after several reflections. The final color on the viewport is defined
by composition of the color from many sample points along the ray, whereas each
sample point is classified using the transfer function. In addition to the transfer
function, an opacity transfer function may be specified, to manipulate attenua-
tion/transparency at each sample point. The contribution to the final illumination
at each sample finally depends on the illumination model, normally Phong, and
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(a) Transfer function (b) Volume rendering

Figure 2.10: A volume rendering (right) of a T2 MRI dataset. The transfer function
(left) colors the brain matter in gray while also emphasizing the corpus callosum.

the absorption/emission properties at this point.
The direct volume rendering method can be described mathematically and

illustrative as in Figure 2.9.

Definition 2.25 (discrete volume rendering equation) Let ∆s be the sampling
step size and let the ray be defined as S = k ·∆s with k = 0 . . .n− 1. Then, the
intensity I(S) can be calculated by combining every contribution Q, which is de-
fined by the transfer function and the transparency t at each sampling point k:

I(S) = I0

n−1

∏
k=0

tk +
n−1

∑
k=0

Q(k ·∆s) ·∆s
n−1

∏
j=k+1

t j.

The volume rendering equation in Definition 2.25 mathematically specifies the
direct volume rendering procedure, but lets much freedom to how it is evaluated.
Many direct volume rendering algorithms got introduced. In general, they can be
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classified in image-order, object-order, and hybrid methods. Object order meth-
ods like splatting [Wes91] map the volume elements to the image plane, whereas
image-order methods, as raycasting, map pixel-wise. Splatting does not use rays
but uses a convolution mask (splat) on each volume element to reconstruct the
volume on the image plane. Since the pure raycasting procedure suffers several
performance problems, the hybrid method shear warp [LL94] was introduced in
1994, where all slices in the volume get sheared (object-space) and the final im-
age gets warped to have the same result as an arbitrary orthographic projection
but with rays parallel to one axis.

Of course, there are many more approaches for direct volume rendering,
which would exceed this thesis, so we refer to [PB07] for a more comprehensive
overview.

We close this section with Figure 2.10, showing a direct volume rendered T2
dataset and its corresponding transfer function.
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Related Work, the Motivation,
and the Goals

In this chapter, we want to frame the scope of this thesis, thus distinguishing the
newly elaborated method from other approaches. At first, we give an overview
over the current work directly related to our approach.

3.1 Related Work
Hotz et al. [HFH+04] introduced Physically Based Methods (PBM) for tensor
field visualization in 2004 as a means to visualize stress and strain tensors arising
in geomechanics. A positive definite metric that has the same topological structure
as the tensor field, is defined and visualized using a texture-based approach resem-
bling Line Integral Convolution (LIC). Besides other information, eigenvalues of
the metric can then be encoded by free parameters of the texture definition, such
as the remaining color space. Whereas the method’s implementation for parame-
terizable surfaces topologically equivalent to discs or spheres is straightforward,
implementations for arbitrary surfaces remains computationally challenging.

In 2009, Hotz et al. [HFHJ09] enhanced their approach to isosurfaces in three-
dimensional tensor fields. A three-dimensional noise texture is computed in the
data set and a convolution is performed along integral lines tangential to the eigen-
vector field.

LIC has been used in vector fields to imitate Schlieren patterns on surfaces,
that are generated in experiments, where a thin film of oil is applied to surfaces,
which show patterns along the air flow. In vector field visualization, image space
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LIC is a method to compute Schlieren-like textures [vW02, vW03, LJH03, GL05]
in image space, intended for large and non-parameterized geometries. Besides
the non-trivial application of image space LIC to PBM, it has certain drawbacks.
Mainly, due to the noise pattern being defined in image space, it does not trans-
late the same way the surface moves and, therefore, when interacting with the
data, the three-dimensional impression is lost. A simple method proposed to cir-
cumvent this problem is animating the texture pattern by applying randomized
trigonometric functions to the input noise. Weiskopf and Ertl [WE04] solved this
problem for vector field visualization by generating a three-dimensional texture,
that is scaled appropriately in physical space.

3.2 Motivation
The methods mentioned above cover two types of visualization: image space
based LIC for vector fields and physically based tensor field visualization
for second-order tensor fields in geomechanics. The method from Hotz et
al. [HFH+04, HFHJ09] is able to visualize physical properties of tensor fields.
But the method suffers generality. It is designed for geomechanics and is not ca-
pable to offer realtime user interaction. In addition to that, it is limited to simple
geometry. A great advantage of this approach is the capability to show eigendi-
rections together with eigenvalues; i.e. by varying point density in the initial noise
texture.

The image space based approach to open large and complex geometry to clas-
sical vector field LIC in realtime, on the other hand, offers enough flexibility to
adopt this method to many problems, that can be described using vector fields.
But it is not able to show physical properties of tensor fields, simply by using an
eigendirection of the field.

Our novel approach is motivated by combining the advantages of both men-
tioned methods, which directly leads to the goals to achieve.

3.3 Goal
For short, the goal is to combine both types of approaches. Simply putting both
methods into one does not solve the problem. In the next chapters, we introduce
a method, including implementation, which moves the problem into image space
and uses the basic ideas from the above methods to create an interactive and gen-
eral technique, not limited to some type of scientific data or limited by special
claims to the type of geometry. Since our method is capable of realtime user
interaction, we also focus on regaining three-dimensionality of the data during
operations like rotation and scaling. For summing-up, the main goals to achieve
where:
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3.3 Goal

• Visualization of physical properties of tensor fields

• Generality/flexibility in its possible applications

• Extensibility; i.e. for higher order tensor data

• No or minimal claim to the input data

• Realtime user interaction

• Preservation of spatial perception during interaction

• Feasibility on todays (graphics-) hardware

The method employed in this thesis will meet this requirements mostly. Of
course, our technique suffers several limits and problems, mainly by its image
space nature and the hardware restrictions. In Chapter 7, we will have a critical
look onto it, showing its advantages but also its limitations and problems.
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Alan Turing, *1912 - †1954.
Among other things, he created the mathemat-
ical foundations of todays computer science. 4

Method

In this chapter, we employ a multi-pass rendering technique that consists of four
major rendering passes as outlined in Figure 4.1. After generating the basic input
textures once, the first pass projects all required data into image space. Pass two
performs a silhouette detection that is used to guarantee integrity of the advection
step computed by multiple iterations of pass three. Eventually, pass four composes
the intermediate textures in a final rendering. In every section, an accompanying
image is shown to illustrate the results of every rendering pass.

4.1 Projection into Image Space
First, we project the data into image space by rendering the surface using the de-
fault OpenGL rendering pipeline. Notably, the surface does not need to be repre-
sented by a surface mesh, but any other representation that provides proper depth
and surface normal information works just as well (e.g., ray-casting methods for
implicit surfaces, cf. Knoll et al. [KHH+07]). In the same rendering step, the
tensor field is transformed from world space to object space, i.e., each tensor T is
projected onto the surface.

Definition 4.1 (Object Space Projection) Let P be an symmetric projection ma-
trix, describing projection to the object space and T a second-order tensor. Then
T gets projected to object space by:

T ′ = P ·T ·PT .
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4.1 Projection into Image Space

Figure 4.1: Flowchart indicating the four major steps of the algorithm: projection,
which transform the data set in an image-space representation and produce the initial
noise texture on the geometry; silhouette detection, required for the advection step and
the final rendering; advection, which produces the two eigenvector textures; and final
compositing that composes intermediate textures for final visualization.
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4.1 Projection into Image Space

To project T to the surface of the three-dimensional object, P can be defined
as:

P =

1−n2
x −nynx −nznx

−nxny 1−n2
y −nzny

−nxnz −nynz 1−n2
z

 . (4.1)

The camera viewing system configuration and the available screen resolution
imply a super- or sub-sampling of the data. We obtain an interpolated surface ten-
sor in every pixel which is decomposed into the eigenvector/eigenvalue represen-
tation using a method derived from the one presented by Hasan et al. [HBPA01].
These eigenvectors, which are still defined in object space, are projected into im-
age space using the same projection matrices MM and MP used for projecting the
geometry to image space, usually the standard modelview and projection matrices
OpenGL offers:

Definition 4.2 (Image Space Projection) Let vλi be an eigenvector in object
space and the matrices MP and MM be the OpenGL projection and modelview
matrices. Then, the eigenvector v′

λi
is transformed to image space by:

v′
λi

= MP×MM× vλi , with (i ∈ 1,2).

Even in the special case of symmetric second-order tensors in R3, which
have three real-valued eigenvalues and three orthogonal eigenvectors in the non-
degenerate case, in general, the projected eigenvalues are not orthogonal in two-
dimensional space.

Definition 4.3 (Maximum Norm (L∞-norm)) Let v ∈ R2 be a vector in R2. The
maximum norm of v is then defined by:

‖v‖∞ = max{|vx|, |vy|}.

To simplify further data handling, we scale the eigenvectors using the maxi-
mum norm:

v′′
λi

=
v′

λi

‖v′
λi
‖∞

with i ∈ {1,2} and ‖v′
λi
‖∞ 6= 0. (4.2)

The special case ‖v′
λi
‖∞ = 0 only appears when the surface normal is perpendic-

ular to the view direction and, therefore, can be ignored. The maximum norm
(L∞-norm) ensures that one component is 1 or −1 and, therefore, one avoids nu-
merical instabilities arising when limited storage precision is available, and can
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4.2 Initial Noise Texture Generation

(a) RGB Channels (b) Alpha Channel

(c) v′′
λ1

(d) v′′
λ2

Figure 4.2: Both eigenvectors v′′
λ1

and v′′
λ2

scaled to [0,1] and stored in red, green, blue
and alpha channel of a texture (a and b). In addition, we separated both eigenvectors into
two images, each showing the x and y component in the red and green color channel (c
and d) for illustration.

use memory-efficient eight-bit textures. In Figure 4.2, the transformed eigenvec-
tors v′′

λ1
and v′′

λ2
finally got scaled to the range [0,1] and are then stored in the red,

green, blue and alpha channel of a texture, waiting to be transferred to advection
step, where these vectors get unscaled to v′

λ1
and v′

λ2
again.

4.2 Initial Noise Texture Generation
In contrast to standard LIC approaches, to achieve a proper visual representa-
tion of the data, high-frequency noise textures, such as white noise, are not suit-
able. Therefore, we compute the initial noise texture using the reaction diffusion
scheme first introduced by Turing [Tur52] to simulate the mixture of two reacting
chemicals, which leads to larger but smooth “spots” that are randomly and almost
uniquely distributed (cf. Figure 4.3 and Figure 5.4(b)). For the discrete case, the
governing equations are:
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4.3 Noise Texture Transformation

Figure 4.3: Hundred per hundred pixel reaction diffusion texture created using Alan
Turing’s method. It got tiled to create a texture of required size, since reaction diffusion
is computational expensive. Minor artifacts resulting from tiling can be seen, but ignored
in practice due to the advection step.

Definition 4.4 (Diffusion Reaction Scheme) Let ai, j and bi, j be two discrete
grids indexed by i and j. Furthermore let Da and Db be the diffusion constants
for each grid. Then Turing’s reaction diffusion scheme is defined by:

∆ai, j = F(i, j)+Da · (ai+1, j +ai−1, j +ai, j+1 +ai, j−1−4 ·ai, j),
∆bi, j = G(i, j)+Db · (bi+1, j +bi−1, j +bi, j+1 +bi, j−1−4 ·bi, j),

with the functions F and G:

F(i, j) = s(16−ai, j ·bi, j) and G(i, j) = s(ai, j ·bi, j−bi, j−βi, j).

Here, we assume continuous boundary conditions for the grid coordinates i
and j to obtain a seamless texture in both directions. The scalar s allows control
over the size of the spots where a smaller value of s leads to larger spots. The
constants Da and Db are the diffusion constants of each chemical. We use Da =
0.125 and Db = 0.031 to create the input textures, as seen in Figure 4.3.

4.3 Noise Texture Transformation
Mapping the initial texture to the geometry is a difficult and application-dependent
task. Even though there exist methods to parameterize a surface, they employ
restrictions to the surface (such as being isomorphic to discs or spheres), require
additional storage for texture atlases (cf. [PCK04, IOK00]) and, in general, require
additional and often time-consuming pre-processing.
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4.3 Noise Texture Transformation

(a) Texture coordinate t (b) Geometry mapped noise

Figure 4.4: Illustration of the mapping of texture coordinates t to the surface in red and
green channels in (a). Discontinuities are the change from one to zero in texture coordi-
nate space and, due to the periodic texture, do not result in discontinuities after texture
mapping. In (b), the input noise texture from Figure 4.3 got mapped to the geometry using
the texture coordinate t.

Another solution, proposed by Turk et al. [Tur91], calculates the reaction dif-
fusion texture directly on the surface. The great disadvantage of this method
is the computational complexity. Even though these approaches provide almost
distortion-free texture representations, isosurfaces, for example, may consist of a
large amount of unstructured primitives, which increases the pre-processing times
tremendously.

Whereas previous approaches for image space LIC either use parameterized
surfaces to apply the initial noise pattern to the surface or use locally or globally
defined three-dimensional textures [WE04], we define an implicit parameteriza-
tion of the surface that provides an appropriate mapping of the noise texture to the
surface.

We start by implicitly splitting the world space in voxels of equal size, fill-
ing the geometry’s bounding box, i.e., we define a regular grid. Each voxel i is
described by its base coordinate bi and a constant edge length l. The seamless
reaction diffusion texture is then mapped to the surface of each of these voxels
(cf. Figure 4.4(a) and Figure 4.4(b)).

To assign a texture coordinate to each vertex, the object space coordinate is
transformed to the voxel space that is described by a minimum and maximum
coordinate whose connecting line is the bounding box’ diagonal. Points vg on the
geometry are transformed to vvoxel using a voxelization.
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4.3 Noise Texture Transformation

(a) l = 0.1 (b) l = 0.2

Figure 4.5: Comparison of two different values of l to demonstrate the possibility for
dynamic refinement of the input noise to achieve different levels of detail. The exact visual
result furthermore hardly depends on the size and scaling of the input noise texture.

Definition 4.5 (Voxelization) Let vg be a point on the geometry in object space
and l the voxel size. The vector (bminx ,bminy,bminz) furthermore marks the voxel
space root. The vertex transformed to the voxelized space is then defined by:

vvoxel = vg ·


l 0 0 −bminx

0 l 0 −bminy

0 0 l −bminz

0 0 0 0

 .

The vertex vvoxel is subsequently transformed from voxel space to local coor-
dinates on the voxel’s faces by:

vhit = vvoxel−bvvoxelc. (4.3)

The texture coordinates are those two components of vhit , where the surface nor-
mal’s components are not the maximum. The following Definition 4.6 formalizes
this process.

Definition 4.6 (Texture Coordinate Mapping) Let vhit be the coordinates of
vvoxel on the voxel’s faces and n the surface normal at vg. The texture coordi-
nates are then defined by:

t = (vhiti,vhit j), with i 6= j 6= k∧ (nk = max{ni,n j,nk}).
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4.4 Silhouette Detection

Regardless of its simplicity, this method allows a continuous parameteriza-
tion of the surface space that only introduces irrelevant distortions for mapping
the noise texture. Obviously, the mapping is continuous but not C1-continuous,
which is not required for mapping the noise texture as discontinuities in the first
derivatives vanish in the advection step.

Another positive aspect of this mapping is the possibility of a change of scale
that is not available in the approaches of, e.g., Turk et al. [Tur91]. By changing the
size of voxels during the calculation, different frequencies of patterns can easily be
produced and projected to the geometry. This allows a change in resolution of the
texture as required for automatic texture refinement when zooming. A comparison
of two different levels of detail can be seen in Figure 4.5.

4.4 Silhouette Detection
To avoid advection over geometric boundaries, a silhouette of the object is re-
quired to stop advection in these areas [LJH03]. Otherwise, tensor advection
would lead to a constant flow of “particles” across surface boundaries which ren-
ders the surface’s geometry and topology unrecognizable.

Definition 4.7 (Laplacian Filter Kernel) Let

∆ f =
∂ 2 f
∂x2 +

∂ 2 f
∂y2

be the Laplace operator. Then, the Laplacian filter approximates the Laplace
operator in discrete case:

D2
xy =

0 1 0
1 −4 1
0 1 0

 .

A standard three-by-three Laplacian filter applied to the depth values followed
by thresholding has proven to be suitable for our purposes and creates the silhou-
ette image:

e : (x,y)→ s, with x,y,s ∈ [0,1]. (4.4)

The silhouette image e is shown in Figure 4.6 and as red color channel in the
intermediate texture shown in Figure 5.4.
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4.5 Advection

Figure 4.6: Silhouette created using Laplacian filter. This texture is used to avoid ad-
vection across geometry boundaries.

4.5 Advection
We have discussed how to project the geometry and the corresponding tensor field
to image space. With the prepared image space eigenvectors and the input noise
texture, mapped to geometry, advection can be done. In our method, we use
a simple Euler integration applied to both vector fields. With Euler’s method
some particle can be followed along a stream. In our case, we cannot calculate
streamlines at each position of both vector fields, as normally done in LIC. We
directly advect the noise input texture with the vector fields given. This decision
was based on the fact that massively parallel architectures like modern GPUs are
able to perform this task in parallel for each pixel a hundred times per second.
Formally, the advection step can be described as follows: First, we assume an
input field P to be a continuous function, defined in a two-dimensional domain.

Definition 4.8 (P-mapping) Let P be a discrete, two-dimensional field. The con-
tinuous mapping function fP is then defined as:

fP : (x,y)→ p, with x,y, p ∈ [0,1].

The mapping function fP is a function returning the input value of the field P
at a given position. Continuity is ensured with interpolating values in between.
With this in mind, the advection as iterating process can now be described with:

Definition 4.9 (Advection Iteration) Let P be a discrete, two-dimensional grid
with a continuous mapping function fP. Furthermore, let βx,y be the geometry
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4.5 Advection

(a) Pλ1
0 (b) Pλ1

1

(c) Pλ1
4 (d) Pλ1

10

Figure 4.7: Advection of eigenvector field, corresponding to λ1, snapshotted at different
iterations. In (a), the geometry mapped input noise can be seen as originator of the
iteration. Images (b), (c), and (d) show the advection iteration after 1,4, and 10 iterations
with k = 0.05.

mapped noise field. Then, the grid can be advected cell-wise using an iterative
process:

∀x,y ∈ [0,1] : ∀λ ∈ {λ1,λ2} :

Pλ
0 = βx,y,

Pλ
i+1 = k ·βx,y +(1− k) ·

fPλ
i
(x+ v′

λx
,y+ v′

λy
)+ fPλ

i
(x− v′

λx
,y− v′

λy
)

2
.

The iterative advection process has to be done for each eigenvector field sepa-
rately with separate input and output fields pi. The value at a given point is a mix
of the input noise and the iteratively advected input noise from the prior steps. The
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4.6 Compositing

(a) pλ1
100 with k = 0.01 (b) Composited image for k = 0.01

(c) pλ1
100 with k = 0.09 (d) Composited image for k = 0.09

Figure 4.8: Advection of eigenvector field, corresponding to λ1, using different values
for k. A smaller value results in a more smooth and blurred advection/composited image,
whereas a larger value, 0.09 in our case, results in a more coarse surface and, therefore,
in a more clear and contrast-rich composited image.

ratio between the original input noise β and the previously advected image is de-
termined by k. The scalar factor k defines the “roughness” of the advected image,
as illustrated in Figure 4.8. Since the eigenvectors v′

λ j
do not have an orientation,

the advection has to be done in both directions. The iteration can be stopped when
the value change exceeds a threshold, which is, depending on k, reached after a
few iterations. In Figure 4.7, a series of images shows the advection process after
several iteration steps.

4.6 Compositing
An ultimate rendering pass composes the temporary textures for final visualiza-
tion. Whereas pixels that are not part of the original rendering of the geometry
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4.6 Compositing

(a) c
FA·vλi
p colormap on surface (b) Composited image

Figure 4.9: Composition of both eigenvector fields in (b) using the c
FA·vλi
p colormap from

Section 2.3.1, which is, just for illustration, separately shown in (a). Here, only the major
eigendirection is colored and the second, minor direction is colored in gray to visually
separate them from each other.

are discarded using the information from the depth buffer, for all other pixels the
color values at a point (x,y) in image space after k iterations is defined by the
colormap in Definition 4.10.

Definition 4.10 (Coposition to RGB Space) Let Pλ1
k and Pλ2

k be the previously
advected fields for both eigenvector fields after k iterations. Furthermore, e is
the silhouette image and light(Lx,y) an arbitrary lighting function. Then, the
composition of pλ1

k and pλ2
k to RGB space is defined by:

R =
r · f

pλ2
k

(x,y)

8 · f 2
pλ1

k

(x,y)
+ ex,y + light(Lx,y),

G =
(1− r) · f

pλ1
k

(x,y)

8 · f 2
pλ2

k

(x,y)
+ ex,y + light(Lx,y), and

B = ex,y + light(Lx,y).

The scalar factor r is used to blend between the two chosen tensor directions.
Definition 4.10 is designed to increase the intensity of an eigenvector field’s LIC
value at a given point, when the other eigenvector field’s value is low at this point.
This creates a mesh resembling the tensor field’s structure, as Figure 4.5 and Fig-
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4.6 Compositing

ure 4.8 already have illustrated. To reduce the effect of light sources on the color
coding, we use a separate lighting function light that, while manipulating the
intensity, does not effect the base color of the mesh structure. Even though Blinn-
Phong shading [Bli77] has proven to provide the required depth cues, additional
emphasis of the third dimension using depth-enhancing color coding has proven
to provide a better overall understanding of the data [CCG+08].

This step furthermore discloses some possibilities. It is also possible to blend
in a color map, based on fractional anisotropy or the eigenvalues, just like those
introduced in Section 2.3.1. Figure 4.9 shows such a combination of colormap-

ping, using c
FA·vλi
p and our compositing method.
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Computer pioneer, whose greatest achieve-
ment was the world’s first functional, pro-
grammable computer, the Z3.

5
Implementation

Our implementation is not limited to a special kind of geometry. It is able to
handle almost every tensor field defined on a surface. It is, for example, possible
to calculate an isosurface on a derived scalar metric, like fractional anisotropy
or on a second data set to generate a surface in a three-dimensional data do-
main. Other methods include hyper-stream surfaces [DH92], wrapped stream-
lines [ESM+05], or domain-dependent methods like dissection-like surfaces pre-
sented in [ASH+09]. The only requirement for the surface is that it is non-
selfintersecting and smooth normals are provided as they are required for the
projection step and for proper lighting. The noise texture can be pre-calculated
in a pre-processing step or stored in a file as it is independent of the data.

5.1 Framework
Before concretely talking about an implementation, it is necessary to specify the
framework needed. Our method is embedded into the framework, the software
system “FAnToM” (Field Analysis using Topology Methods) (cf. Figure 5.1),
developed at the Abteilung für Bild- und Signalverarbeitung at the Universität
Leipzig, is offering. It is a modular system, able to load and manage several
kinds of data sets, as well as modifying, processing, or visualizing the data. In
addition, it offers an C++ API for algorithms, which can then use the data and a
very powerful graphics engine to implement new visualization methods or data
processing algorithm.

Our novel method uses this API and the graphics engine, namely “FGE”, to
implement all the CPU-side parts into a FAnToM-algorithm. Every algorithm can
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5.2 Projection

(a) FAnToM GUI (b) Algorithm’s profile dialog

Figure 5.1: Screenshot of FAnToM’s GUI, showing our algorithm running (a) and the
corresponding profile dialog (b).

provide a profile of parameters, which can be modified by the user using a GUI
dialog FAnToM is generating. Our implementation uses this profile to allow the
user to adopt several parameters, like, for example, k, the blending factor from
Definition 4.9 (cf. Figure 5.1(b)).

To effectively do image-space based rendering, the OpenGL shading language
GLSL is used, which offers a C-like syntax optimized for strongly local (pixel-
wise) parallelism on the graphics processing unit (GPU). All the four steps, as
described in Figure 4.1, are implemented in GLSL and, therefore, runs on the
GPU parallel for every pixel. The data transfer between these steps is done using
textures. They offer four floats in interval [0,1] per pixel and are ideal for data
transfer. But, of course, they also have some restrictions that we needed to take
care about. In the following sections, we illuminate our visualization method
from the implementation point of view and point out some difficulties and our
data organization and handling to circumvent them

5.2 Projection
The first step projects the geometry into image space, simply by rendering the
geometry and pre-calculating the Phong light intensity Lx,y ∈ [0,1] at every ren-
dered fragment with the coordinates x and y. In the same step the tensors are
projected as well. When the tensors are symmetric, it is sufficient to transfer six
floating-point values per vertex to the GPU. In our case, two three-dimensional
texture coordinates are used per vertex to upload the tensor information along
with the geometry. Assuming the tensor T is now available on the GPU, it is now
possible to map the two main directions to the surface described by the normal
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5.2 Projection

(a) Eigenvector Colormap (b) Artifacts

Figure 5.2: Artifacts in an extremely zoomed part of a tensor field. The vortices in (b)
result from sign flips in the eigenvector field and go along these sign-flips. For illustration,
the corresponding part of the eigenvector field is shown in (a). If sign flips are ignored,
the field at this area is an uniform flow from left to right/right to left.

n at the current vertex using Definition 4.1. This projection is implemented on a
per-vertex basis in the vertex shader. In contrast, to ensure proper interpolation,
eigenvalue decomposition and eigenvector calculation together with image space
projection need to be done in the fragment shader. Since the eigenvectors are
orientation-less, it is possible to have sign flips between adjacent vertices.

If the interpolation takes place after the eigenvector decomposition, these
changes in sign can render the interpolation useless , which could cause severe
artifacts during advection, as shown by example in Figure 5.2.

The projection step also includes mapping the noise texture to the geometry.
Calculating each vertex’ position in one voxel, using the equations from Sec-
tion 4.3, can be done along the tensor projection. The GPU interpolates those
values for each fragment, where it can be used to determine the noise texture
element to use.

Since texture space is limited on our hardware, an nVidia GeForce 8800 GTS,
to four bound textures per rendering pass and active framebuffer object, it is im-
portant to store as much information as possible in each texture. Most data is
calculated during the projection step and needs to be stored in, at most, four tex-
tures. Table 5.1 provides an overview of the data that needs to be transferred to
consecutive steps.

Since λ1≥ λ2, it is not necessary to transfer both values. Normalizing the vec-
tor (λ1,λ2) using the maximum norm as shown in Definition 4.3 and Equation 4.2,
it is enough to transfer the smaller λ2 because λ1 always is one. Also, the eigen-
vectors v′

λ1
and v′

λ2
need to be scaled since textures are used for transportation
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5.2 Projection

(a) Eigenvector map (b) Depth buffer

(c) Colormap (d) Geometry mapped noise

(e) cFA·vλ1 -Colormap (f) Mean Diffusivity

Figure 5.3: Textures showing the output of the projection step. Table 5.1 lists the
contents of each of these textures.

where each value must be in the interval [0,1].
All these calculations are done by the GPU in our implementation, using

the OpenGL’s GLSL shading language, offscreen in a framebuffer object (FBO).
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5.3 Silhouette Detection

texture channel
v′′

λ1 Figure 5.3(a)
R,G

v′′
λ2

B,A
fractional anisotropy

Figure 5.3(c)
R

L G
λ2 B

βtx,ty Figure 5.3(d) A
depth buffer Figure 5.3(b) L

cFA·vλ1 Figure 5.3(e) RGB
MD Figure 5.3(f) A

Table 5.1: Memory alignment of intermediate textures created during projection step.
Texture four (cFA·vλ1 and MD) is purely optional and may be used to transfer further
colormaps and metrics, as in our case.

Thus, we avoid the need of rendering the geometry multiple times or even doing
those calculations on the CPU, which leads to a large speed gain.

5.3 Silhouette Detection
The next step is to apply an edge detection filter, in our case a discrete Laplacian
filter kernel, on the depth map, which we have implemented on the GPU using
GLSL shaders as a separate offscreen render pass. We merge several input data
into one texture to decrease the number of textures needed later. We use red,
green, blue, and alpha channels of the edge detection shader output texture, as
summarized in Table 5.2.

texture channel
edge Fig 5.4 R

depth buffer Fig 5.4 G
βtx,ty Fig 5.4 B

β Fig 5.4 A

Table 5.2: Input and output textures during the edge detection step.

This shows that we store the result of the edge detection filter, and we also
store the depth buffer value used to calculate the edges, the unprocessed input
noise field and the geometry mapped noise in the green, blue, and alpha channels
(cf. Figure 5.4). The used input textures are:

• the color map (Figure 5.3(c))
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5.4 Advection

(a) RGB channels (b) Alpha channel

Figure 5.4: Output of edge detection step. Left: the depth buffer, the edges and geometry
mapped noise βtx,ty in the red, green, and blue channels, respectively; right: the alpha
channel containing the unprocessed input noise β .

• the input noise texture (Figure 4.3)

• and the depth buffer (Figure 5.3(b)).

The advection step, directly following the edge detection, can “grab” its needed
data directly from one texture. During advection, it is not advisable to have all
those values in one texture, since just the geometry mapped noise βtx,ty and the
depth buffer is used. The greatest advantage is achieved during output process-
ing, since the depth buffer is not needed as separate texture, which saves texture
overhead. We also transfer the unprocessed input noise in this texture, since our
implementation is able to toggle which noise field is used during advection, be-
cause near-planar geometry does not need any complex geometry mapping.

5.4 Advection
The advection step iterates the geometry mapped noise texture using the eigenvec-
tor color map from the projection step (see Figure 5.3(a)). This step is summarized
in the pseudocode for Algorithm 5.1.

The pseudocode provided for Algorithm 5.1 shows the steps that need to be
done in each iteration on the CPU, where the output texture from the last iteration
is used as input.

In practice, not needed textures have to be freed, since they allocate a lot of
memory on the graphics board. It is possible to break iteration after a fixed num-
ber of passes and complete the frame. This ensures higher framerates and a more
smooth user experience. The consecutive rendering steps can then work on this
“intermediate” advection texture to produce an output. In the next frame, the iter-
ation loop can begin at the last iteration texture of the last frame. If done this way,
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5.4 Advection

Figure 5.5: Advection texture. Left: red channel containing the advection image of
eigenvector field 1; right: green channel containing the advection image of eigenvector
field 2.

special care has to be taken for texture management and the framebuffer object.
Both must not be destroyed at the end of each frame. This iteration allows the
GPU code, summarized as Algorithm 5.2, to be executed iteratively and per pixel
on the GPU with the bound textures as its input respectively output. Figure 5.5
shows the red and green channels of this output texture after several iterations.
Note that, due to the data merging in the prior step, there need to be just three in-
put texture bindings per iteration, instead of four, for depth buffer, edge detection
texture, the eigenvector color map and the last iterations output texture. Together,
both algorithms implement the advection iteration described in Section 4.5. After
some iterations, the geometry-mapped noise gets advected more and more and is
ready to be finally processed for output.
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5.4 Advection

Algorithm 5.1 Advection iteration code executed on CPU
// bind required input textures
bindTexture(edgeTexture)
bindTexture(eigenvectorColormap)
// create two textures used rotational as input or output
advection1← createTexture()
advection2← createTexture()
advectionInput← reactionDi f f usionTexture
for i = 1 to MAX do

bindTexture(advectionInput)
// select output texture and set it as next input texture
if i modulo 2 = 0 then

setOutputTexture(advection1)
advectionInput← advection1

else
setOutputTexture(advection2)
advectionInput← advection2

end if
// render bound textures on quad in FBO
renderQuadOffscreen()

end for
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5.4 Advection

Algorithm 5.2 Advection iteration code executed on graphics hardware for each
t ∈ {(x,y)|x,y ∈ [0,1]}
Require: edgeTexture: output texture from silhouette detection step
Require: eigenvectorColormap: eigenvectors from projection step
Require: advectionInput: advection step output from previous step
Require: t: to be current texture coordinate
Require: k: to be the ratio from Definition 4.9
Require: edgeBlend: defining the edge intensity during advection
Require: discardable: a function returning true if both directions and their anti

directions show to a fragment not containing geometry (uses depth buffer)
// get data
float depth← edgeTexturet .G
float edge← edgeTexturet .R
vec4 tensor← eigenvectorColormapt .RGBA
// unscale and separate eigenvectors, scale to texture space
tensor← (tensor - vec4(0.5, 0.5, 0.5, 0.5))* 2.0;
vec2 ev1← vec2( tensor.R

textureWidth , tensor.G
textureHeight )

vec2 ev2← vec2( tensor.B
textureWidth , tensor.A

textureHeight )
if discardable(depth, ev1, ev2) then

return vec4(0.0, 0.0, 0.0, 1.0)
end if
// calculate position
vec2 a1← t− s∗ ev1
vec2 a2← t− s∗ ev2
// since the eigenvectors do not have an orientation: advect in both directions
vec2 a1n← t + s∗ ev1
vec2 a2n← t + s∗ ev2
// the GPU interpolates texels automatically
float aNoise1= 0.5 * (advectionInputa1.R + advectionInputa1n.R)
float aNoise2= 0.5 * (advectionInputa2.G + advectionInputa2n.G)
float noise← edgeTexturet .B
return (vec4(aNoise1, aNoise2, 0.0, 1.0) * (1.0-k)) + vec4(noise ∗ k) +
vec4(edge∗ edgeBlend)
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5.5 Compositing
The final output processing includes blending both advected eigenvector fields
with light information and the geometry edges as well as clipping fragments using
the depth buffer. The last output texture created during advection iteration gets
bound, as well as the color map ( Figure 5.3(c)) containing lighting information,
and finally, the edge detection output texture Figure 5.4 for clipping and edge
blending. The pseudocode for Algorithm 5.3 summarizes output processing.

Algorithm 5.3 output processing code on GPU
Require: advection: last output texture generated during advection
Require: edgeTexture: output texture from silhouette detection step
Require: projectionColormap: output texture from projection step
Require: ratio: blending ratio between eigenvector field 1 and 2
Require: t: to be current texture coordinate

// discard fragments not belonging to the geometry
float depth← edgeTexturet .G
if depth≥ ε then

discard fragment
end if
// get data
vec4 edge← edgeTexturet .R
vec4 depth← edgeTexturet .G
float light← pro jectionColormapt .G
float evLIC1← advectiont .R
float evLIC2← advectiont .G
// calculate output
float red← 2.0∗ evLIC1
float green← 2.0∗ evLIC2
float f actorR← ratio

4∗sqr(red)

float f actorG← 1−ratio
4∗sqr(green)

// lighting
float shine← light−0.6
if shine < 0 then

shine← 0.0
end if
// do additional color mapping
· · ·
// combine light, both LIC, edge and depth
return (light ∗ 1.5) * (vec4(green ∗ f actorR, red ∗ f actorG, 0.0, 1.0) +
vec4(shine)) + (1.0−depth)*edge
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5.5 Compositing

Figure 5.6: The final image produced by the output processing shader with lighting.

As mentioned in Section 4.6, several modifications are possible. Since the
color map bound in this step also contains the fractional anisotropy, λ2 and im-
plicitly λ1 it is possible to blend-in those values to emphasize additional tensor
field features. In Figure 5.6, both eigenvector fields were blended with the geom-
etry edges and with Phong luminance, calculated earlier in projection step.

In Chapter 6, many more compositions are shown to illustrate the rich set of
possibilities.
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Results

We have introduced a method to create a fabric-like surface tensor LIC in image
space, similar to the one introduced in [HFH+04]. We used ideas from [LJH03] to
transform the algorithm into image space. Our implementation, using this method,
is able to reach frame rates high enough for realtime user interaction. The only
bottleneck is the hardware’s ability in rendering large and triangle-rich geometry.
All further steps can be done in constant time, see Table 6.1.

6.1 Artificial Test Data Sets
We first applied our method to artificial test data sets that have complex topology:
a torus, the Bretzel5, and the Tangle data set (cf. [KHH+07]), defined as implicit
surfaces:

Definition 6.1 (Test datasets) Let (x,y,z) be a point in R3. Then, the surfaces
are defined implicitly by:

Torus: 0 = (1−
√

x2 + y2)(1−
√

x2 + y2)+ z2−0.125
Bretzel5: 0 = ((x2 + .25∗ y2−1)∗ (.25∗ x2 + y2−1))2 + z2−0.1
Tangle: 0 = x4−5∗ x2 + y4−5∗ y2 + z4−5∗ z2 +11.8+w.

We used the Laplacian on the surfaces as tensor fields. The results displayed
in Figure 6.1 show that neither the topology nor our artificial parameterization of
the input noise texture influences the quality of the final rendering.
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6.1 Artificial Test Data Sets

(a) Torus

(b) Bretzel5

(c) Tangle

Figure 6.1: Analytic test data sets. We applied our method to isosurfaces and the scalar
field’s Laplacian to demonstrate the suitability for complex surfaces. Shown here is the
original surface (left) and the final image using our method for a torus, Tangle, and
Bretzel5 data set (Definition 6.1).
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6.2 Diffusion Tensor Imaging Datasets

6.2 Diffusion Tensor Imaging Datasets
In the previous chapters, we already have shown many images produced by our
method. In this section, we only show several of these images in large size.

Figure 6.2: Diffusion tensor data set of a human brain. The corpus callosum has been
extracted using the fractional anisotropy as scalar metric with the isosurface algorithm
at FA = 0.7.
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6.2 Diffusion Tensor Imaging Datasets

Figure 6.3: Small part of the corpus callosum. The main eigendirection of the diffusion
tensor data set is colored using c

FA·vλ1
p .
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6.3 Modification for Medical Data Processing

Figure 6.4: Diffusion tensor data set of a human brain. We employed the method by
Anwander et al. [ASH+09] to extract a surface following neural fibers and applied our
method with an alternative color coding that is more suitable and can be incorporated
more easily into medical visualization tools.

6.3 Modification for Medical Data Processing
Even though many higher-order methods have been proposed, due to scanner,
time, and funding limitations, second-order tensor data is still dominant in clinical
application. Medical second-order diffusion tensor data sets differ from engineer-
ing data sets because they indicate one major direction whereas the secondary and
ternary directions only provide information in areas, where the major direction is
not well-defined, i.e., the fractional anisotropy—a measure for the tensor shape—
is low. Almost spherical tensors, which indicate isotropic diffusion, occur in areas
where multiple fiber bundles traverse a single voxel of the measurement or when
no directional structures are present. Therefore, we modulate the color coding us-
ing additional information: In areas where one fiber direction dominates, we only
display this major direction using the standard color coding for medical data sets,
where x, y, and z alignment are displayed in red, green, and blue, respectively. In
areas where a secondary direction in the plane exists, we display this information
as well but omit the secondary color coding and display the secondary direction
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6.4 Arbitrary Datasets

Figure 6.5: Slice in an analytic strain tensor field.

in grayscale and always below the primary direction (cf. Figure 6.4). We use the
method of Anwander et al. [ASH+09] to extract surfaces that are, where possible,
tangential to the fiber directions. Hence, we can guarantee that the projection error
introduced by applying our method in the surface’s domain remains sufficiently
small. Even in areas where the fractional anisotropy is low and the color cod-
ing does no longer provide directional information, such as in some parts of the
pyramidal tract in Figure 6.4, the texture pattern still provides this information.

6.4 Arbitrary Datasets
Our technique is designed as flexible as possible, thus allowing us to visualize
other tensor fields than medical DTI datasets. Generally, arbitrary second-order
tensor fields can be visualized using this technique. This may be interesting espe-
cially for engineering sciences or physics, since non-symmetric tensor fields, like
the analytical point load dataset, play an important role there. To give an example
of our approach in mechanics, Figure 6.5 shows a visualization of a slice inside a
strain tensor field, giving an imagination of its physical structure.
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6.5 Performance

6.5 Performance
As indicated before, the only “bottleneck” in the visualization pipeline that is
strongly geometry-dependent is the projection step. Since the surface needs to be
re-rendered in case of user interaction, the performance measures of our method
include re-rendering the geometry. The frame rate with geometry not being moved
and, therefore, making the projection step and the edge detection step unnecessary,
is considerably higher. Our implementation requires only few advection iterations
per frame, which ensures high frame rates and smooth interaction. To make the
frame rates comparable, in the following tables, user interaction is assumed and,
therefore, rendering a single frame always consists of

• one projection step, including geometry rendering;

• one edge detection pass;

• three advection iterations; and

• one output processing pass.

As seen in the previous sections, fragments not belonging to the geometry are
discarded as soon as possible without using deferred shading. This also generates
performance gain in advection and output processing. In Table 6.1, a selection
of data sets with their corresponding number of triangles and tensors are listed.
The frame rates shown were measured on an AMD Athlon(tm) 64 X2 Dual Core
Processor 3800+ (512K L2 Cache) with a NVIDIA G80 GPU (GeForce 8800
GTS) and 640MB of graphics memory at a resolution of 1024×768 pixels.

The assumption that geometry rendering with projection is the weakest ele-
ment in this pipeline and that edge detection, advection, and output processing
performs at a data-independent frame rate, is confirmed by the frame rate shown
in Table 6.2. It confirms that for large geometries, rendering the geometry alone
is the dominating component. Since the vertex-wise calculations during projec-

figure no. triangles no. tensors fps fps (Phong only)
Figure 6.4 41472 63075 32 61
Figure 5.6 58624 88803 30 60
Figure 6.2 571776 861981 14 16

Table 6.1: Frames per second (fps) for different data sets with given number of triangles
and numbers of tensors. The frame rates are compared to simple rendering of the geome-
try using Phong shading. The frame rates were measured for an AMD Athlon(tm) 64 X2
Dual Core Processor 3800+ (512K L2 Cache) with an NVIDIA G80 GPU (GeForce 8800
GTS) and 640MB of graphics memory at a resolution of 1024×768 pixels.
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6.5 Performance

figure ∅ geometry share
Figure 6.4 72%
Figure 5.6 69%
Figure 6.2 90%

Table 6.2: The time required by the GPU to rasterize the geometry in comparison to
the overall render times, including all steps. The time used to render the geometry clearly
dominates the rendering times and reaches up to 90 percent of the overall rendering time
even for medium sized geometries.

tion are limited to tensor projection (Definition 4.1) and vertex projection (Def-
inition 4.5), the most expensive calculations during projection are executed per
fragment. This means that the expensive eigenvalue decomposition and eigenvec-
tor calculations are only required for fragments (pixels). To further decouple the
calculation effort from the geometry’s size, the depth test should be performed
before performing the eigendecomposition. This can be achieved by first render-
ing the projected tensors to a texture, and then computing the decomposition on
visible fragments only. Nevertheless, this was not necessary for our current data
set and screen sizes where the time required to render the geometry itself clearly
dominates the time required to compute the texture pattern in image space. This
can be seen in the increasing values in Tables 6.2 and 6.1 with increasing size of
vertices rendered.
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Conclusion and Further Work

We have presented a novel method for rendering fabric-like structures to visualize
tensor fields on almost arbitrary surfaces without generating three-dimensional
textures that span the whole data set at sub-voxel resolution. Therefore, our
method can be applied to complex data sets. As major parts of the calculation
are performed in image space, the performance of our algorithm is almost inde-
pendent of data set size, provided that surfaces can be drawn efficiently, e.g., by
using acceleration structures to draw only those parts of the geometry that inter-
sect the view frustum or using ray tracing methods.

Whether the surface itself is the domain of the data, a surface defined on the
tensor information, or a surface defined by other unrelated quantities (e.g., given
by material boundaries in engineering data or anatomical structures in medical
data) is independent from our approach. Nevertheless, the surface has to be cho-
sen appropriately, as only in-plane information is visualized. To circumvent this
limitation, information perpendicular to the plane could be incorporated in the
color coding, but due to a proper selection of the plane that is aligned with our
features of interest, this has not been necessary for our purposes.

One major drawback of our approach is the requirement for smooth normals at
every point of the surface to achieve nearly distortion-free texture mapping. This
is especially problematic on triangulated surfaces, which need to be smoothed us-
ing some subdivision algorithm, introducing a lot of additional geometry, which,
on the other side, incriminates the GPU. This vicious circle can be broken by
combining geometry refinement and geometry optimization, refining only areas
of interest or areas visible by the camera. Modern graphics hardware recently in-
troduced geometry shaders, a separate shader invoked before vertex shader, thus
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allowing it to dynamically create geometry on the GPU. How these shaders may
be useful for solving the mentioned problem has to be investigated.

Due to its image space nature, our approach is not able to achieve the ex-
actly same visual results during advection as the LIC algorithm would achieve.
This could cause small areas of the composited surface being blurry under certain
awkward perspectives. This may be solved using a more sophisticated integra-
tion method during advection in combination with textures, able to store real un-
clamped floats with their full precision, which is not the case for standard textures.

Another feature, needing more investigation, is the variation of the spot den-
sity and spot size for the input noise texture mapped to the geometry. By doing
this, it will be possible to let certain metrics, like the eigenvalue field, further in-
fluence the input texture, resulting in a more sophisticated visual representation
of the tensor field’s physical properties.

Especially in medical visualization, higher-order tensor information is becom-
ing increasingly important and different methods exist to visualize these tensors,
including local color coding, glyphs, and integral lines. Nevertheless, an exten-
sion of our approach is one of our major aims. In brain imaging, experts agree that
the maximum number of possible fiber directions is limited (typically, a maximum
of three or four directions in a single voxel are assumed). Whereas the number
of textures can easily be adapted, the major remaining problem at the moment
is a lack of suitable decomposition algorithms on the GPU, which are required
to ensure a proper interpolation because image-space techniques, by their very
nature, resample the data. Maintaining orientations and assigning same fibers in
higher-order data to the same texture globally is not possible today and, therefore,
requires further investigation.
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[Dü88] Martin J. Dürst. Additional reference to “marching cubes” (letters to
the editor). Computer Graphics, 22(2):72–73, April 1988.

[ESM+05] Frank Enders, Natascha Sauber, Dorit Merhof, Peter Hastreiter,
Christopher Nimsky, and Marc Stamminger. Visualization of white
matter tracts with wrapped streamlines. In Cláudio T. Silva, Eduard
Gröller, and Holly Rushmeier, editors, Proceedings of IEEE Visu-
alization 2005, pages 51–58, Los Alamitos, CA, USA, 2005. IEEE
Computer Society, IEEE Computer Society Press.

[GL05] Markus Grabner and Robert S. Laramee. Image space advection on
graphics hardware. In SCCG ’05: Proceedings of the 21st spring con-
ference on Computer graphics, pages 77–84, New York, NY, USA,
2005. ACM.

[HBPA01] Khader M. Hasan, Peter J. Basser, Dennis L. Parker, and Andrew L.
Alexander. Analytical computation of the eigenvalues and eigenvec-
tors in DT-MRI. Journal of Magnetic Resonance, 152(1):41 – 47,
2001.

[HES08] Mario Hlawitschka, Sebastian Eichelbaum, and Gerik Scheuermann.
Fast and memory efficient GPU-based rendering of tensor data. In
Accepted for the Proceedings of the IADIS International Conference
on Computer Graphics and Visualization 2008, 24–26. July 2008.

[HFH+04] Ingrid Hotz, Louis Feng, Hans Hagen, Bernd Hamann, Kenneth Joy,
and Boris Jeremic. Physically based methods for tensor field visual-
ization. In VIS ’04: Proceedings of the conference on Visualization
’04, pages 123–130, Washington, DC, USA, 2004. IEEE Computer
Society.

[HFHJ09] Ingrid Hotz, Z. X. Feng, Bernd Hamann, and Kenneth I. Joy. Ten-
sor field visualization using a fabric-like texture on arbitrary two-
dimensional surfaces. In Torsten Möller, Bernd Hamann, and R. D.
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