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Abstract. We introduce the notion of a logical model category which
is a Quillen model category satisfying some additional conditions. Those
conditions provide enough expressive power that one can soundly inter-
pret dependent products and sums in it while also having a purely in-
tensional interpretation of the identity types. On the other hand, those
conditions are easy to check and provide a wide class of models that are
examined in the paper.

1 Introduction

Starting with the Hofmann–Streicher groupoid model [HS98] it has become clear
that there exist deep connections between Martin-Löf Intentional Type Theory
(see [ML72, NPS90]) and homotopy theory. Recently, these connections have
been very intensively studied. We start by briefly summarizing this work—a
more complete survey can be found in [Awo10].

It is well-known that Identity Types (or Equality Types) play an important
role in type theory since they provide a relaxed and coarser notion of equality
between terms of a given type. For example, assuming standard rules for type
Nat one cannot prove that

n :Nat ⊢ n+0 = n : Nat

but there is still an inhabitant

n :Nat ⊢ p : IdNat(n+0 , n).

Identity types can be axiomatized in a usual way (as inductive types) by
form, intro, elim, and comp rules (see eg. [NPS90]). A type theory where we
do not impose any further rules on the identity types is called intensional. One
may be interested in adding the following reflection rule:

Γ ⊢ p : IdA(a, b)

Γ ⊢ a = b : A
Id-refl

Now, the Id would not be any coarser than the usual definitional equality.
However, the reflection rule destroys decidability of type-checking, an important
property of type theory.

http://arxiv.org/abs/1208.5683v2
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In order to interpret Martin-Löf Type Theory in the categorical setting, one
has to have some notion of ‘dependent products’ and ‘dependent sums’. As it
was shown by Seely [See84], locally cartesian closed categories (recall that C is a
locally cartesian closed category if every slice of C is cartesian closed) provide a
natural setting to interpret such operations. However, this interpretation forces
the reflection rule to hold, that is if p : IdA // A×A is an interpretation of Id-
type over A, it is automatically isomorphic to the diagonal map ∆ : A //A×A
in C/(A×A).

For a semantics that does not force the reflection rule, one can pass to Quillen
model categories. Model categories, introduced by Daniel Quillen (cf. [Qui67])
give an abstract framework for homotopy theory which has found many appli-
cations, for example in algebraic topoogy and algebraic geometry. The idea of
interpreting type theory in model categories has been recently very intensively
explored. In [AW09,War08] Awodey and Warren showed that the Id-types can be
purely intensionally interpreted as fibrant objects in a model category satisfying
some additional conditions. Following this idea Gambino and Garner in [GG08]
defined a weak factorization system in the classifying category of a given type
theory.

Another direction is to build higher categorical structures out of type the-
ory. An ∞-category has, apart from objects and morphisms, also 2-morphisms
between morphisms, 3-morphisms between 2-morphisms, and so on. All this
data is organized with various kinds of composition. The theory of higher-
dimensional categories has been successfully studied by many authors (see for
example [Bat98, Lei04, Lur09]) and subsequently been brought into type the-
ory by Garner and van den Berg [GvdB08], Lumsdaine [Lum08, Lum10], and
Garner [Gar08].

In this paper we make an attempt to obtain sound models of type theory
with the type constructors Π and Σ within the model-categorical framework. In
good cases that is when some additional coherence conditions (see [GvdB10])
are satisfied, our notion of a model extends the well-known models for the Id-
types. Following [Kap10] we propose a set of conditions on a model category that
provide enough structure in order to interpret those type constructors. Such a
model category will be called a logical model category. Our intention was to
give conditions that on one hand will be easy to check but on the other hand,
will provide a wide class of examples. It is important to stress that this paper
presents only a part of the ongoing project [AK12] devoted to study of Π- and
Σ-types in homotopy-theoretic models of type theory. Further directions of this
project may be found in the last section.

This paper is organized as follows: Sections 2 and 3 provide a background on
type theory and abstract homotopy theory, respectively. In Section 4 we define
the notion of a logical model category and show that such a category admits
a sound model of a type theory with Π- and Σ-types. Next, within this section
we give a range of examples of logical model categories. Finally, in Section 5 we
sketch the directions of our further research in this project.
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2 Background on Type Theory

2.1 Logical Framework of Martin-Löf Type Theory

In this section we will review some basic notions of type theory (cf. [NPS90]).
Martin-Löf Type Theory is a dependent type theory i.e. apart from simple

types and their terms it allows type dependency as in the judgement

Γ, x :A ⊢ B(x) type.

In this example B can be regarded as a family of types indexed over A.
There are some basic types as for example: 0, 1, Nat and some type-forming

operations. The latter can be divided into two parts:

– simple type-forming operations such as A // B, A×B, and A+B.
– operations on dependent types such as Πx:AB(x), Σx:AB(x), and IdA(x, y).

The language of type theory consists of hypothetical judgements (or just
judgements) of the following four forms:

1. Γ ⊢ A type

2. Γ ⊢ A = B type

3. Γ ⊢ a : A
4. Γ ⊢ a = b : A

There are two more forms, derivable from the ones given above:

5. Γ ⊢ ∆ cxt

6. Γ ⊢ ∆ = Φ cxt

Judgements of the form 5. establish that ∆ is a well-formed context (in the
context Γ ). ∆ is said to be a well-formed context if ∆ is a (possibly empty)
sequence of the form (x0 :A0, x1 :A1(x), . . . , xn :An(x0, . . . , xn−1)) and
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Γ ⊢ A0 type

and for i = 1, 2, . . . n:

Γ, x0 :A0, x1 :A1, . . . , xi−1 :Ai−1 ⊢ Ai(x0, x1, . . . , xi−1) type.

The deduction rules of Martin-Löf Type Theory can be divided into two
parts:

– structural rules.

– rules governing the forms of types.

The structural rules are standard and may be found in the Appendix A. The
rules governing the forms of types are presented in the next section.

2.2 Type Constructors Π and Σ

Given a new basic type or type former in Martin-Löf Type Theory we need to
specify:

– a formation rule, providing the conditions under which we can form a certain
type.

– introduction rules, giving the canonical elements of a type. The set of intro-
duction rules can be empty.

– an elimination rule, explaining how the terms of a type can be used in
derivations.

– computation rules, reassuring that the introduction and elimination rules are
compatible in some suitable sense. Each of the computation rules corresponds
to some introduction rule.

In this paper we will be interested only in two dependent type constructors:
Π and Σ and so we will restrict our presentation to them. We should recall that
under Curry-Howard isomorphism (see for example [SU06]) they correspond to
the universal and existential quantification respectively (i.e. ∀ and ∃).

Π-types. The version presented below may be different from some other presen-
tations. As the elimination rule we take a weak version that is sometimes called
Π-application rule.
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Γ, x :A ⊢ B(x) type

Γ ⊢ Πx:AB(x) type
Π-form

Γ, x :A ⊢ B(x) type Γ, x :A ⊢ b(x) : B(x)

Γ ⊢ λx :A.b(x) : Πx:AB(x)
Π-intro

Γ ⊢ f :Πx:AB(x) Γ ⊢ a : A

Γ ⊢ app(f, a) : B(a)
Π-elim

Γ, x :A ⊢ B(x) type Γ, x :A ⊢ b(x) : B(x) Γ ⊢ a : A

Γ ⊢ app(λx :A.b(x), a) = b(a) : B(a)
Π-comp

Σ-types. We use an axiomatization of the Σ-types as an inductive type from the
Calculus of Inductive Construction.

Γ ⊢ A type Γ, x :A ⊢ B(x) type

Γ ⊢ Σx:AB(x) type
Σ-form

Γ ⊢ A type Γ, x :A ⊢ B(x) type

Γ, x :A, y :B(x) ⊢ pair(x, y) : Σx:AB(x)
Σ-intro

Γ, z :Σx:AB(x) ⊢ C(z) type
Γ, x :A, y :B(x) ⊢ d(x, y) : C(pair(x, y))

Γ, z :Σx:AB(x) ⊢ splitd(z) : C(z)
Σ-elim

Γ, z :Σx:AB(x) ⊢ C(z) type
Γ, x :A, y :B(x) ⊢ d(x, y) : C(pair(x, y))

Γ, x :A, y ::B(x) ⊢ splitd(pair(x, y)) = d(x, y) : C(pair(x, y))
Σ-comp

3 Background on Model Categories

In this section we will gather some notions and results from model category
theory.

Definition 1. Let C be a category. We say that f : A // B has the left lifting
property with respect to g : C // D or equivalently that g has the right lifting
property with respect to f (we write f ⋔ g) if every commutative square g ◦ u =
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v ◦ f as below has a diagonal filler i.e. a map j : B // C making the diagram

A
u //

f

��

C

g

��
B v

//

j

>>

D

commute (i.e. jf = u and gj = v).

For a collection M of morphisms in C we denote by ⋔M (resp. M⋔) the
collection of maps having the left (resp. right) lifting property with respect to
all maps in M.

Definition 2. A weak factorization system (L,R) on a category C consists of
two collections of morphisms L (left maps) and R (right maps) in the category
C such that:

1. Every map f : A // B admits a factorization

A
f

//

i
  ❆

❆❆
❆❆

❆❆
❆ B

C

p

>>⑥⑥⑥⑥⑥⑥⑥⑥

where i ∈ L and p ∈ R.
2. L⋔ = R and L = ⋔R.

Examples 3 The following are examples of weak factorization systems:

1. There is a weak factorization system in the category Sets with: L := monomor-
phisms and R := epimorphisms. Note that the factorization and filling are
not unique.

2. There is also a weak factorization system in the category Gpd of groupoids
with: L := injective equivalences and R := fibrations . Recall that a func-
tor is called injective equivalence if it is an equivalence of categories which
is injective on objects. We factor a functor F : X // Y in Gpd as

X //

++❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱ {(x, y, f)| x ∈ ob(X), y ∈ ob(Y ), f : Fx // y}

��
Y

We now turn towards model categories. All results and notions given without
reference can be found in [Hov99].

Definition 4. A model category is a finitely complete and cocomplete category
C equipped with three subcategories: F (fibrations), C (cofibrations), and W
(weak equivalences) satisfying the following two conditions:
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1. (Two-of-three) Given a commutative triangle

A
f

//

h
  ❆

❆❆
❆❆

❆❆
❆ B

g
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

C

if any two of f , g, h belong to W , then so does the third.
2. Both (C,F ∩W) and (C ∩W ,F) are weak factorization systems.

We will refer to model categories sometimes by the tuple (C,W , C,F) or, if
no ambiguity arises, just by the underlying category C. We should also mention
that some authors add an additional axiom that the classes W , C, and F are
closed under retracts. This in fact is redundant as it follows from Definition 4
as explained in [Rie08].

From a model category C one has a functor into its associated homotopy
category Ho(C), which is the initial functor mapping the weak equivalences to
isomorphisms (which defines Ho(C) up to equivalence). A morphism which is
both a fibration and a weak equivalence is called an trivial fibration. Similarly, a
morphism which is both a cofibration and a weak equivalence is called a trivial
cofibration.

Examples 5 The following are examples of model categories:

1. On any complete and cocomplete category C one has the discrete model
structure with C := F := mor C and W := iso C. This is the only model
structure with W = iso C.

2. The category Gpd of groupoids has a structure of a model category with:
F := fibrations, C := functors injective on objects andW := categorical equivalences

3. The category sSets := Sets∆
op

of simplicial sets (where ∆ is the category of
finite non-empty linearly ordered sets) has a standard model structure with
W := {those morphisms inducing isomorphisms on all homotopy groups},
C := {monomorphisms} and F := (W ∩ C)⋔

Definition 6. An object A is called fibrant if the canonical map A // 1 is a
fibration. Similarly, an object is called cofibrant if 0 //A is a cofibration.

Definition/Proposition 7 The following are equivalent for a pair of adjoint
functors L : C ⇆ D : R between model categories:

1. L preserves cofibrations and trivial cofibrations.
2. R preserves fibrations and trivial fibrations.

An adjoint pair satisfying these conditions is called a Quillen adjunction and
it induces an adjunction Ho(C) ⇆ Ho(D) between the homotopy categories. It
is called a Quillen equivalence if this induced adjunction is an equivalence of
categories.
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Notation: Assume C is a finitely complete category and f : B // A is a
morphism in C. The functor taking an object in the slice over A to its pullback
along f will be denoted by f∗ : C/A // C/B. This functor has a left adjoint
denoted by Σf which takes an object in the slice over B and composes it with
f . If f∗ also has a right adjoint, it will be denoted by Πf .

A model category interacts with its slice categories in the following way:

Proposition 8. Let C be a model category and C an object in C. Define that
a morphism f in C/C is a fibration/cofibration/weak equivalence if it is a fibra-
tion/cofibration/weak equivalence in C. Then C/C is a model category with the
model structure described above. Furthermore for every morphism f the adjunc-
tion Σf ⊣ f∗ is a Quillen adjunction.

Definition/Proposition 9 The following are equivalent [Rez02, Prop. 2.7]:

1. Pullbacks of weak equivalences along fibrations are weak equivalences
2. For every weak equivalence f : X //Y the induced Quillen adjunction C/X ⇆

C/Y is a Quillen equivalence

If a model category satisfies these conditions it is called right proper. From
the second formulation one can deduce that right properness only depends on
the class of weak equivalences, not the whole model structure (see also [Cis06,
Cor. 1.5.21]). There also is the dual notion of left properness (pushouts of weak
equivalences along cofibrations are weak equivalences).

Proposition 10 (cf. [Rez02, Rem 2.8]). The following are true for any model
category C

1. If all objects in C are fibrant, then C is right proper.
2. If C is right proper, then so are its slice categories C/X.

A further important property of model categories is the following:

Definition 11. Let λ be a regular cardinal and (C,W , C,F) a model category.
It is called λ-combinatorial if the underlying category is locally λ-presentable
and there are sets I (resp. J) of morphisms between λ-presentable (resp. λ-
presentable and cofibrant) objects such that I⋔ = F ∩W and J⋔ = F . A model
category is combinatorial if it is λ-combinatorial for some λ.

Examples 12 1. The category of sets with the discrete model structure is seen
to be combinatorial taking I := {{0, 1} → {0}, ∅ → {0}} and J := ∅.

2. The category sSets with the standard model structure is combinatorial.
Being a topos it is locally presentable, with the representable functors playing
the role of generators of the category. Since the initial object is the constant
functor with value the empty set and cofibrations are the monomorphisms,
every object is cofibrant. One can take I := {∂∆n → ∆n} (the inclusions
of the borders into full n-simplices) and J := {Λn

k → ∆n} (the inclusions of
the k-th n-horns into n-simplices).
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Combinatorial model categories serve as input for two constructions whose
output are further combinatorial model categories:

Theorem 13 (cf. [Lur09, Sect A.2.8]). Let (C,W , C,F) be a combinatorial
model category and D a small category. If on the functor category CD one defines
the following classes of morphisms,

Cinj := {morphisms which are objectwise in C}
WCD := {morphisms which are objectwise in W}
Fproj := {morphisms which are objectwise in F}

then one has:

– (CD,WCD , Cinj , (WCD ∩ Cinj)⋔) and (CD,WCD , ⋔(WCD ∩ Fproj),Fproj) are
combinatorial model category structures on CD, called the injective and the
projective structure, respectively.

– If (C,W , C,F) is left or right proper, then so are the above model structures.

Examples 14

1. The construction applied to the discrete model structure on the category of
sets yields the discrete model structure on presheaves.

2. For a small category D the injective model structure on simplicial presheaves
is an example for the above construction applied to the combinatorial left
and right proper model category of simplicial sets, yielding the so-called
global injective model structure on sSetsD.

Next we summarize some results on (left Bousfield) localizations. This is a
technique to replace a given model structure on a category by another one,
enlarging the class of weak equivalences, keeping the class of cofibrations and
adjusting the class of fibrations accordingly. The applicability of this technique
is only ensured when the model category is either cellular (for this see [Hir03])
or combinatorial.

In the following theorem we will use the mapping space RHom(X,Y ) ∈
Ho(sSets) which one can associate to any two objects X,Y of a model category
as in [Hov99, Sect. 5.4]—for simplicial model categories this can be taken to be
the simplicial hom-set of morphisms between a cofibrant replacement of X and
a fibrant replacement of Y .

Theorem 15 (J. Smith, proven in [Bar10]). Let (C,W , C,F) be a left
proper combinatorial model category and H a set of morphisms of Ho(C). Define
an object X ∈ M to be H-local if any morphism f : A // B in H induces an
isomorphism f∗ : RHom(B,X) //RHom(A,X) in Ho(sSets). Define WH , the
class of H-equivalences, to be the class of morphisms
f : A // B which induce isomorphisms f∗ : RHom(B,X) // RHom(A,X) in
Ho(sSets) for all H-local objects X. Then (C,WH , C,FH := (WH ∩ C)⋔) is a
left proper combinatorial model structure.
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Remark 16. 1. The fibrant objects in the localized model structure are exactly
the H-local objects which are fibrant in the original model structure.

2. A shorter proof of the above theorem for the special case of simplicial sheaves
can be found in [MV99, Sect. 2.2].

Example 17. One can localize the discrete model structure on presheaves on
a site taking H to be the set of morphisms of the following form: For each
cover {Ai → X |i ∈ I} in the given Grothendieck topology take the canonical
morphism Coeq(

∐
I×I Hom(−, Ai ×X Aj) ⇒

∐
I Hom(−, Ai)) → X. This yields

a non-discrete model structure whose homotopy category is equivalent to the
category of sheaves. Being H-local means in this case satisfying the descent
condition for the covers given from the Grothendieck topology in question.

We still record a property of Bousfield localizations of simplicial sheaf cate-
gories which will be of interest:

Theorem 18 (see [MV99, Thm 2.2.7]). The Bousfield localization with re-
spect to a set A of morphisms of a category of simplicial sheaves with local model
structure is right proper if there exists a set Ã of monomorphisms such that

1. Every arrow from A is isomorphic to one from Ã in the homotopy category

2. Given an object X, a morphism f : Y //Z ∈ Ã and a fibration p : E //X×
Z, the projection from the pullback E×X×ZX×Y is a local weak equivalence.

Last, we gather some basic facts about Cisinski model structures, a class of
model structures on toposes under which many of our examples fall and which
has a big overlap, but does not coincide with, the model structures which can be
constructed in the ways sketched above. In the following we will use the termi-
nology of small and large sets, small meaning to be contained in a Grothendieck
universe.

Definition 19. Let C be a topos. A set W of morphisms of C is called a localizer
if

1. W has the two-of-three property (see 4.1)

2. W contains (MonoC)⋔

3. W is closed under pushouts and transfinite compositions (i.e. for a chain of
morphisms in W the canonical morphism from the domain of the first one
to the colimit of the chain is again in W)

For any set of morphisms S there is a smallest localizer W(S) containing
it, namely the intersection of all localizers containing S. A localizer is called
accessible if it is generated by a small set.

Theorem 20 (see [Cis02, Thm 3.9]). For any accessible localizer W in a
topos C, the tuple (C,W ,Mono, (W ∩Mono)⋔) is a model structure.
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A model structure arising in the above way is called a Cisinski model struc-
ture. Since the cofibrations are the monomorphisms and every morphism with
domain an initial object is a monomorphism, every object in a Cisinski model
category is cofibrant. Hence any such model structure is left proper (10.1). Right
properness is adressed in the following statements:

Theorem 21 (cf. [Cis02, Thm. 4.8]). Let C be a topos and S a small set of
morphisms. Then (C,W(S),Mono, (W ∩Mono)⋔) is right proper if and only if
for every f : X → Y ∈ S and every fibration p : E → B with fibrant domain E
and every morphism g : Y → B, the morphism X×B E → Y ×B E (the pullback
of f along p) is in W(S).

Proposition 22 (cf. [Cis02, Prop. 3.12 and Cor. 4.11]). Let C be a topos
and (Xi|i ∈ I) a small family of objects of C. Then the localizer generated by the
projections {Z ×Xi → Z|Z ∈ ob(C)} is accessible and the corresponding model
structure is right proper.

Example 23. An example from mathematical practice of this last kind of model
structure, obtained by “contracting” a family of objects, is the category Sets∆

op
×Sm/S

of sSets-valued functors on smooth schemes over a base S where one localizes
the local injective model structure on sSetsSm/S by the set

{!× 1 : A1 ×Hom(−, X) // Hom(−, X)|X ∈ Sm/S}

4 Main Theorem and Examples

In this section we will define the notion of a logical model category and show
how one can interpret Π- and Σ-types in such a category.

Definition 24. We say that C is a logical model category if C is a model
category and in addition the following two conditions hold:

1. if f : B // A is a fibration in C, then there exists the right adjoint Πf to
the pullback functor f∗.

2. the class of trivial cofibrations is closed under pullback along a fibration.

Clearly, one has the following corollary which provides a convenient way of
checking that a model category is in fact a logical model category.

Corollary 25. If C is a model model satisfying the following three conditions:

1. if f : B // A is a fibration in C, then there exists the right adjoint Πf to
the pullback functor f∗.

2. the class of cofibrations is closed under pullback along a fibration.
3. C is right proper.

then C is a logical model category.
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Given a logical model category C one can informally describe the interpreta-
tion of the syntax of type theory with Π- and Σ-types as follows (it can be made
formal using Pitts’es formalism of type categories as described in [Pit01]):

– contexts are interpreted as fibrant objects. In particular the empty context
is interpreted as a terminal object in C.

– a judgement Γ ⊢ A type is interpreted as a fibration [[Γ, x : A]] // [[Γ ]].

– a judgement Γ ⊢ a : A is interpreted as a section of [[Γ, x : A]] // [[Γ ]] i.e.

[[Γ ]]
[[a]]

//

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

[[Γ, x : A]]

[[Γ⊢A type]]
zztt
tt
tt
tt
t

[[Γ ]]

– substitution along f : Γ //∆ is interpreted by means of the pullback functor
f∗.

One can observe that the notion of model for type theory, which is a logical
model category, is too strong. In fact, we do not need the whole model structure
but only one weak factorization system. However, all the examples we have in
mind are already model categories so introducing the notion of model in this
way is not really a restriction from this point of view.

Theorem 26. If C is a logical model category, then the above interpretation is
sound.

Proof. The interpretation of Π- and Σ-types goes along the lines of [See84], that
is they are interpreted by means of the right adjoint and the left adjoint to
the pullback functor, respectively. The only new thing one has to show is that if
f : B //A is a fibration, then Πf and Σf preserve fibrant objects (to validate the
formation rules). So it is enough to show that Πf and Σf preserve fibrations. In
case of Σf it is clear since the class of fibrations is closed under composition. For
Πf we observe that since fibrant objects in the slice C/B are precisely fibrations
in C whose codomain is B we may use theorem 7 (by the two pullback lemma)
to reduce the problem to condition 2. from the Definition 24.

There is a big class of examples:

Proposition 27. 1. Any right proper Cisinski model structure admits a good
interpretation of Π- and Σ-types, i.e. satisfies conditions 1–3.

2. Any left Bousfield localization of the category of sheaves on a site with the
injective model structure is an example of this, provided that either 18, 21
or 22 apply.

will
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Proof. We proceed by checking the conditions of Corollary 25:
Condition 1: Toposes are locally cartesian closed.
Condition 2: The cofibrations of the injective model structure are the monomor-

phisms and by definition they stay the same after a left Bousfield localisation.
The class of monomorphisms is closed under pullback.

Condition 3: Right properness is ensured by hypothesis in the first case and
by 18, 21, 22 in the second.

Proposition 28. If C is a logical model category, then so is any slice category
C/X.

Proof. By definition of the model structure in 8, the cofibrations, fibrations and
weak equivalences in C/X are defined to be those of C. Since pullbacks in a
slice category are also pullbacks in the original category, trivial cofibrations are
preserved under pullback along fibrations by hypothesis. The right adjoint of
pullback along a fibration in C/X is the one from C, the adjointness property
follows from the one for C using that (C/X)/A ∼= C/A for every object A → X
of C/X .

We now give some concrete examples of model categories satisfying conditions
(1)–(3).

4.1 Groupoids

Our first example is the categoryGpd of groupoids. It is well known (see [Gir64,
Con72]) that the right adjoint Πf to the pullback functor exists in Gpd (as
a subcategory of Cat) if and only if f is a so-called Conduché fibration. In
particular, any fibration or opfibration is a Conduché fibration. Since we are
interested only in taking Πf for f being a fibration, the condition (1) is satisfied.
Alternatively, as was pointed out by a referee, one can deduce satisfaction of (1)
from the fact that we are only interested in the restriction of the pullback functor
to fibrations and this restricted pullback functor always has a right adjoint (no
matter what we are pulling back along). Conditions (2) and (3) also hold. It
is standard to verify that a pullback of a functor injective on objects (resp. an
equivalence of categories) is again injective on objects (an equivalence).

The model obtained above is known as the Hofmann-Streicher groupoid model
which was the first intensional model of Martin-Löf Type Theory (see [HS98]).

4.2 Extreme Examples

Discrete model structures: Any bicomplete, locally cartesian closed category
endowed with the discrete model structure (C := F := mor C and W := iso C)
satisfies conditions (1), (2) and (3): The right adjoint to the pullback functor
exists by hypothesis, the cofibrations are trivially closed under pullbacks and
since every object is fibrant right properness is ensured by the first criterion
given in 10. The interpretation of type theories given in the last section then
coincides with the usual extensional one.
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Two indiscrete model structures on a Grothendieck topos: On any
Grothendieck topos (automatically satisfying condition (1)) one has two model
structures in which the weak equivalences are all morphisms: A Cisinski model
structure, and one in which the cofibrations are the complemented monomor-
phisms and the fibrations are the split epimorphisms. Right properness of this
latter model structure follows from the fact that the first model structure is
right proper together with the fact that properness depends only on the weak
equivalences (9). Stability of cofibrations under pullback is given by the fact that
pulling back commutes with taking complements in a topos.

The minimal Cisinski model structure on Sets: There is a model struc-
ture on Sets, see [Cis02] Ex. 3.7, such that cofibrations are monomorphisms and
weak equivalences are all morphisms except those whose domain is the empty
set and whose codomain is not. The fibrations in this model structure are the
epimorphisms and the maps whose domain is the empty set. It is the minimal
Cisinski model structure, W := W(∅) and thus by 22, applied to the empty set
of morphisms, is right proper.

4.3 Localized Structures on (Pre)sheaf Categories

Taking a category of presheaves on a site (it is locally cartesian closed, ensuring
(1)) we can endow it with the discrete model structure. By 12 the discrete model
structure on the category of sets is combinatorial, hence by 13 and 14(1) so is
the one on presheaves. It is left and right proper since all objects are fibrant and
cofibrant (by 10) and hence one can apply left Bousfield localization.

Localization by Grothendieck topologies: Examples from mathematical
practice are ubiquitous and include the Sets-valued presheaves localized by a
Grothendieck topology as in 17(3)—e.g. by the Grothendieck topologies for sheaf
toposes of topological spaces, for the étale, crystalline, or Zariski toposes of
schemes, Weil-étale toposes or classifying toposes of geometric theories.

Presheaves on Test categories: There is a theory of functor categories on
test categories that are categories supporting model structures which are Quillen
equivalent to the standard model structure on topological spaces, see [Cis06]. The
best known examples are cubical sets and simplicial sets. To give an idea about
how the further studies of these examples will be pursued we add a description
of the Π-functor for sSets:

Let p : X //B be an object in sSets/B and f : B //A a fibration of simplicial
sets. Moreover let a : ∆n // A be a cell inclusion and f∗(a) =: a. Then

Πf (X, p)n = {h : ∆n ×A B //X | p ◦ h = a}.

Models for the A
1-homotopy category: Let S be some base scheme

and Sm/S the category of smooth schemes over S. There are two Quillen
equivalent Cisinski models for the A

1-homotopy category, one model struc-
ture on the category of Sets-valued Nisnevich sheaves on Sm/S, and one on
the category of sSets-valued Nisnevich sheaves on Sm/S. The latter is ob-

tained by localizing the injective model structure on sSetsSm/S by the class
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{! × 1 : A1 × Hom(−, X) // Hom(−, X)|X ∈ Sm/S}; the former by a simi-
lar process; see [Voe98] for details. We remark that these are presentations of a
locally cartesian closed ∞-category which is not an ∞-topos.

5 Future Research

In this section we show further directions that are of our interest in [AK12].

Semantics in fibration categories. One can observe that our interpretation of
Π-, Σ-, and Id-types uses in fact one weak factorization system, not the whole
model structure. Since a weak factorization system on its own does not provide a
notion of homotopy, one may wish to look for a different notion of semantics. A
framework to address such a question can be provided by fibration categories (see
[Bau89, Bro73]). Fibration categories have a well-behaved notion of homotopy,
while also seem to be rich enough to admit an interpretation of type theory.

Further properties of Π-types. One may recognize in Π-comp the standard β-
rule from λ-calculus. This rule is by Theorem 26 satisfied in any logical model
category. In [AK12] we will address the question which among other rules that
one can associate with Π-types (such as functional extensionality or η-rule; see
[Gar09] for more detailed treatment) are satisfied in logical model categories.

Extending the class of categories admitting an interpretation of Π-types. One
may try broaden the scope of our interpretation of Π-types in two directions.
First, our definition of logical model category required the existence of a right
adjoint to the pullback functor along a fibration. It seems enough, however,
to require a right adjoint to the restriction of this pullback functor to the full
subcategory whose objects are fibrations. Second, we required the right adjoint
to take fibrations to fibrations. Alternatetively one may try to force this property
using the fibrant replacement functor in a model category. However, in both cases
a careful consideration of coherence issues is required, while in the setting of this
work the standard methods apply to give coherence.

A Structural rules of Martin-Löf Type Theory

The structural rules of Martin-Löf Type Theory are:
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Variables Substitution

Γ ⊢ A type

Γ, x : A ⊢ x : A
Vble

Γ ⊢ a : A Γ, x : A, ∆ ⊢ I

Γ, ∆[a/x] ⊢ I[a/x]
Subst

Weakening Exchange

Γ ⊢ A type Γ ⊢ I

Γ, x : A ⊢ I
Wkg

Γ, x : A, y : B, ∆ ⊢ I

Γ, y : B, x : A, ∆ ⊢ I
Exch

if x is not free in B.

Definitional (Syntactic) Equality

Γ ⊢ A type

Γ ⊢ A = A type

Γ ⊢ A = B type

Γ ⊢ B = A type

Γ ⊢ A = B type Γ ⊢ B = C type

Γ ⊢ A = C type

Γ ⊢ a : A

Γ ⊢ a = a : A

Γ ⊢ a = b : A

Γ ⊢ b = a : A

Γ ⊢ a = b : A Γ ⊢ b = c : A

Γ ⊢ a = c : A
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ML72. Per Martin-Löf, An intuitionstic theory of types, Technical Report, University

of Stockholm (1972).
MV99. Fabien Morel and Vladimir Voevodsky, A1-homotopy theory of schemes, Inst.

Hautes Études Sci. Publ. Math. (1999), no. 90, 45–143 (2001). MR 1813224
(2002f:14029)

NPS90. Bengt Nordström, Kent Petersson, and Jan M. Smith, Programming in
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