Skip to main content

Recognizing the Use of Portable Electrical Devices with Hand-Worn Magnetic Sensors

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6696))

Abstract

The new method proposed here recognizes the use of portable electrical devices such as digital cameras, cellphones, electric shavers, and video game players with hand-worn magnetic sensors by sensing the magnetic fields emitted by these devices. Because we live surrounded by large numbers of electrical devices and frequently use these devices, we can estimate high-level daily activities by recognizing the use of electrical devices. Therefore, many studies have attempted to recognize the use of electrical devices with such approaches as ubiquitous sensing and infrastructure-mediated sensing. A feature of our method is that we can recognize the use of electrical devices that are not connected to the home infrastructure without the need for any ubiquitous sensors attached to the devices. We evaluated the performance of our recognition method in real home environments, and confirmed that we could achieve highly accurate recognition with small numbers of hand-worn magnetic sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Blum, M., Pentland, A.S., Troster, G.: Insense: Interest-based life logging. IEEE Multimedia 13(4), 40–48 (2006)

    Article  Google Scholar 

  3. Cohn, G., Gupta, S., Froehlich, J., Larson, E., Patel, S.N.: GasSense: Appliance-level, single-point sensing of gas activity in the home. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive Computing. LNCS, vol. 6030, pp. 265–282. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. The Swedish Confederation for Professional Employees, http://www.tco.se/

  5. Froehlich, J.E., Larson, E., Campbell, T., Haggerty, C., Fogarty, J., Patel, S.N.: Hydrosense: Infrastructure-mediated single-point sensing of whole-home water activity. In: Ubicomp 2009, pp. 235–244 (2009)

    Google Scholar 

  6. ICNIRP Guidelines. Guidelines for limiting exposure to timevarying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Physics 74(4), 494–522 (1998)

    Google Scholar 

  7. Huynh, T., Schiele, B.: Towards less supervision in activity recognition from wearable sensors. In: Int’l Symp. on Wearable Computers, pp. 3–10 (2006)

    Google Scholar 

  8. Kim, Y., Schmid, T., Charbiwala, Z.M., Srivastava, M.B.: ViridiScope: design and implementation of a fine grained power monitoring system for homes. In: Ubicomp 2009, pp. 245–254 (2009)

    Google Scholar 

  9. Lenz, J.E.: A review of magnetic sensors. Proceedings of the IEEE 78(6), 973–989 (1990)

    Article  Google Scholar 

  10. Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Lester, J., Choudhury, T., Kern, N., Borriello, G., Hannaford, B.: A hybrid discriminative/generative approach for modeling human activities. In: IJCAI 2005, pp. 766–772 (2005)

    Google Scholar 

  12. Lukowicz, P., Ward, J., Junker, H., Stäger, M., Tröster, G., Atrash, A., Starner, T.: Recognizing workshop activity using body worn microphones and accelerometers. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 18–32. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Maekawa, T., Yanagisawa, Y., Kishino, Y., Ishiguro, K., Kamei, K., Sakurai, Y., Okadome, T.: Object-based activity recognition with heterogeneous sensors on wrist. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive Computing. LNCS, vol. 6030, pp. 246–264. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Maekawa, T., Yanagisawa, Y., Kishino, Y., Kamei, K., Sakurai, Y., Okadome, T.: Object-blog system for environment-generated content. IEEE Pervasive Computing 7(4), 20–27 (2008)

    Article  Google Scholar 

  15. Mayol, W.W., Murray, D.W.: Wearable hand activity recognition for event summarization. In: Int’l Symp. on Wearable Computers, pp. 122–129 (2005)

    Google Scholar 

  16. Patel, S.N., Robertson, T., Kientz, J.A., Reynolds, M.S., Abowd, G.D.: At the flick of a switch: Detecting and classifying unique electrical events on the residential power line. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 271–288. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Philipose, M., Fishkin, K.P., Perkowitz, M.: Inferring activities from interactions with objects. IEEE Pervasive Computing 3(4), 50–57 (2004)

    Article  Google Scholar 

  18. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: IAAI 2005, vol. 20, pp. 1541–1546 (2005)

    Google Scholar 

  19. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. van Kasteren, T., Noulas, A., Englebienne, G., Krose, B.: Accurate activity recognition in a home setting. In: Ubicomp 2008, pp. 1–9 (2008)

    Google Scholar 

  21. Welch, L.R.: Hidden markov models and the baum-welch algorithm. IEEE Information Theory Society Newsletter 53(4) (2003)

    Google Scholar 

  22. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maekawa, T., Kishino, Y., Sakurai, Y., Suyama, T. (2011). Recognizing the Use of Portable Electrical Devices with Hand-Worn Magnetic Sensors. In: Lyons, K., Hightower, J., Huang, E.M. (eds) Pervasive Computing. Pervasive 2011. Lecture Notes in Computer Science, vol 6696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21726-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21726-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21725-8

  • Online ISBN: 978-3-642-21726-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics