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Transformation Equivariant Boltzmann
Machines

Jyri J. Kivinen and Christopher K. I. Williams

Institute for Adaptive and Neural Computation
School of Informatics, University of Edinburgh, UK
j.j.kivinen@sms.ed.ac.uk,ckiw@inf.ed.ac.uk

Abstract. We develop a novel modeling framework for Boltzmann ma-
chines, augmenting each hidden unit with a latent transformation assign-
ment variable which describes the selection of the transformed view of
the canonical connection weights associated with the unit. This enables
the inferences of the model to transform in response to transformed in-
put data in a stable and predictable way, and avoids learning multiple
features differing only with respect to the set of transformations. Ex-
tending prior work on translation equivariant (convolutional) models,
we develop translation and rotation equivariant restricted Boltzmann
machines (RBMs) and deep belief nets (DBNs), and demonstrate their
effectiveness in learning frequently occurring statistical structure from
artificial and natural images.

Keywords: Boltzmann machines, transformation equivariant represen-
tations, convolutional structures, transformation invariance, steerable fil-
ters, image modeling

1 Introduction

We consider the problem of using DBN architectures to model the structure
occurring in natural images. One of the desiderata for a computer vision system
is that if the input image is transformed (e.g. by a translation of two pixels
left), then the inferences made by the system should co-transform in a stable,
and predictable way; this is termed equivariance. This behavior has been moti-
vational in the development of steerable filters [1], and we argue that obtaining
such transformation equivariant representations is important for the architec-
tures that we are considering as well. Translational equivariance is readily built
in by a convolutional architecture as found in neural networks [2, 3], and more
recently for RBMs see e.g. [4]. However, there are additional transformations
that should be taken into account: in this paper we focus on equivariance with
respect to in-plane rotations. Building in such property is important to avoid
the system having to learn rotated versions of the same patterns at all levels
in the network. For example in Fig. 2 of [4] many of the learned filters/ filter
combinations shown are rotated versions of each other. The goal of this paper
is to build a DBN architecture that is translation and rotation equivariant. To
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do this we introduce a novel kind of rotational/steerable unit for Boltzmann
machines, as described in section 2.

One of the inspirations for this paper is the work of Fidler and Leonardis
[5], in which conjunctions of edge and bar (sine and cosine) Gabor features are
built up into more complex patterns that occur frequently in the input image
ensemble. Their architecture is translation and rotation invariant. However, their
method does not define a generative model of images, but rather performs a
layerwise grouping of features from layer `− 1 to create features at layer `. This
means that it is heavily dependent on various thresholds used in the learning
algorithm, and also that it is unable to carry out bottom-up/top-down inference
in the face of ambiguous input or missing data. We show how such translation
and rotation invariant groupings arise naturally in a fully-specified multi-layer
generative model.

2 Building in Transformation Equivariance
We first discuss the rotation-equivariant restricted Boltzmann machine (STEER-
RBM) model which has one hidden layer; this hidden layer contains the ‘steer-
able’ units which are a particular feature of our architecture. Next in section
2.2 we describe a translation equivariant version of the model, and finally in
section 2.3 generalize this to a deep belief net, which is the multi-hidden-layer
generalization of the translation and rotation equivariant model.

2.1 Rotation Equivariant RBMs
The key feature of the STEER-RBM is the construction of the stochastic steer-
able hidden units, each of which combines a binary-valued activation variable
hj turning the unit on/off with an associated discrete-valued rotation variable
rj taking on possible states k = 1, . . .K, whose effect is to in-plane rotate the
weights of the unit by 360(k − 1)/K degrees. Let Wj(·, 1) be the canonical pat-
tern of weights connecting hidden unit hj to visible units v under no rotation.
The transformed weights Wj(·, k) for rotation k are derived from the canonical
view using geometrical knowledge of in-plane rotations, so that

Wj(·, k) = R(k)Wj(·, 1) ⇒ Wj(i, k) =
D∑
`=1

R(k)(i, `)Wj(`, 1), (1)

where R(k) is a fixed D×D transformation matrix applying an in-plane rotation
of 360(k− 1)/K degrees, and D denotes the number of pixels/visible units in v.
Note that by choosing K large we can approximate rotations to any desired ac-
curacy. An example of this rotation in action is shown in the top row of Figure 1.
In our implementation, we bilinearly interpolate the weights into their new loca-
tions, such that each of the elements in the rotated view is computed as a convex
combination of (maximally) four neighboring rotated canonical weights, each of
which have been rotated about the center of the canonical weights plane1. Thus
1 To avoid boundary artifacts with non-circular receptive fields, one can zero pad the

canonical weights plane such that each of the rotated canonical weights are within
the boundaries defined by the extended plane for any rotation angle.
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each row of the rotation matrices contains maximally four non-zero elements
which sum to one.

Given this architecture, the joint probability density of a STEER-RBM model
consisting of visible units v and binary hidden units (h, r) is given by the
Boltzmann-distribution p(v,h, r | θ) ∝ exp {−E(v,h, r | θ)} with the following
energy, assuming continuous, conditionally Gaussian units:2

E(v,h, r | θ) =
∑
i

v2
i − 2avi

2σ2
−
∑
j

hjbj −
1
σ

∑
j

hj
∑
i

viWj(i, rj) (2)

where θ = {a,b,W, σ} consist of hidden unit biases b, visible unit biases a,
connection weights W, and the standard deviation of the Gaussian conditional
distributions of the visible units σ. The energy function for binary visible units
can be obtained by removing the quadratic term v2

i , and setting σ to unity. As
Wj(i, rj) =

∑K
k=1 δ(k, rj)Wj(i, k), the model defines a mixture of RBMs, but in

contrast with the implicit mixture RBM model of [6], there is parameter sharing
between the mixture components due to rotation equivariance. Although we have
described the RBMs of above, extensions of other energy-based models to use
rotational units could be also considered, such as conditionally full-covariance
Gaussian models [7].

2.2 Rotation and Translation Equivariant RBMs

To learn models for whole images, a translation equivariant extension of the
STEER-RBM is used, assuming a reduced connectivity structure so that a hid-
den unit hj is connected to a subset of visible units specified by a receptive
field system, and parameter sharing is used so that the responses of units to a
stimulus are translation equivariant. We call the hidden units sharing these pa-
rameters a feature plane. To extend convolutional RBMs, the STEER-RBM also
adds input rotation equivariance to hidden unit activation. Thus we consider a
weight kernel ωα for feature plane α, which is sufficient to define the connection
weights between the hidden units in feature layer α and the visible units. The
energy function for the convolutional STEER-RBM is then

E(v,h, r | θ) =
∑
i

v2
i − 2avi

2σ2
−
∑
α,j

hαj

bα +
1
σ

∑
`∈Nαj

v` ωα(d(j, `), rαj)

 (3)

where a is visible unit layer bias, bα is the bias for hidden unit feature plane
α, Nαj indexes the visible units within the receptive field of hidden unit hαj , σ
defines the standard deviation of the univariate Gaussian conditional distribu-
tion p(vi | h, r, θ), and d(j, i) computes the spatial-offset dependent index of the
weight kernel weight that is used to connect hidden unit hj to vi.
2 The joint probability density of the visible units conditional on the hidden units and

model parameters factorizes as a multivariate spherical-covariance Gaussian.
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2.3 Rotation and Translation Equivariant Deep Belief Nets

To learn higher-level patterns from images, we follow the DBN approach of [8],
stacking multiple layers of convolutional STEER-RBMs on top of each other.
In this model, each of the hidden units in a higher level STEER-RBM is con-
nected to a subset of the hidden units in each of the feature planes in the hid-
den layer below, again via by a receptive field system. As both the higher and
lower level units are rotational, we now need a triply indexed weight parameter
ω`α`−1β

(j,m, k) which connects a unit in feature plane α in layer ` to feature plane
β in layer ` − 1 below. Here j denotes the spatial offset, while m and k index
the rotational states in the lower and higher layers respectively. Thus the energy
function between layers ` and `− 1 is of the following form:

E
(
h`−1, r`−1,h`, r` | θ`

)
= −

∑
β

b`−1
β

∑
i

h`−1
βi −

∑
α

b`α
∑
j

h`αj

−
∑
α

∑
j

h`αj
∑
β

∑
i∈N`αj

h`−1
βi ω

`α
`−1β

(d(j, i), r`−1
βi , r`αj). (4)

The computation of the transformed weights for these higher hidden layers has
to be different from that of the first layer, since changing the rotational state of a
higher level pattern needs to rotate the lower level rotational states/patterns ac-
cordingly. The transformations for each feature can be again done by knowledge
using fixed transformation operators, by first in-plane rotating the lower-level
rotation-specific canonical weight matrix slices, and then circularly shifting the
dimensions of the resulting matrix. The non-canonical view of a level ` weight
kernel can be thus written as follows:

ω`α`−1β
(j,m, k) =

K∑
ρ=1

S(k)(ρ,m)
∑
δ

R(k)(j, δ)ω`α`−1β
(δ, ρ, 1), (5)

where S(k) is a fixed K × K binary matrix applying a circular shift (of k − 1
shifts) forward to the columns of R(k)ω`α`−1β

(·, ·, 1).

3 Inference and Learning in the Models

As with standard RBMs, the conditional distributions of the hidden units are
independent given v for the convolutional STEER-RBM. Thus we have for (3)
that p(h, r | v, θ) =

∏
α

∏
j p(hαj | v, θ) p(rαj | hαj ,v, θ), where

p(hαj | v, θ) =

∑K
k=1 exp

{
hαj

(
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), k)
)}

K +
∑K
k=1 exp

{
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), k)
} ,(6)

p(rαj | hαj = 1,v, θ) =
exp

{
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), rαj)
}

∑K
k=1 exp

{
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), k)
} . (7)
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The key quantity in this computation is aαj(k) =
∑
`∈Nαj

v` ωα(d(j, `), k) which
computes the dot product of the visible variables in Nαj with weight kernel
wα at rotation k. (6) evaluates a nonlinear combination of these quantities
summed over k compared to K in order to compute p(hαj | v, θ). Similarly in (7)
p(rαj | hαj = 1,v, θ) is computed based on the relative strengths of the aαj(k)
terms. For a multi-layer network a crude approximation to full inference is to
sample from the learned STEER-RBMs layerwise from bottom to top. More so-
phisticated alternatives are possible, such as the up-down algorithm described
in [8], or e.g. some other Markov chain Monte Carlo sampling methods.

As usual with DBNs we learn the parameters of the models layer-wise. We
have used stochastic gradient-descent based methods to train the models in the
experiments, optimizing an objective function consisting of a data fit term, plus
a term that encourages sparsity3. For a datafit term based on the log likelihood
L, the gradient wrt a parameter θ is given by ∂L

∂θ = 〈∂E∂θ 〉
+ − 〈∂E∂θ 〉

−, where 〈·〉+
denotes expectation with the training data clamped, and 〈·〉− the unclamped
phase. In fact we generally use the contrastive divergence CD-1 approximation
to the negative phase. To understand how the model learns under optimization,
it is instructive to consider the partial derivatives of the energy function with
respect to the canonical features. Assuming the model of (3), we have that

∂E(v,h, r | θ)
∂ωα(δ, 1)

= − 1
σ

∑
j

hαj
∑
`∈Nαj

v` R
(rαj)(d(j, `), δ). (8)

This has the effect of multiplying the visible pattern in Nαj by (R(rαj))T . As
this is a close approximation to applying a reverse rotation, patterns which are
detected to be present in a non-canonical orientation, are rotated ‘back’ into
the canonical view, in which the feature-specific canonical statistics are then
updated. The learning is similar for the higher layer models, where the alignment
also takes into account the lower unit’s rotation assignment. Partial derivatives
with respect to the biases take the standard forms.

4 Experiments
We first learnt RBM models (3) from a set of whitened natural images [9] using
CD-1 learning4. Fig. 1 (left, top) shows the type of feature consistently learnt
as the most significant, at various rotations. This is an “edge detector”, similar
to the features found e.g. in [4] at various orientations. The bottom row shows
a natural image patch, and most likely states colour-coded according to orien-
tation, at each location. The responses occur at edge-like structures; notice the
steady rotational response change, e.g. while tracing the outline of the central ob-
ject. We have also trained this model with several feature planes; results using
three are shown (right). To validate the higher-layer learning we first consid-
3 Non-sparsity is penalized proportional to a sum of feature-plane specific cross-

entropies, each between a Bernoulli target distribution, and the distribution record-
ing the average probability of a unit being off or on at the plane, similar to [6].

4 σ was set close to the data standard deviation. The total target activation for sparsity
encouragement was 0.1.
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Rotational Views of a Feature 3 Features

Input Stimulus Most Likely States

Fig. 1. Left-top: Learned feature at various orientiations (with receptive field diameter
= 9). Left-bottom: Whitened natural image region, and most likely unit states (colour-
coded according to rotation). Right: Weights of the learned set of 3 features.

ered modeling artificial rotational pattern data simulating first-layer responses.
Fig. 2 shows input patterns; the four colours denote four different orientation
responses. There are two patterns in the noisy data, one consisting of 3 active
inputs, and the other of 2. These are successfully learned, see panels 2 and 4,
and the caption for more details. We have also applied the learning to the nat-
ural images, using the single edge-like feature in the first layer. The results (see
Fig. 3) show this yields higher-order conjunctions of this feature, such as ex-
tended and curved edges, and intersections. Note that these features are similar
to SIFT-descriptors [10], but in a generative framework.

Activations (Feat. 1) Feature 1 Activations (Feat. 2) Feature 2

Fig. 2. Features learned from rotation colour-coded (→,↑,←,↓) artificial data contain-
ing rotated, randomly placed instances of two rotational shapes, in clutter. Panels 1
and 3 show the data, with the respective higher level features denoted by bounding
boxes of the units’ receptive field size centered on the unit location, and coloured ac-
cording to the rotation assignment. In panels 2 and 4 the 5×5 canonical weight kernels
are visualized using oriented black/white line segments, placed to start from an evenly
spaced grid. The grid locations denote the spatial offsets for the weight kernels weights,
the different orientations index the lower-level rotational states, the segment lengths
denote the weight magnitude, and colour denoting the sign with black denoting a neg-
ative, and white denoting positive a weight. (Essentially this extends the Hinton plot
to deal with (multi-way-)oriented weights.)
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Fig. 3. (Top) The second layer weights (displayed as in Fig. 2) for 8 second-layer
features. (Bottom) The first panel shows the first-layer basis feature; the other panels
show the (linearly combined) first layer basis projections of the 8 features.

5 Related Work

We have discussed above the work of Fidler and Leonardis [5]. The work of Zhu
et. al. [11] is similar to [5], except that there is a top-down stage to the learning
process (but not in the given the inference algorithm) to fill in missing parts of
the hierarchy. Both papers use hand-crafted algorithms for detecting groupings
of lower-level features, involving various thresholds. In contrast we formulate
the problem as a standard DBN learning algorithm, but build in transformation
equivariance. One advantage of the DBN is that it is naturally set up for bottom-
up/top-down inference in the face of ambiguity or missing data.

The orientation-adapted Gaussian scale mixture (OAGSM) model [12] de-
scribes how a Gaussian model for a wavelet coefficient responses corresponding
to an image patch can be augmented with latent variables to handle signal am-
plitude and dominant orientation. This allows e.g. modelling of oriented texture
at arbitrary rotations. The learned edge filters at the first level of our model
are analogous to the wavelet responses, while our second level units model the
correlations between the coefficients. However, note (i) that the OAGSM model
is only a model for patches not entire images, and (ii) that it does not pro-
vide a mixture model over the types of higher-level regularity, e.g. lines, corners,
T-junctions etc. On the other hand the real-valued modelling of wavelet coeffi-
cients by OAGSM is more powerful than the binary activations of units in the
STEER-DBN.

Our goal is to build in equivariance to known (translational and rotational)
transformations. In contrast Memisevic and Hinton [13] describe how to learn
transformations based on pairs of training images using factored 3-way Boltz-
mann machines. Such a network could be used in to identify rotated versions of
a given pattern, e.g. by fixing a reference version of the pattern and inferring the
transformation. However, it seems rather excessive to learn the machinery for
this when it can be built in. Our work should not be confused with the directional
unit Boltzmann machine (DUBM) network of Zemel et al [14]. Although DUBM
units contain a rotational variable, this is not used to model relative rotations of
subcomponents. For example in [15] the authors present a convolutional archi-
tecture where the rotational variable denotes the phase of an oscillator, relating
to the theory of binding-by-synchrony.
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6 Discussion
As we have shown, the STEER-DBN architecture handles translation and rota-
tion invariances. The other natural transformation to consider is image scaling.
However, this can be relatively easily handled by the standard computer vision
method of downsampling the input image by various factors, and applying the
similar processing to each scale. Higher layers at a given scale can also take in-
puts from various scales. Alternatively one could introduce scaling assignment
variables for each unit similar to the ones for rotation, scaling the features.

Other future work includes learning more hidden layers, and using more
expressive bottom-layer models, such as those allowing dependent Gaussian dis-
tributions for the visibles conditional on the hidden units [7].
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