Skip to main content

Linear Operators and Stochastic Partial Differential Equations in Gaussian Process Regression

  • Conference paper
Book cover Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6792))

Included in the following conference series:

Abstract

In this paper we shall discuss an extension to Gaussian process (GP) regression models, where the measurements are modeled as linear functionals of the underlying GP and the estimation objective is a general linear operator of the process. We shall show how this framework can be used for modeling physical processes involved in measurement of the GP and for encoding physical prior information into regression models in form of stochastic partial differential equations (SPDE). We shall also illustrate the practical applicability of the theory in a simulated application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Hagan, A.: Curve fitting and optimal design for prediction (with discussion). Journal of the Royal Statistical Society B 40(1), 1–42 (1978)

    MathSciNet  MATH  Google Scholar 

  2. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  3. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Dover (1993)

    Google Scholar 

  4. Carlson, A.B.: Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 3rd edn. McGraw-Hill, New York (1986)

    Google Scholar 

  5. Hayes, M.H.: Statistical Digital Signal Processing and Modeling. John Wiley & Sons, Chichester (1996)

    Google Scholar 

  6. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  7. Guenther, R.B., Lee, J.W.: Partial Differential Equations of Mathematical Physics and Integral Equations. Dover, New York (1988)

    Google Scholar 

  8. Griffiths, D.J.: Introduction to Electrodynamics, 3rd edn. Pearson, London (2008)

    Google Scholar 

  9. Holden, H., Øksendal, B., Ubøe, J., Zhang, T. (eds.): Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach. Birkhäuser, Basel (1996)

    MATH  Google Scholar 

  10. Whittle, P.: On stationary processes in the plane. Biometrica 41(3/4), 434–449 (1954)

    Article  MathSciNet  Google Scholar 

  11. Matérn, B.: Spatial variation. Technical report, Meddelanden från Statens Skogforskningsinstitut, Band 49 - Nr 5 (1960)

    Google Scholar 

  12. Christakos, G.: Random Field Models in Earth Sciences. Academic Press, London (1992)

    MATH  Google Scholar 

  13. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, Chichester (1993)

    MATH  Google Scholar 

  14. Gelfand, A.E., Diggle, P.J., Fuentes, M., Guttorp, P.: Handbook of Spatial Statistics. Chapman & Hall/CRC (2010)

    Google Scholar 

  15. Jain, A.K.: Partial differential equations and finite-difference methods in image processing, part 1: Image representation. Journal of Optimization Theory and Applications 23(1) (1977)

    Article  MathSciNet  Google Scholar 

  16. Jain, A.K., Jain, J.R.: Partial differential equations and finite difference methods in image processing – part II: Image restoration. IEEE Transactions on Automatic Control 23(5) (1978)

    Article  Google Scholar 

  17. Curtain, R.: A survey of infinite-dimensional filtering. SIAM Review 17(3), 395–411 (1975)

    Article  MathSciNet  Google Scholar 

  18. Ray, W.H., Lainiotis, D.G.: Distributed Parameter Systems. Marcel Dekker, New York (1978)

    MATH  Google Scholar 

  19. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2004)

    MATH  Google Scholar 

  20. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Applied mathematical Sciences, vol. 160. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  21. Hiltunen, P., Särkkä, S., Nissila, I., Lajunen, A., Lampinen, J.: State space regularization in the nonstationary inverse problem for diffuse optical tomography. Inverse Problems 27(2) (2011)

    Article  MathSciNet  Google Scholar 

  22. Alvarez, M., Lawrence, N.D.: Sparse convolved Gaussian processes for multi-output regression. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 21, pp. 57–64. The MIT Press, Cambridge (2009)

    Google Scholar 

  23. Alvarez, M., Luengo, D., Titsias, M.K., Lawrence, N.D.: Efficient multioutput Gaussian processes through variational inducing kernels. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the 13th International Workshop on Artificial Intelligence and Statistics, pp. 25–32 (2010)

    Google Scholar 

  24. Alvarez, M., Lawrence, N.D.: Latent force models. In: van Dyk, D., Welling, M. (eds.) Proceedings of the 12th International Workshop on Artificial Intelligence and Statistics, pp. 9–16 (2009)

    Google Scholar 

  25. Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)

    MATH  Google Scholar 

  26. Graepel, T.: Solving noisy linear operator equations by Gaussian processes: Application to ordinary and partial differential equations. In: Proceedings of 20th International Conference on Machine Learning (2003)

    Google Scholar 

  27. Solak, E., Murray-Smith, R., Leithead, W.E., Leith, D., Rasmussen, C.E.: Derivative observations in Gaussian process models of dynamic systems. In: Advances in Neural Information Processing Systems, vol. 15, pp. 1033–1040. MIT Press, Cambridge (2003)

    Google Scholar 

  28. O’Hagan, A.: Bayes-Hermite quadrature. Journal of Statistical Planning and Inference 29, 245–260 (1991)

    Article  MathSciNet  Google Scholar 

  29. Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Särkkä, S. (2011). Linear Operators and Stochastic Partial Differential Equations in Gaussian Process Regression. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21738-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21737-1

  • Online ISBN: 978-3-642-21738-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics