Skip to main content

Manifold Learning for Visualization of Vibrational States of a Rotating Machine

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6792))

Included in the following conference series:

Abstract

This paper describes a procedure based on the use of manifold learning algorithms to visualize periodic –or nearly periodic– time series produced by processes with different underlying dynamics. The proposed approach is done in two steps: a feature extraction stage, where a set of descriptors in the frequency domain is extracted, and a manifold learning stage that finds low dimensional structures in the feature space and obtains projections on a low dimensional space for visualization. This approach is applied on vibration data of an electromechanical rotating machine to visualize different vibration conditions under two kinds of asymmetries, using four state-of-the-art manifold learning algorithms for comparison purposes. In all cases, the methods yield consistent results and produce insightful visualizations, suggesting future developments and application in engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  2. Benbouzid, M.E.H.: A review of induction motors signature analysis as a medium for faults detection. IEEE Transactions on Industrial Electronics 47(5), 984–993 (2000)

    Article  Google Scholar 

  3. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Mathematics of Computation 19(1), 297–301 (1965)

    Article  MathSciNet  Google Scholar 

  4. Demartines, P., Herault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks 8(1), 148–154 (1997)

    Article  Google Scholar 

  5. Donoho, D., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences 100(10), 5591 (2003)

    Article  MathSciNet  Google Scholar 

  6. Hyvarinen, A.: Survey on independent component analysis. Neural Computing Surveys 2, 94–128 (1999), http://www.cis.hut.fi/aapo/pub.html

  7. Jollife, I.: Principal component analysis (1986)

    Google Scholar 

  8. Kohonen, T.: Self-Organizing Maps, Springer Series in Information Sciences, 3rd edn., vol. 30. Springer, New York (2001)

    MATH  Google Scholar 

  9. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Philosophical Magazine Series 6 2(11), 559–572 (1901)

    Article  Google Scholar 

  10. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  11. Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers C 18(5), 401–409 (1969)

    Article  Google Scholar 

  12. Schoen, R.R., Habetler, T.G., Kamran, F., Bartheld, R.G.: Motor bearing damage detection using stator current monitoring. IEEE Transactions on Industry Applications 31(6), 1224–1279 (1995)

    Google Scholar 

  13. Tavner, P.J., Penman, J.: Condition Monitoring of Electrical Machines. Research Studies Press Ltd., John Wiley and Sons Inc. (1987)

    Google Scholar 

  14. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  15. Torgerson, W.: Theory and Methods of Scaling. Wiley, Chichester (1958)

    Google Scholar 

  16. Zhang, T., Tao, D., Li, X., Yang, J.: Patch alignment for dimensionality reduction. IEEE Transactions on Knowledge and Data Engineering, 1299–1313 (2008)

    Google Scholar 

  17. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal of Scientific Computing 26(1), 313–338 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz, I., Cuadrado, A.A., Diez, A.B., Domínguez, M. (2011). Manifold Learning for Visualization of Vibrational States of a Rotating Machine. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21738-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21737-1

  • Online ISBN: 978-3-642-21738-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics