Skip to main content

Meta-learning Based Optimization of Metabolic Pathway Data-Mining Inference System

  • Conference paper
Modern Approaches in Applied Intelligence (IEA/AIE 2011)

Abstract

This paper describes a novel meta-learning (MTL) based methodology used to optimize a neural network based inference system. The inference system being optimized is part of a bioinformatic application built to implement a systematic search scheme for the identification of genes which encode enzymes of metabolic pathways. Different MTL implementations are contrasted with manually optimized inference systems. The MTL based approach was found to be flexible and able to produce better results than manual optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NCBI: Basic Local Alignment Search Tool, http://blast.ncbi.nlm.nih.gov/Blast.cgi

  2. Invitrogen Corporation: Vector NTI Software, http://www.invitrogen.com/site/us/en/home/Applications/Cloning/Vector-Design-Software.html

  3. National Institute of General Medical Sciences: MetaCyc Encyclopedia of Metabolic Pathways, http://www.metacyc.org/

  4. University of Minnesota: University of Minnesota Biocatalysis/Biodegradation Database, http://umbbd.msi.umn.edu/

  5. Kanehisa Laboratories: KEGG Pathways Database, http://www.genome.ad.jp/kegg/pathway.html

  6. NCBI: National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/

  7. Arredondo, T., Seeger, M., Dombrovskaia, L., Avarias, J., Calderón, F., Candel, D., Muñoz, F., Latorre, V., Agulló, L., Cordova, M., Gomez, L.: Bioinformatics integration framework for metabolic pathway data-mining. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 917–926. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. GeXpert Open Source Project, Available in Sourceforge http://sourceforge.net/projects/gexpert

  9. Sun, J., Zeng, A.P.: IdentiCS - Identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 5, 112 (2004)

    Article  Google Scholar 

  10. Phylogist UTFSM Bioinformatics Project Website, http://www.feriadesoftware.cl/2007/phylogist/producto.html

  11. Arredondo, T., Vásquez, F., Candel, D., Dombrovskaia, L., Agulló, L., Córdova, M., Latorre-Reyes, V., Calderón, F., Seeger, M.: Dynamic Penalty Based GA for Inducing Fuzzy Inference Systems. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 957–966. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Leiva, M., Arredondo, T., Candel, D., Dombrovskaia, L., Agulló, L., Seeger, M., Vásquez, F.: Feed-Forward Artificial Neural Network Based Inference System Applied in Bioinformatics Data-Mining. In: Conference Paper IJCNN 2009, Atlanta, USA, June 14-19, pp. 1744–1749 (2009)

    Google Scholar 

  13. Burkholderia xenovorans LB400 at the Joint Genome Institute, http://genome.jgi-psf.org/finished_microbes/burfu/burfu.home.html

  14. Pinney, J., Shirley, M.W., McConkey, G.A., Westhead, D.R.: metaSHARK: software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella. Nucleic Acids Research 33(4), 1399–1409 (2005)

    Article  Google Scholar 

  15. Notebaart, R., van Enckevort, F., Francke, C., Siezen, R., Teusink, B.: Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics 7, 296 (2006)

    Article  Google Scholar 

  16. Anderson, M.L., Oates, T.: A review of recent research in metareasoning and metalearning. AI Magazine (2007)

    Google Scholar 

  17. Vilalta, R., Drissi, Y.: A Perspective View and Survey of Meta-learning. Journal of Artificial Intelligence Review 18(2), 77–95 (2002)

    Article  Google Scholar 

  18. Bensusan, H., Giraud-Carrier, C.: Casa Batlo in Passeig or landmarking the expertise space. In: Eleventh European Conference on Machine Learning, Workshop on Meta-learning: Building Automatic Advice Strategies for Model Selection and Method Combination, Barcelona, Spain (2000)

    Google Scholar 

  19. Wolpert, D.: Stacked Generalization. Neural Networks 5, 241–259 (1992)

    Article  Google Scholar 

  20. Aran, O., Yildiz, T., Alpaydin, E.: An incremental framework based cross-validation for estimating the architecture of a multilayer perceptron. International Journal of Pattern Recognition and Artificial Intelligence 23(2), 159–190 (2009)

    Article  Google Scholar 

  21. Hong, T.P., Lin, W.T., Chen, C.H., Ouyang, C.S.: Learning Membership Functions in Takagi-Sugeno Fuzzy Systems by Genetic Algorithms. In: First Asian Conference on Intelligent Information and Database Systems, pp. 301–306 (2009)

    Google Scholar 

  22. Pedersen, M.E.H., Chipperfield, A.J.: Simplifying Particle Swarm Optimization. Applied Soft Computing (2009)

    Google Scholar 

  23. Abraham, A.: Meta-learning Evolutionary Artificial Neural Networks. Neurocomputing 56 (January 2004)

    Google Scholar 

  24. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  25. Watkins, D.: Clementine’s Neural Networks Technical Overview. Technical Report (1997)

    Google Scholar 

  26. Bouckaert, R.R., Frank, E.: Evaluating the replicability of significance tests for comparing learning algorithms. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 3–12. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. Dissertation. University of Michigan, Ann Arbor, MI, USA. AAI7609381 (1975)

    Google Scholar 

  28. Grefenstette, J.: Optimization of Control Parameters for Genetic Algorithms. IEEE Transactions on Systems, Man, and Cybernetics in Systems, Man and Cybernetics 16(1) (1986)

    Google Scholar 

  29. Juels, A., Wattenberg, M.: Stochastic Hillclimbing as a Baseline Method for Evaluating Genetic Algorithms, Technical Report CSD-94-834, Department of Computer Science, University of California at Berkeley (1994)

    Google Scholar 

  30. SimMetaLib: Simple Meta-Learning Library, http://profesores.elo.utfsm.cl/~tarredondo/simmetalib.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arredondo, T.V., Ormazábal, W.O., Candel, D.C., Creixell, W. (2011). Meta-learning Based Optimization of Metabolic Pathway Data-Mining Inference System. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds) Modern Approaches in Applied Intelligence. IEA/AIE 2011. Lecture Notes in Computer Science(), vol 6704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21827-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21827-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21826-2

  • Online ISBN: 978-3-642-21827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics