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Abstract. We investigate a subclass of well-structured transition sys-
tems (WSTS), the trace bounded—in the sense of Ginsburg and Spanier
(T. Amer. Math. Soc., 1964)—complete deterministic ones, which we
claim provide an adequate basis for the study of forward analyses as
developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci.,
2012). Indeed, we prove that, unlike other conditions considered pre-
viously for the termination of forward analysis, trace boundedness is
decidable. Trace boundedness turns out to be a valuable restriction
for WSTS verification, as we show that it further allows to decide all
ω-regular properties on the set of infinite traces of the system. omplete
WSTS, model checking, flattable system, bounded language, acceleration

1. Introduction

General Context. Forward analysis using acceleration [14, 7] is established
as one of the most efficient practical means—albeit in general without
termination guarantee—to tackle safety problems in infinite state systems,
e.g. in the tools TReX [5], Lash [68], or Fast [8]. Even in the context of
well-structured transition systems (WSTS), a unifying framework for infinite
systems endowed with a generic backward coverability algorithm due to
Abdulla et al. [3], forward procedures are commonly felt to be more efficient
than the backward algorithm [48]: e.g. for lossy channel systems [1], although
the backward procedure always terminates, only the non terminating forward
procedure is implemented in the tool TReX [5].

Acceleration techniques rely on symbolic representations of sets of states
to compute exactly the effect of repeatedly applying a finite sequence of
transitions w, i.e. the effect of w∗. The forward analysis terminates if and
only if a finite sequence w∗1 · · ·w∗n of such accelerations deriving the full
reachability set can be found, resulting in the definition of the post∗ flattable
class of systems [7]. Despite evidence that many classes of systems are
flattable [53, 54, 11], whether a system is post∗-flattable is undecidable for
general systems [7].

The Well Structured Case. Finkel and Goubault-Larrecq [33, 34] have laid
new theoretical foundations for the forward analysis of deterministic WSTS—
where determinism is understood with respect to transition labels—, by
defining complete deterministic WSTS (cd-WSTS) as a means to obtain
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finite representations for downward closed sets of states [see also 43], ∞-
effective cd-WSTS as those for which the acceleration of certain sequences can
effectively be computed, and by proposing a conceptual forward procedure à
la Karp and Miller [51] for computing the full cover of a cd-WSTS—i.e. the
downward closure of its set of reachable states. Similarly to post∗ flattable
systems, this procedure called “Clover” terminates if and only if the cd-WSTS
at hand is cover flattable, which is undecidable [34]. As we show in this
paper, post∗ flattability is also undecidable for cd-WSTS, thus motivating
the search for even stronger sufficient conditions for termination. A decidable
sufficient condition that we can easily discard as too restrictive is trace set
finiteness, corresponding to terminating systems [31].

This Work. Our aim with this paper was to find a reasonable decidable
sufficient condition for the termination of the Clover procedure. We have
found one such condition in the work of Demri, Finkel, Goranko, and van
Drimmelen [21] with trace flattable systems, which are maybe better defined
as the systems with a bounded trace set in the sense of Ginsburg and
Spanier [45]: a language L ⊆ Σ∗ is bounded if there exists n ∈ N and n words
w1, . . . , wn in Σ∗ such that L ⊆ w∗1 · · ·w∗n. The regular expression w∗1 · · ·w∗n
is called a bounded expression for L. Trace bounded cd-WSTS encompass
systems with finite trace set.

Trace boundedness implies post∗ and cover flattability. Moreover, Demri
et al. show that it allows to decide liveness properties for a restricted class
of counter systems (see also [22, 38] for other classes of trace bounded
counter systems). However, to the best of our knowledge, nothing was known
regarding the decidability of trace boundedness itself, apart from the 1964
proof of decidability for context-free grammars by Ginsburg and Spanier [45]
and the 1969 one for equal matrix grammars by Siromoney [67].

We characterize trace boundedness for cd-WSTS and provide as our
main contribution a generic decision algorithm in Section 3. We employ
vastly different techniques than those used by Ginsburg and Spanier [45]
and Siromoney [67], since we rely on the results of Finkel and Goubault-
Larrecq [33, 34] to represent the effect of certain transfinite sequences of
transitions. We further argue in Section 4 that both the class of systems
(deterministic WSTS) and the property (trace boundedness) are in some
sense optimal: we prove that trace boundedness becomes undecidable if
we relax either the determinism or the well-structuredness conditions, and
that the less restrictive property of post∗ flattability is not decidable on
deterministic WSTS.

We investigate in Section 5 the complexity of trace boundedness. It can
grow very high depending on the type of underlying system, but this is the
usual state of things with WSTS—e.g. the non multiply-recursive lower bound
for coverability in lossy channel systems of Chambart and Schnoebelen [18]
also applies to trace boundedness—and does not prevent tools to be efficient
on case studies. Although there is no hope of finding general upper bounds
for all WSTS, we nevertheless propose a generic proof recipe, based on
a detailed analysis of our decidability proof, which results in tight upper
bounds in the cases of lossy channel systems and affine counter systems. In
the simpler case of Petri nets, we demonstrate that trace boundedness is
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ExpSpace-hard (matching the ExpSpace upper bound from [10]), but that
the size of the associated bounded expression can be non primitive-recursive.

Beyond coverability, and as further evidence to the interest of trace
boundedness for the verification of WSTS, we show that all ω-regular word
properties can be checked against the set of infinite traces of trace bounded
∞-effective cd-WSTS, resulting in a non trivial recursive class of WSTS
with decidable liveness (Section 6.2). Liveness properties are in general
undecidable in cd-WSTS [2, 57]: techniques for propositional linear-time
temporal logic (LTL) model checking are not guaranteed to terminate [26, 4]
or limited to subclasses, like Petri nets [27]. As a consequence of our result,
action-based (aka transition-based) LTL model checking is decidable for
cd-WSTS (Section 6.3), whereas state-based properties are undecidable for
trace bounded cd-WSTS [20].

One might fear that trace boundedness is too strong a property to be of
any practical use. For instance, commutations, as created by concurrent
transitions, often result in trace unboundedness. However, bear in mind
that the same issues more broadly affect all forward analysis techniques, and
have been alleviated in tools through various heuristics. Trace boundedness
offers a new insight into why such heuristics work, and can be used as a
theoretical foundation for their principled development; we illustrate this
point in Section 7 where we introduce trace boundedness modulo a partial
commutation relation. We demonstrate the interest of this extension by
verifying a liveness property on the Alternating Bit Protocol with a bounded
number of sessions.

This work results in an array of concrete classes of WSTS, including
lossy channel systems [1], broadcast protocols [26], and Petri nets and their
monotone extensions, such as reset/transfer Petri nets [25], for which trace
boundedness is decidable and implies both computability of the full cover-
ability set and decidability of liveness properties. Even for trace unbounded
systems, it provides a new foundation for the heuristics currently employed
by tools to help termination, as with the commutation reductions we just
mentioned.

2. Background

2.1. A Running Example. We consider throughout this paper an exam-
ple (see Figure 1) inspired by the recent literature on asynchronous or
event-based programming [52, 39], namely that of a client performing n asyn-
chronous remote procedure calls (corresponding to the post(r ,rpc) statement
on line 7), of which at most P can simultaneously be pending. Such piped—or
windowed—clients are commonly employed to prevent server saturation.

The abstracted “producer/consumer” Petri net for this program (ignoring
the grayed parts for now) has two transitions i and e modeling the if and
else branches of lines 6 and 9 respectively. The deterministic choice between
these two branches is here replaced by a nondeterministic one, where the
program can choose the else branch and wait for some rpc call to return
before the window of pending calls is exhausted. Observe that we can recover
the original program behavior by further controlling the Petri net with the
bounded regular language iP (ei)∗eP (P is fixed), i.e. taking the intersection



4 P. CHAMBART, A. FINKEL, AND S. SCHMITZ

1 // Performs n invocations of the rpc() function

2 // with at most P>=1 simultaneous concurrent calls

3 piped multirpc (int n) {
4 int sent = n, recv = n; rendezvous rdv;

5 while (recv > 0)

6 if (sent > 0 && recv − sent < P) {
7 post(rdv, rpc); // asynchronous call

8 sent−−;

9 } else { // sent == 0 || recv − sent >= P

10 wait(rdv); // a rpc has returned

11 recv−−;

12 }
13 }

main

(1)

n

(3)

g

piped multirpc

(2)

P

P−recv+sent

(4)

recv−sent

(5)

c

e

i

Figure 1. A piped RPC client in C-like syntax, and its Petri
net modelization.

by synchronous product with a deterministic finite automaton for iP (ei)∗eP .
This is an example of a trace bounded system.

Even without bounded control, the Petri net of Figure 1 has a bounded,
finite, language for each fixed initial n; however, for P ≥ 2, if we expand it for
parametric verification with the left grayed area to allow any n (or set n = ω as
initial value to switch to server mode), then its language becomes unbounded.
We will reuse this example in Section 3 when characterizing unboundedness
in cd-WSTS. The full system is of course bounded when synchronized with
a deterministic finite automaton for the language g∗ciP (ei)∗eP .

2.2. Definitions.

2.2.1. Languages. Let Σ be a finite alphabet; we denote by Σ∗ the set of
finite sequences of elements from Σ, and by Σω that of infinite sequences;
Σ∞

def
= Σ∗ ∪ Σω. We denote the empty sequence by ε, the set of non

empty finite sequences by Σ+ def
= Σ∗ \ {ε}, the length of a sequence w by

|w|, the left quotients of a language L2 ⊆ L∞ by a language L1 ⊆ Σ∗ by

L−1
1 L2

def
= {v ∈ Σ∞ | ∃u ∈ L1, uv ∈ L2}, and the set of finite prefixes of L2

by Pref(L2)
def
= {u ∈ Σ∗ | ∃v ∈ Σ∞, uv ∈ L}.

We make regular use of the closure of bounded languages by finite union,
intersection and concatenation, taking subsets, prefixes, suffixes, and factors,
and of the following sufficient condition for the unboundedness of a language
L [45, Lemma 5.3]: the existence of two words u and v in Σ+, such that
uv 6= vu and each word in {u, v}∗ is a factor of some word in L.
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2.2.2. Orderings. Given a relation R on A×B, we denote by R−1 its inverse,
by R(C) ⊆ B the image of C ⊆ A, by R∗ its transitive reflexive closure if

R(A) ⊆ A, and by dom R
def
= R−1(B) its domain.

A quasi ordering ≤ is a reflexive and transitive relation on a set S. We
write ≥ = ≤−1 for the converse quasi order, <

def
= ≤ \ ≥ for the associated

strict order, and ≡ def
= ≤∩≤−1 for the associated equivalence relation. The ≤-

upward closure ↑C of a set C ⊆ S is {s ∈ S | ∃c ∈ C, c ≤ s}; its ≤-downward

closure is ↓C def
= {s ∈ S | ∃c ∈ C, c ≥ s}. A set C is ≤-upward closed (resp.

≤-downward closed) if ↑C = C (resp. ↓C = C). A set B is a basis for an
upward-closed set C (resp. downward-closed) if ↑B = C (resp. ↓B = C). An
upper bound s ∈ S of a set A verifies a ≤ s for all a of A, while we denote
its least upper bound, if it exists, by lub(A).

A well quasi ordering (wqo) is a quasi ordering such that for any infinite se-
quence s0s1s2 · · · of Sω there exist i < j in N such that si ≤ sj . Equivalently,
there does not exist any strictly descending chain s0 > s1 > · · · > si > · · · ,
and any antichain, i.e. set of pairwise incomparable elements, is finite. In
particular, the set of minimal elements of an upward-closed set C is finite
when quotiented by ≡, and is a basis for C. Pointwise comparison ≤ in Nk,
and scattered subword comparison � on finite sequences in Σ∗ are well quasi
orders by Higman’s Lemma.

2.2.3. Continuous Directed Complete Partial Orders. A directed subset D 6= ∅
of S is such that any pair {x, y} of elements of D has an upper bound in D.
A directed complete partial order (dcpo) is such that any directed subset has
a least upper bound. A subset O of a dcpo is open if it is upward-closed
and if, for any directed subset D such that lub(D) is in O, D ∩ O 6= ∅. A
partial function f on a dcpo is partial continuous if it is monotonic, domf is
open, and for any directed subset D of domf , lub(f(D)) = f(lub(D)). Two
elements s and s′ of a dcpo are in a way below relation, noted s � s′, if
for every directed subset D such that lub(D) ≤ s′, there exists s′′ ∈ D s.t.

s ≤ s′′. A dcpo is continuous if, for every s′ in S, wb(s′)
def
= {s ∈ S | s� s′}

is directed and has s′ as least upper bound.

2.2.4. Well Structured Transition Systems. A labeled transition system (LTS)
S = 〈S, s0,Σ,→〉 comprises a set S of states, an initial state s0 ∈ S, a finite
set of labels Σ, a transition relation → on S defined as the union of the

relations
a−→ ⊆ S×S for each a in Σ. The relations are extended to sequences

in Σ∗ by s
ε−→ s and s

aw−−→ s′′ for a in Σ and w in Σ∗ if there exists s′ in S

such that s
a−→ s′ and s′

w−→ s′′. We write S(s) for the same LTS with s in S
as initial state (instead of s0). A LTS is

• uniformly bounded branching if there exists k ∈ N such that PostS(s)
def
=

{s′ ∈ S | s −→ s′} contains less than k elements for all s in S,

• deterministic if
a−→ is a partial function for each a in Σ—and is thus

uniformly bounded branching—; we abuse notation in this case and

identify u with the partial function
u−→ for u in Σ∗,

• state bounded if its reachability set Post∗S(s0)
def
= {s ∈ S | s0 →∗ s} is

finite,
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• trace bounded if its trace set T (S)
def
= {w ∈ Σ∗ | ∃s ∈ S, s0

w−→ s} is a
bounded language,
• terminating if its trace set T (S) is finite.

A well-structured transition system (WSTS) [31, 3, 36] 〈S, s0,Σ,→,≤, F 〉
is a labeled transition system 〈S, s0,Σ,→〉 endowed with a wqo ≤ on S and
an ≤-upward closed set of final states F , such that → is monotonic wrt. ≤:

for any s1, s2, s3 in S and a in Σ, if s1 ≤ s2 and s1
a−→ s3, then there exists

s4 ≥ s3 in S with s2
a−→ s4.

The language of a WSTS is defined as L(S)
def
= {w ∈ Σ∗ | ∃s ∈ F, s0

w−→ s};
see Geeraerts et al. [44] for a general study of such languages. In the context
of Petri nets, L(S) is also called the covering or weak language, and T (S)
the prefix language. Observe that a deterministic finite-state automaton
(DFA) is a deterministic WSTS A = 〈Q, q0,Σ, δ,=, F 〉, where Q is finite (we
shall later omit = from the definition of DFAs).

Given S1 = 〈S1, s0,1,Σ,→1,≤1, F1〉 and S2 = 〈S2, s0,2,Σ,→2,≤2, F2〉
two WSTS, their synchronous product is the WSTS S1 × S2

def
= 〈S1 ×

S2, (s0,1, s0,2),Σ,→×,≤×, F1 × F2〉, where for all s1, s′1 in S1, s2, s′2 in

S2, a in Σ, (s1, s2)
a−→× (s′1, s

′
2) if and only if s1

a−→1 s
′
1 and s2

a−→2 s
′
2, and

(s1, s2) ≤× (s′1, s
′
2) if and only if s1 ≤1 s

′
1 and s2 ≤2 s

′
2, is again a WSTS,

such that L(S1 × S2) = L(S1) ∩ L(S2).
We often consider the case F = S and omit F from the WSTS definition,

as we are more interested in trace sets, which provide more evidence on the
reachability sets.

2.2.5. Coverability. A WSTS is Pred-effective if → and ≤ are decidable, and

a finite basis for ↑PredS(↑s, a)
def
= ↑{s′ ∈ S | ∃s′′ ∈ S, s′ a−→ s′′ and s ≤ s′′} can

effectively be computed for all s in S and a in Σ [36].

The cover set of a WSTS is CoverS(s0)
def
= ↓Post∗S(s0), and it is decidable

whether a given state s belongs to CoverS(s0) for finite branching Pred-
effective WSTS, thanks to a backward algorithm that checks whether s0

belongs to ↑Pred∗S(↑s) def
= ↑{s′ ∈ S | ∃s′′ ∈ S, s′ →∗ s′′ and s′′ ≥ s}. One can

also decide the emptiness of the language of a WSTS, by checking whether
s0 belongs to ↑Pred∗S(F ).

2.2.6. Flattenings. Let A be a DFA with a bounded language. The synchro-
nous product S ×A of S and A is a flattening of S. Consider the projection
π from S ×Q to S defined by π(s, q)

def
= s; then S is post∗ flattable if there

exists a flattening S ′ of S such that Post∗S(s0) = π(Post∗S′((s0, q0))). In the
same way, it is cover flattable if CoverS(s0) = π(CoverS′((s0, q0))), and trace
flattable if T (S) = T (S ′). Remark that

(1) trace flattability is equivalent to the boundedness of the trace set,
and that

(2) trace flattability implies post∗ flattability, which in turn implies cover
flattability.

2.2.7. Complete WSTS. A deterministic WSTS 〈S, s0,Σ,→,≤〉 is complete
(a cd-WSTS) if (S,≤) is a continuous dcpo and each transition function a
for a in Σ is partial continuous [33, 34]. The lub-acceleration uω of a partial
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Minsky machines [58]

Affine counter systems
[37, 20]

Presburger accelerable
counter systems [21]

Lossy channel systems
[1]

Lossy Minsky
machines [57, 66]

Functional lossy channel
systems [33]

Affine counter systems
with finite monoid [35]

Broadcast protocols
[26, 29]

Transfer Petri nets [24]

Reset Petri nets
[24, 25]

Petri nets

WSTS

∞-effective
cd-WSTS

Figure 2. Classes of systems mentioned in the paper, with
a few relevant references.

continuous function u on S, u in Σ+, is again a partial function on S defined
by

domuω
def
= {s ∈ domu | s ≤ u(s)}

uω(s)
def
= lub({un(s) | n ∈ N}) for all s in domuω.

A complete WSTS is ∞-effective if uω is computable for every u in Σ+.

2.3. Working Hypotheses. Our decidability results rely on some effective-
ness assumptions for a restricted class of WSTS: the complete deterministic
ones. We discuss in this section the exact scope of these hypotheses. As an
appetizer, notice that both trace boundedness and action-based ω-regular
properties are only concerned with trace sets, hence one can more generally
consider classes of WSTS for which a trace-equivalent complete deterministic
system can effectively be found. Figure 2 presents the various classes of
systems mentioned at one point or another in the main text or in the proofs.
It also provides a good way to emphasize the applicability of our results on
∞-effective cd-WSTS.

2.3.1. Completeness. Finkel and Goubault-Larrecq [34] define ω2-WSTS as
the class of systems that can be completed, and provide an extensive off-the-
shelf algebra of datatypes with their completions [33]. As they argue, all
the concrete classes of deterministic WSTS considered in the literature are
ω2. Completed systems share their sets of finite and infinite traces with the
original systems: the added limit states only influence transfinite sequences
of transitions.

For instance, the whole class of affine counter systems, with affine transition
functions of form f(x) = Ax + b, with A a k × k matrix of non negative
integers and b a vector of k integers—encompassing reset/transfer Petri
nets and broadcast protocols—can be completed to configurations in (N ∪
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{ω})k. Similarly, functional lossy channel systems—a deterministic variant
of lossy channel systems [33, see also Section 4.3]—can work on products [4,
Corollary 6.5]. On both accounts, the completed functions are partial
continuous.

2.3.2. Determinism. Beyond deterministic systems, one can consider finite
branching WSTS [33]. These are defined as deterministic WSTS equipped
with a labeling function σ. Consider a deterministic WSTS 〈S, s0,F ,→,≤〉,
where F is a finite alphabet of action names; together with a labeling
σ : F → Σ, it defines a possibly non deterministic WSTS 〈S, s0,Σ,→′,≤〉
with s

a−→
′
s′ if and only if there exists f in F such that s

f−→ s′ and σ(f) = a.
Assuming basic effectiveness assumptions on the so-called principal filters

↑s of S, we can decide the following sufficient condition for determinism on
finite branching WSTS:

Proposition 1. Let S be defined by a deterministic WSTS 〈S, s0,F ,→,≤〉
along with a labeling σ : F → Σ. If finite bases can be computed for ↑s ∩ ↑s′
for all s, s′ in S, and for S itself, then one can decide whether, for all
reachable states s of S and pairs (f, f ′) of transition functions in F with

σ(f) = σ(f ′), s ∈ dom
f−→ ∩ dom f ′−→ implies f = f ′.

Proof. Let B be a finite basis for S, i.e. ↑B = S, and let D
def
= dom

f−→
∩ dom f ′−→.

We can reformulate the existence of an s violating the condition of the
proposition as a coverability problem, by checking whether s0 belongs to
Pred∗(D), which is decidable thanks to the usual backward reachability
algorithm if we provide a finite basis for D. To that end, we first compute

Bf and Bf ′ two finite bases for dom
f−→ = ↑PredS(↑B, f) and dom

f ′−→ =
↑PredS(↑B, f) using the Pred-effectiveness of S. We then compute a finite
basis for

D =
⋃

sf∈Bf ,sf ′∈Bf ′

(↑sf ∩ ↑sf ′) (1)

using the computation of finite bases for intersections of principal filters. �

For instance, labeled functional lossy channel systems and labeled affine
counter systems fit Proposition 1; also note that determinism is known to be
ExpSpace-complete for labeled Petri nets [6, 10].

Another extension beyond cd-WSTS is possible: Call a system S essentially
deterministic if, analogously to the essentially finite branching systems of
Abdulla et al. [3], for each state s and symbol a, there is a single maximal

element inside PostS(s, a) = {s′ ∈ S | s a−→ s′}, which we can effectively
compute. Indeed, from S we can construct a deterministic system Sd with

transitions s
a−→ max(PostS(s, a)) defined whenever PostS(s, a) is not empty,

for all s in S and a in Σ. Thanks to monotonicity, any string recognized
from some state in PostS(s, a) can also be recognized from max(PostS(s, a)),
which entails T (S) = T (Sd).

Recall that though most of infinite branching WSTS can be embedded
into their finite branching WSTS completion [11], this completion has no
reason to be uniformly bounded or deterministic.
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Finally, one can try to devise trace- and cover-equivalent deterministic
semantics for systems with unbounded but finite branching, like functional
lossy channel systems [33] for lossy channel systems, or reset Petri nets for
lossy Minsky machines. From a verification standpoint, the deterministic
semantics is then equivalent to the classical one.

2.3.3. Effectiveness. All the concrete classes of WSTS we have mentioned
are Pred-effective, and we assume this property from all our systems from
now on. It also turns out that ∞-effective systems abound, including once
more (completed) affine counter systems [34] and functional lossy channel
systems.

3. Deciding Trace Boundedness

We present in this section two semi-algorithms, first for trace boundedness,
which relies on the decidability of language emptiness in WSTS, and then
for trace unboundedness, for which we show that a finite witness can be
found in cd-WSTS. In fact, this second semi-algorithm can be turned into
a full-fledged algorithm when some extra care is taken in the search for a
witness.

Theorem 2. Trace boundedness is decidable for ∞-effective cd-WSTS. If the
trace set is bounded, then one can compute an adequate bounded expression
w∗1 · · ·w∗n for it.

An additional remark is that Theorem 2 holds more generally for the
boundedness of the language L(S) of a WSTS instead of its trace set T (S).
Indeed, the semi-algorithm for boundedness would work just as well with
L(S), while the semi-algorithm for unboundedness can restrict its search for
a witness to Pre∗(F ).

3.1. Trace Boundedness. Trace boundedness is semi decidable with a
rather straightforward procedure for any WSTS S (neither completeness nor
determinism are necessary): enumerate the possible bounded expressions
w∗1 · · ·w∗n and check whether the trace set T (S) of the WSTS is included
in their language. This last operation can be performed by checking the
emptiness of the language of the WSTS obtained as the synchronous product
S × A of the original system with a DFA A for the complement of the
language of w∗1 · · ·w∗n. If L(S × A) is empty, which is decidable thanks to
the generic backwards algorithm for WSTS, then we have found a bounded
expression for T (S).

3.2. Trace Unboundedness. We detail the procedure for trace unbound-
edness of the trace set. Our construction relies on the existence of a witness
of trace unboundedness, which can be found after a finite time in a cd-WSTS
by exploring its states using accelerated sequences.

3.2.1. Overview. Let us consider the Petri net N ′ with initial marking
(1, 0, 0, 0), depicted in Figure 3, with trace set

T (N ′(1, 0, 0, 0)) = a∗ ∪
⋃
n≥0

anb{c, d}≤n .
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p1

p3

a

p2 p4

b
c d

Figure 3. The Petri net N ′(1, 0, 0, 0), with an unbounded
trace set.

Notice that the trace set of N ′ with initial marking (0, 1, n, 0) is bounded
for each n: it is {c, d}≤n, a finite language. The trace unboundedness of
N ′(1, 0, 0, 0) originates in its ability to reach every (0, 1, n, 0) marking after
a sequence of n transitions on a followed by a b transition.

Consider now transitions (1, 0, 0, 0)
a−→ (1, 0, 1, 0) and (1, 0, 0, 0)

b−→ (0, 1, 0, 0).
The two systems N ′(1, 0, 1, 0) and N ′(0, 1, 0, 0) are respectively trace un-
bounded and trace bounded. More generally, Lemma 8 will show later that,
if L ⊆ Σ∗ is an unbounded language, then there exists a in Σ such that
a−1L is also unbounded. By repeated applications of, we can find words
w of any length |w| = n such that w−1L is still unbounded: this is the
case of an in our example. This process continues to the infinite, but in
a WSTS we will eventually find two states si ≤ sj , met after i < j steps

respectively. Let si
u−→ sj ; by monotonicity we can recognize u∗ starting

from si. In a cd-WSTS, there is a lub-accelerated state s with si
uω−→ s that

represents the effect of all these u transitions; here (1, 0, 0, 0)
aω−→ (1, 0, ω, 0).

The interesting point is that our lub-acceleration finds the correct residual
trace set: T (N ′(1, 0, ω, 0)) = (a∗)−1T (N ′(1, 0, 0, 0)).

Again, we can repeatedly remove accelerated strings from the prefixes of
our trace set and keep it unbounded. However, due to the wqo, an infinite
succession of lub-accelerations allows us to nest some loops after a finite num-

ber of steps. Still with the same example, we reach (1, 0, ω, 0)
b−→ (0, 1, ω, 0),

and—thanks to the lub-acceleration—the source of trace unboundedness is

now visible because both (0, 1, ω, 0)
c−→ (0, 1, ω, 0) and (0, 1, ω, 0)

d−→ (0, 1, ω, 1)
are increasing, thus by monotonicity T (N ′(0, 1, ω, 0)) = {c, d}∗. By conti-
nuity, for each string u in {c, d}∗, there exists n in N such that anbu is an
actual trace of N ′(1, 0, 0, 0).

The same reasoning can be applied to the Petri net of Figure 1 with initial
marking (1, 0, 0, P, 0) for P ≥ 2. As mentioned in Section 2, its trace set
is unbounded, but the trace set of N with initial marking (0, 1, n, P, 0) is

bounded for each n, since it is a finite language. We reach (1, 0, 0, P, 0)
gω−→

(1, 0, ω, P, 0)
ci−→ (0, 1, ω, P − 1, 1) and see that both (0, 1, ω, P − 1, 1)

ei−→
(0, 1, ω, P−1, 1) and (0, 1, ω, P−1, 1)

ieei−−→ (0, 1, ω, P−1, 1) are increasing, thus
by monotonicity T (N (0, 1, ω, P − 1, 1)) contains {ei, ieei}∗. Here continuity
comes into play to show that these limit behaviors are reflected in the set of
finite traces of the system: in our example, for each string u in {ei, ieei}∗,
there exists a finite n in N such that gnciu is an actual trace of N (1, 0, 0, P, 0).
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Figure 4. An increasing fork witnesses trace unboundedness.

3.2.2. Increasing Forks. We call the previous witness of trace unboundedness
an increasing fork, as depicted in schematic form in Figure 4. Let us
first define accelerated runs and languages for complete WSTS, where lub-
accelerations are employed.

Definition 3. Let S = 〈S, s0,Σ,→,≤, F 〉 be a cd-WSTS. An accelerated
run is a finite sequence σ = s0s1s2 · · · sn in S∗ such that for all i ≥ 0, either
there exists a in Σ such that

si
a−→ si+1 (single step)

or there exists u in Σ+ such that

si
uω−→ si+1 . (accelerated step)

We denote the relation over S defined by such an accelerated run by s0 −→−→ sn.
An accelerated run is accepting if sn is in F . The accelerated language (resp.
accelerated trace set) Lacc(S) (resp. Tacc(S)) of S is the set of sequences that
label some accepting accelerated run (resp. some accelerated run).

We denote by Σ∗acc the set of finite sequences mixing letters a from Σ
and accelerations uω where u is a finite sequence from Σ+; in particular
Lacc(S) ⊆ Σ∗acc.

Definition 4. A cd-WSTS S = 〈S, s0,Σ,→,≤〉 has an increasing fork if
there exist a 6= b in Σ, u in Σ∗acc, v in Σ∗, and s, sa ≥ s, sb ≥ s in S such

that s0 −→−→ s, s
au−→au−→ sa, and s

bv−→ sb.

As shown in the following proposition, a semi-algorithm for trace unbound-
edness in ∞-effective cd-WSTS then consists in an exhaustive search for an
increasing fork, by applying non nested lub-accelerations whenever possible.
In fact, by choosing which acceleration sequences to employ in the search for
an increasing fork, we can turn this semi-algorithm into a full algorithm; we
will see this in more detail in Section 5.3.

Proposition 5. A cd-WSTS has an unbounded trace set if and only if it
has an increasing fork.

The remainder of the section details the proof of Proposition 5.

3.2.3. An Increasing Fork Implies Unboundedness. The following lemma
shows that, thanks to continuity, what happens in accelerated runs is mirrored
in finite runs.
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Lemma 6. Let S be a cd-WSTS and n ≥ 0. If

wn = vn+1u
ω
nvn · · ·uω1 v1 ∈ Tacc(S)

with the ui in Σ+ and the vi in Σ∗, then there exist k1, . . . , kn in N, such
that

w′n = vn+1u
kn
n vn · · ·u

k1
1 v1 ∈ T (S) .

Proof. We proceed by induction on n. In the base case where n = 0, w0 = v1

belongs trivially to T (S)—this concludes the proof if we are considering
words in T (S). For the induction part, let s be a state such that

s0
vn+1uωn−−−−−→vn+1uωn−−−−−→ s

vnuωn−1vn−1···uω1 v1−−−−−−−−−−−−→
vnuωn−1vn−1···uω1 v1−−−−−−−−−−−−→ sf ,

i.e. wn−1 = vnu
ω
n−1vn−1 · · ·uω1 v1 is in Tacc(S(s)). Therefore, using the induc-

tion hypothesis, we can find k1, . . . , kn−1 in N such that

w′n−1 = vnu
kn−1

n−1 vn−1 · · ·uk1
1 v1 ∈ T (S(s)) .

Because S is complete,
w′n−1−−−→ is a partial continuous function, hence with an

open domain O. This domain O contains in particular s, which by definition

of uωn is the lub of the directed set {s′ | ∃m ∈ N, s0
vn+1umn−−−−−→ s′}. By definition

of an open set, there exists an element s′ in {s′ | ∃m ∈ N, s0
vn+1umn−−−−−→ s′} ∩O,

i.e. there exists kn in N s.t. s0
vn+1u

kn
n−−−−−→ s′ and s′ can fire the transition

sequence w′n−1. �

Continuity is crucial for the soundness of our procedure, as can be
better understood by considering the example of the WSTS S ′ = 〈N ]
{ω}, 0, {a, b},→,≤〉 with transitions

∀n ∈ N, n a−→ n+ 1, ω
a−→ ω, ω

b−→ ω .

We obtain a bounded set of finite traces T (S ′(0)) = a∗, but reach the
configuration ω through lub-accelerations, and then find an increasing fork
with T (S ′(ω)) = {a, b}∗, an unbounded language. Observe that N is a

directed set with ω as lub, thus the domain of
b−→ should contain some

elements of N in order to be open: S ′ is not a complete WSTS.

Lemma 7. Let S be a cd-WSTS. If S has an increasing fork, then T (S) is
unbounded.

Proof. Suppose that S has an increasing fork with the same notations as in

Definition 4, and let w in Σ∗acc be such that s0
w−→w−→ s. By monotonicity, we

can fire from s the accelerated transitions of au and the transitions of bv in
any order and any number of time, hence

w{au, bv}∗ ⊆ Tacc(S) .

Suppose now that T (S) is bounded, i.e. that there exists w1, . . . , wn such
that T (S) ⊆ w∗1 · · ·w∗n. Then, there exists a DFA A = 〈Q, q0,Σ, δ, F 〉 such
that L(A) = w∗1 · · ·w∗n and thus T (S) ⊆ L(A). Set N = |Q|+ 1. We have in
particular

w(bv)Nau(bv)Nau · · · au(bv)N ∈ Tacc(S)
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Figure 5. The construction of an increasing fork in the proof
of Lemma 11.

with N repetitions of the (bv)N factor. By Lemma 6, we can find some
adequate finite sequences w′, u1, . . . , uN−1 in Σ∗ such that

w′(bv)Nau1(bv)Nau2 · · · auN−1(bv)N ∈ T (S) .

Because T (S) ⊆ L(A), this word is also accepted by A, and we can find
an accepting run for it. Since N = |Q|+ 1, for each of the N occurrences of
the (bv)N factor, there exists a state qi in Q such that δ(qi, (bv)ki) = qi for
some ki > 0. Thus the accepting run in A is of form

q0
w′(bv)N−k1−k′1
−−−−−−−−−→ q1

(bv)k1

−−−−→ q1
(bv)k

′
1au1(bv)N−k2−k′2

−−−−−−−−−−−−−−→ q2,

q2
(bv)k2

−−−−→ q2
(bv)k

′
2au2···auN−1(bv)N−kN−k′N

−−−−−−−−−−−−−−−−−−−−→ qN ,

qN
(bv)kN−−−−→ qN

(bv)k
′
N

−−−−→ qf ∈ F

for some integers k′i ≥ 0. Again, since N = |Q|+1, there exist 1 ≤ i < j ≤ N
such that qi = qj , hence

δ(qi, (bv)k
′
iaui · · · auj−1(bv)N−kj−k

′
j ) = qi .

This implies that {(bv)ki , (bv)k
′
iaui · · · auj−1(bv)N−kj−k

′
j}∗ is contained in the

set of factors of L(A) with

(bv)ki+k
′
iaui · · · auj−1(bv)N−kj−k

′
j 6= (bv)k

′
iaui · · · auj−1(bv)N−kj−k

′
j+ki

since a 6= b, thus L(A) is an unbounded language [45, Lemma 5.3], a
contradiction. �

3.2.4. Unboundedness Implies an Increasing Fork. We follow the arguments
presented on the example of Figure 1, and prove that an increasing fork can
always be found in an unbounded cd-WSTS.

Lemma 8. Let L ⊆ Σ∗ be an unbounded language. There exists a in Σ such
that a−1L is also unbounded.

Proof. Observe that L =
⋃
a∈Σ a · (a−1L). If every a−1L were bounded, since

bounded languages are closed by finite union and concatenation, L would
also be bounded. �

Definition 9. Let be L ⊆ Σ∗ and w ∈ Σ+. The removal of w from L is the
language wL = ((w∗)−1L) \ wΣ∗.
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Lemma 10. If a cd-WSTS S has an unbounded trace set T (S) in Σ∗, and
L is an unbounded language with L ⊆ T (S) then there are two words v in
Σ∗ and u in Σ+ such that vuω ∈ Tacc(S), vu ∈ Pref(L) and u(v−1L) is also
unbounded.

Proof. By Lemma 8 we can find a sequence (ai)i>0 ∈ Σω such that for all n
in N, (a1 · · · an)−1L is unbounded. Let (si)i≥0 be the corresponding sequence

of configurations in Sω, such that si
ai+1−−−→ si+1. Because (S,≤) is a wqo,

there exist i < j such that si ≤ sj . We set v = a1 · · · ai and u = ai+1 · · · aj ,
which gives us v · uω ∈ Tacc(S). Remark that v−1L is unbounded, and, since
u∗u(v−1L) = u∗(v−1L), u(v−1L) is unbounded too. �

Note that it is also possible to ask that |vu| ≥ n for any given n, which
we do in the proof of the following lemma.

Lemma 11. If a cd-WSTS has an unbounded trace set, then it has an
increasing fork.

Proof. We define simultaneously three infinite sequences, (vi, ui)i>0 of pairs
of words in Σ∗ × Σ+, (Li)i≥0 of unbounded languages, and (si)i≥0 of initial

configurations: let L0
def
= T (S) and s0 the initial configuration of S, and

• vi+1, ui+1 are chosen using Lemma 10 s.t. vi+1u
ω
i+1 is in Tacc(S(si)),

vi+1ui+1 is in Pref(Li), |vi+1 · ui+1| ≥ |ui| if i > 0, and ui+1(v−1
i+1Li)

is unbounded;

• si
vi+1u

ω
i+1−−−−−→

vi+1u
ω
i+1−−−−−→ si+1;

• Li+1
def
= ui+1(v−1

i+1Li).

Since ui+1(v−1
i+1Li) ⊆ T (S(si+1)), we can effectively iterate the construction

by the last point above.
Due to the wqo, there exist i < j such that si ≤ sj . By construction ui is

not a prefix of vi+1ui+1 and |vi+1ui+1| ≥ |ui|, so there exist a 6= b in Σ and
a longest common prefix x in Σ∗ such that ui = xby and vi+1ui+1 = xaz for
some y, z in Σ∗.

We exhibit an increasing fork by selecting s, sa, sb such that (see Figure 5):

si
x−→ s s

azuωi+1vi+2u
ω
i+2···vjuωj x−−−−−−−−−−−−−−−→

azuωi+1vi+2u
ω
i+2···vjuωj x−−−−−−−−−−−−−−−→ sa s

byx−−→ sb . �

We will refine the arguments of Lemma 11 in Section 5.3. In particular,
note that a strategy where the vi+1ui+1 sequences are the shortest possible
defines a means to perform an exhaustive search for this particular brand of
increasing forks, this at no loss of generality as far as trace boundedness is
concerned. Thus our semi-algorithm is actually an algorithm.

4. Undecidable Cases

This section establishes that the decidability of the trace boundedness
property for cd-WSTS disappears if we consider more general systems or a
more general property. Unsurprisingly, trace boundedness is undecidable on
general systems like 2-counter Minsky machines (Section 4.1). It also becomes
undecidable if we relax the determinism condition, as shown by considering
the case of labeled reset Petri nets (Section 4.2). We conclude by proving
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that post∗ flattability is undecidable for deterministic WSTS (Section 4.3).
Note that completeness is irrelevant in all the following reductions.

4.1. General Systems. We demonstrate that the trace boundedness prob-
lem is undecidable for deterministic Minsky machines, by reduction from
their halting problem. We could rely on Rice’s Theorem, but find it more
enlightening to present a direct proof that turns a Minsky machine M into
a new one M′, which halts if and only if M halts. The new machine has a
bounded trace set if it halts, and an unbounded trace set otherwise.

Let us first recall that a deterministic Minsky machine is a tuple M =
〈Q, δ, C, q0〉 where Q is a finite set of labels, δ a finite set of actions, C a
finite set of counters that take their values in N, and q0 ∈ Q an initial label.
A label q identifies a unique action in δ, which is of one of the following three
forms:

q : if c = 0 goto q′ else c--; goto q′′

q : c++; goto q′

q : halt

where q′ and q′′ are labels and c is a counter. A configuration of M is a
pair (q,m) with q a label in Q and m a marking in NC , and leads to a
single next configuration (q′,m′) by applying the action labeled by q—which
should be self-explaining—if different from halt. A run of M starts with
configuration (q0,0) and halts if it reaches a configuration that labels a halt

action. We define the corresponding LTS semantics by (q,m)
q−→ (q′,m′) if

(q,m) and (q′,m′) are two successive configurations of M; note that there is
at most one possible transition from any (q,m) configuration, thus this LTS
is deterministic. It is undecidable whether a 2-counter Minsky machine halts
[58].

We also need a small technical lemma that relates the size of bounded
expressions with the size of some special words.

Definition 12. The size of a bounded expression w∗1 · · ·w∗n is
∑n

i=1 |wi|.

Lemma 13. Let vm ∈ (Σ ] ∆)∗ be a word of form u1x1u2x2u3 . . . umxm
with m ∈ N, ui ∈ Σ+, xi ∈ ∆+ and |xi| < |xi+1| for all i. If there exist
w1, . . . , wn in (Σ ]∆)∗ such that vm ∈ w∗1 · · ·w∗n, then

∑n
i=1 |wi| ≥ m.

Proof. We consider for this proof the number of alphabet alternations alt(w)
of a word w in (Σ ]∆)∗, which we define using the unique decomposition
of w as y1 · · · yalt(w) where each yi factor is non empty and in an alphabet
different from that of its successor. For instance, alt(vm) is 2m. We relate
the number of alternations produced by words wi of a bounded expression
for vm with their lengths. More precisely, we show that, if

vm = wj11 · · ·w
jn
n ,

then for all 1 ≤ i ≤ n
alt(wjii ) ≤ 2|wi| . (2)

Clearly, (2) holds if |wi| = 0 or ji = 0. If a word wi is in Σ+ or ∆+, then

alt(wji ) = 1 for all j > 0 and (2) holds again. Otherwise, the word wi contains
at least one alternation, and then ji ≤ 2: otherwise there would be two
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maximal x factors (in ∆+) in vm with the same length. As each alternation
inside wi requires at least one more symbol, we verify (2). Therefore,

2m = alt(wj11 · · ·w
jn
n ) ≤

n∑
i=1

alt(wjii ) ≤ 2
n∑
i=1

|wi| . �

Proposition 14. Trace boundedness is undecidable for 2-counter Minsky
machines.

Proof. We reduce from the halting problem for a 2-counter Minsky machine
M with initial counters at zero. We construct a 4-counter Minksy machine
M′ such that T (M′) is bounded if and only if M halts.

The machine M′ adds two extra counters c3 and c4, initially set to zero,
and new labels and actions toM. These are used to insert longer and longer
sequences of transitions at each step of the original machine: each label q
gives rise to the creation of five new labels q′, q′′, q†, q‡, q[ that identify the
following actions

q′ : if c3 = 0 goto q† else c3--; goto q′′

q′′ : c4++; goto q′

q† : if c4 = 0 goto q[ else c4--; goto q‡

q‡ : c3++; goto q†

q[ : c3++; goto q

and each subinstruction goto q in the original actions is replaced by goto q′.
The machine M′ halts iff M halts. If it halts, then its trace set T (M′) is a
singleton {w}, and thus is bounded. If it does not halt, then its trace set is
the set of finite prefixes of an infinite trace of form

q0(q′1q
′′
1)0q′1u1q1(q′2q

′′
2)1q′2u2q2(q′3q

′′
3)2q′3u3

· · · qi(q′i+1q
′′
i+1)iq′i+1ui+1qi+1 · · ·

where q0q1q2 · · · qiqi+1 · · · is the corresponding trace of the execution of M,

and the uj are sequences in {q†j , q
‡
j , q

[
j}∗. By Lemma 13, no expression

w∗1 · · ·w∗n of finite size can be such that T (M′) ⊆ w∗1 · · ·w∗n.
We then conclude thanks to the (classical) encoding of our 4-counter

machineM′ into a 2-counter machineM′′ using Gödel numbers [58]: indeed,
the encoding preserves the trace set (un-)boundedness of M′. �

4.2. Nondeterministic WSTS. Regarding nondeterministic WSTS with
uniformly bounded branching, we reduce state boundedness for reset Petri
nets, which is undecidable [57, Theorem 13], to trace boundedness for labeled
reset Petri nets. From a reset Petri net we construct a labeled reset Petri
net similar to that of Figure 3, which hides the computation details thanks
to a relabeling of the transitions. The new net consumes tokens using two
concurrent, differently labeled transitions, so that the trace set can attest to
state unboundedness.

Let us first recall that a marked Petri net is a tuple N = 〈P,Θ, f,m0〉
where P and Θ are finite sets of places and transitions, f a flow function from
(P ×Θ)∪(Θ×P ) to N, and m0 an initial marking in NP . The set of markings
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Figure 6. The labeled reset Petri net N ′ of the proof of Proposition 15.

NP is ordered component-wise by m ≤ m′ iff ∀p ∈ P , m(p) ≤ m′(p), and

has the zero marking 0 as least element, such that ∀p ∈ P , 0(p)
def
= 0. A

transition t ∈ Θ can be fired in a marking m if f(p, t) ≥ m(p) for all p ∈ P ,

and reaches a new marking m′ defined by m′(p)
def
= m(p) − f(p, t) + f(t, p)

for all p ∈ P .
A labeled Petri net (without ε labels) further associates a labeling letter-to-

letter homomorphism σ : Θ→ Σ, and can be seen as a finite branching WSTS

〈NP ,m0,Σ,→,≤〉 where m
σ(t)−−→ m′ if the transition t can be fired in m and

reaches m′. Determinism of such a system is decidable in ExpSpace [6]. An
important class of deterministic Petri nets is defined by setting Σ = Θ and
σ = idΘ, thereby obtaining the so-called free labeled Petri nets.

A reset Petri net N = 〈P,Θ, R, f,m0〉 is a Petri net 〈P,Θ, f,m0〉 with a
set R ⊆ P × Θ of reset arcs. The marking m′ reached after a transition t
from some marking m is now defined for all p in P by

m′(p)
def
=

{
f(t, p) if (p, t) ∈ R
m(p)− f(p, t) + f(t, p) otherwise.

Proposition 15. Trace boundedness is undecidable for labeled reset Petri
nets.

Proof. Let N = 〈P,Θ, R, f,m0〉 be a reset Petri net. We construct a σ-
labeled reset Petri net N ′ which is bounded if and only if N is state bounded,
thereby reducing the undecidable problem of state boundedness in reset Petri
nets [25].

We construct N ′ from N by adding two new places p+ and p−, two sets
of new transitions tcp and tdp for each p in P , where each tap for a in {c, d}
consumes one token from p− and from p and puts one back in p−, and one
new transition t− that takes one token from p+ and puts it in p−. All the
transitions of N are modified to take one token from p+ and put it back.
Finally, we set m0(p+) = 1 and m0(p−) = 0 in the new initial marking.
The labeling homomorphism σ from Θ ] {t−} ] {tap | a ∈ {c, d}, p ∈ P} to
{a, b, c, d} is defined by σ(t) = a for all t ∈ Θ, σ(t−) = b, σ(tcp) = c and

σ(tdp) = d for all p in P . See Figure 6 for a pictorial representation of N ′. Its
behavior is to simulate N while a token is in p+ with a∗ for trace, and to
switch nondeterministically to a consuming behavior when transferring this
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token to p− through t−. Then, N ′ consumes tokens from the places of N
and produces strings in {c, d}∗ through the tcp and tdp transitions.

If N is not state bounded, then
∑

p∈P m(p) for reachable markings m of

N ′ is not bounded either. Thus an arbitrary number of tcp and tdp transitions
can be fired, resulting in a trace set containing any string in {c, d}∗ as
suffix for N ′, which entails that it is not trace bounded. Conversely, if N is
trace bounded, then

∑
p∈P m(p) is bounded by some constant n for all the

reachable markings m of N ′, hence T (N ′) is included in the set of prefixes
of a∗b{c, d}n, a bounded language. �

4.3. Trace vs. Post∗ Flattability. The decidability of trace boundedness
calls for the investigation of the decidability of less restrictive properties.
Two natural candidates are post∗ flattability, which was proven undecidable
for Minsky machines by Bardin et al. [7], and cover flattability, which is
already known to be undecidable for cd-WSTS [34].

We show that post∗ flattability is still undecidable for cd-WSTS. To this
end, we reduce again from state boundedness, this time in lossy channel
systems [57], to post∗ flattability in an unlabeled functional lossy channel sys-
tem, a deterministic variant introduced by Finkel and Goubault-Larrecq [33].
Somewhat analogously to Proposition 15, the idea is to consume the channel
contents on one end while adding an unbounded sequence to its other end,
so that the set of reachable configurations reveals state unboundedness.

A lossy channel system (LCS) is a WSTS C = 〈Q ×M∗, (q0, ε), {!, ?} ×
M,→,�〉 where Q is a finite set of states, q0 ∈ Q the initial state, M a
finite set of messages, (q, w) � (q′, w′) if q = q′ and w � w′—the scattered
subword relation—, and where the transition relation is defined from a finite
relation δ ⊆ Q× {!, ?} ×M ×Q with

(q, w)
!a−→ (q′, w′) if (q, !, a, q′) ∈ δ and ∃w′′ ∈M∗,

w′′ � w and w′ � w′′a

(q, w)
?a−→ (q′, w′) if (q, ?, a, q′) ∈ δ and ∃w′′ ∈M∗,

aw′′ � w and w′ � w′′ .

One can easily extend this definition to accommodate for a finite set of
channels and no-op transitions.

A functional lossy channel system [33] is defined in the same way except
for the transition relation, which is now a partial function:

(q, w)
!a−→ (q′, wa) if (q, !, a, q′) ∈ δ

(q, uaw)
?a−→ (q′, w) if (q, ?, a, q′) ∈ δ and u ∈ (M \ {a})∗.

A functional LCS thus loses its channel contents lazily. There are some
immediate relations between a LCS C and its corresponding functional
LCS C′, i.e. for the same Q, M , and δ: Post∗C′((q0, ε)) ⊆ Post∗C((q0, ε)),
CoverC′((q0, ε)) = CoverC((q0, ε)), and T (C′) = T (C).

Note that the following proposition is not a trivial consequence of the
undecidability of cover-flattability in LCS [34], since in the case of functional
LCS the Cover and Post∗ sets do not coincide.
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Table 1. Summary of complexity results for trace boundedness.

Petri nets Affine counter systems Functional LCS

ExpSpace-complete Ack-complete HAck-complete

Proposition 16. Post∗ flattability is undecidable for functional lossy channel
systems.

Proof. Let us consider a LCS C = 〈Q×M∗, (q0, ε), {!, ?} ×M,→,�〉 and its
associated functional system C′. We construct a new functional LCS C′′ which
is post∗ flattable if and only if C is state bounded, thereby reducing from
the undecidable state boundedness problem for lossy channel systems [25].
Let us first remark that C is state bounded if and only if C′ is state bounded,
if and only if there is a maximal length n to the channel content w in any
reachable configuration (q, w) ∈ post∗C′((q0, ε)).

We construct C′′ by adding two new states q? and q! to Q, two new messages
c and d to M , and a set of new transitions to δ:

{(q, ?, a, q!) | a ∈M, q ∈ Q}
∪ {(q!, !, a, q?) | a ∈ {c, d}}
∪ {(q?, ?, a, q!) | a ∈M} .

If C′ is state bounded, the writing transitions from q! can only be fired
up to n times since they are interspersed with reading transitions from q?,
hence C′′ has its channel content lengths bounded by n. Therefore, C′′ is
equivalent to a DFA with (Q ] {q!, q?}) × (M ] {c, d})≤n as state set and
{!, ?} × (M ] {c, d}) as alphabet. By removing all the loops via a depth-first
traversal from the initial configuration (q0, ε), we obtain a DFA A with a
finite—and thus bounded—language, but with the same set of reachable
states. Hence C′′ is post∗ flattable using A.

Conversely, if C′ is not state bounded, then an arbitrarily long channel
content can be obtained in C′′, before performing a transition to q! and pro-
ducing an arbitrarily long sequence in {c, d}∗ in the channel of C′′, witnessing
an unbounded trace suffix. Observe that, due to the functional semantics,
C′′ has no means to remove these symbols, thus it has to put them in the
channel in the proper order, by firing the transitions from q! in the same
order. Therefore no DFA with a bounded language can be synchronized
with C′′ and still allow all these configurations to be reached: C′′ is not post∗

flattable. �

5. Complexity of Trace Boundedness

Well-structured transition systems are a highly abstract class of systems,
for which no complexity upper bounds can be given in general. Nevertheless,
it is possible to provide precise bounds for several concrete classes of WSTS,
and even to employ generic proof techniques to this end. Table 1 sums up
our complexity results, using the fast-growing complexity classes of [63].

5.1. Fast Growing Hierarchy. Our complexity bounds are often ade-
quately expressed in terms of a family of fast growing functions, namely the
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generators (Fα)α of the Fast Growing Hierarchy [56], which form a hierarchy
of ordinal-indexed functions N→ N. The first non primitive-recursive func-
tion of the hierarchy is obtained for α = ω, Fω(n) = Fn+1(n) being a variant
of the Ackermann function, and eventually majorizes any primitive-recursive
function. Similarly, the first non multiply-recursive function is defined by
α = ωω and eventually majorizes any multiply-recursive function.

Following [63], we define Fα as the class of problems decidable using
resources bounded by O(Fα(p(n))) for instance size n and some reasonable
function p (formally, p in

⋃
β<α Fβ using the extended Grzegorczyk hierar-

chy [56]). Since F3 is already non elementary, the traditional distinctions
between space and time, or between deterministic computations and non-
deterministic ones, are irrelevant. This gives rise to the Ackermannian
complexity class Ack

def
= Fω and the hyper-Ackermannian complexity class

HAck
def
= Fωω .

5.2. Lower Bounds. Let us describe a generic recipe for establishing lower
bounds: Given a system S that simulates a space-bounded Turing machine
M, hence with a finite number of different configurations nc, assemble a new
system S ′ that first non deterministically computes some N up to nc (this is
also known as a “weak” computer for nc), then simulates the runs of S but
decreases some counter holding N at each transition. Thus S ′ terminates and
has a bounded trace set, but still simulates M. Now, add two loops on two
different symbols a and b from the configurations that simulate the halting
state ofM, and therefore obtain a system which is trace bounded if and only
if M does not halt. Put differently, we reduce the control-state reachability
problem in terminating systems to the trace boundedness problem.

We instantiate this recipe in the cases of Petri nets in §5.2.1, using
Lipton [55]’s results, for reset Petri nets (and thus affine counter systems) in
§5.2.2 using Schnoebelen [65]’s results, and for lossy channel systems in §5.2.3,
using Chambart and Schnoebelen [18]’s results. Although the complexity for
Petri nets is quite significantly lower than for the other classes of systems, we
also derive a non primitive-recursive lower bound on the size of a bounded
expression for a trace bounded Petri net (§5.2.4).

5.2.1. ExpSpace-Hardness for Petri Nets. Let us first observe that, since
Karp and Miller [51]-like constructions always terminate in Petri nets, the
search for an increasing fork is an algorithm (instead of a semi-algorithm).
However, the complexity of this algorithm is not primitive-recursive [17].

Meanwhile, we extend the ExpSpace-hardness result of Lipton [55] for the
Petri net coverability problem to the trace boundedness problem. As shown
in [10] using an extension of the techniques of Rackoff [61], trace boundedness
is in ExpSpace for Petri nets, thus trace boundedness is ExpSpace-complete
for Petri nets.

Proposition 17. Deciding the trace boundedness of a deterministic Petri
net is ExpSpace-hard.

Proof. The ExpSpace hardness of deciding whether a Petri net has a
bounded trace set can be shown by adapting a well-known construction
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Figure 7. The Petri net N ′ of the proof of Proposition 17.

by Lipton [55]—see also the description given by Esparza [28]—for the Ex-
pSpace-hardness of the coverability problem in Petri nets. We refer the
reader to their construction of an O(n2)-sized 22n-bounded Petri net N
that weakly simulates a 2n-space bounded Turing machine M, such that a
marking greater than some marking m can be reached in N if and only if
M halts.

We construct a new free labeled Petri net N ′ from N = 〈P,Θ, f,m0〉 and

the marking m. Since the places in N are bounded by 22n , only nc
def
= 22n

|P |

different configurations are reachable from m0 in N , therefore we can limit
the length of all the computations in N to nc and still obtain the same
reachability set.

We initially plug a subnet that “weakly” computes some N ≤ nc in a new
place pt (displayed in the left part of Figure 7), in less than knc steps for some
constant k. This subnet only uses a constant size and an initial submarking
of size O(|P |+n). We then simulate N but modify its transitions to consume
one token from pt each time. Finally, a new transition that consumes m from
the subnet for N adds one token in another new place ph that allows two
new different transitions a and b to be fired at will; see Figure 7.

A run of N ′ either reaches ph and can then have any string in {a, b}∗ as a
suffix, or is of length bounded by (k+1)nc. Hence, T (N ′) is trace unbounded
if and only if a run of N reaches some m′ ≥ m, if and only if the 2n-space
bounded Turing machine M halts, which proves the ExpSpace-hardness of
deciding the trace boundedness of a Petri net. �

5.2.2. Ack-Hardness for Affine Counter Systems. Schnoebelen [65] shows
that reset Petri nets (and thus affine counter systems) can simulate Minsky
machines with counters bounded by Fk(x) for some finite k and x. Thus we

can encode a Fω(n) space-bounded Turing machine using a 2Fω(n)-bounded
Minsky machine. Since

2Fω(n) = 2Fn+1(n) ≤ F2(Fn+1(n)) ≤ F 2
n+2(n) ≤ Fn+3(n+ 1) ,

we can simulate this Minsky machine with a polynomial-sized reset Petri
net, and we get:
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nc := |Q|·|M |Fωk (k) CM

qi qf

!a

!b

Figure 8. The lossy channel system C′M for the proof of Proposition 19.

Proposition 18. Trace boundedness of reset Petri nets is not primitive-
recursive, more precisely it is hard for Ack.

Proof sketch. The construction is almost exactly the same as for the proof
of Schnoebelen [65]’s Theorem 7.1 of hardness of termination. One simply
has to replace extended instructions using reset transitions as explained in
Schnoebelen [65]’s Section 6, and to replace the single outgoing transition
on `ω by two different transitions, therefore yielding an unbounded trace
set. �

5.2.3. HAck-Hardness for Lossy Channel Systems. Chambart and Schnoebe-
len [18] show that LCS can weakly compute any multiply-recursive function,
and manage to simulate perfect channel systems (i.e. Turing machines) of
size bounded by such functions, thereby obtaining a non multiply-recursive
lower bound for LCS reachability. We prove that the same bound holds for
trace boundedness.

Proposition 19. Trace boundedness of functional lossy channel systems is
not multiply-recursive, more precisely it is hard for HAck.

Proof. Chambart and Schnoebelen [18] show that it is possible to perfectly
simulate a Turing machine M with input x and k = |x| that works in space
bounded by Fωω(k) = Fωk+1(k), with an LCS CM of size polynomial in k
and |M|, such that a state qf of CM is reachable if and only if M halts.

Furthermore, the number of distinct configurations nc = |Q| · |M |Fωk+1 (k) of
CM can also be weakly computed in unary with an LCS of polynomial size,
Q being the set of states of CM and M its message alphabet.

Combining those two systems, we construct C′M that

(1) first “weakly” computes some N ≤ nc (in a separate channel with a
unary alphabet), and then

(2) executes CM while decrementing N at each transition step,

(3) is able to loop on two added transitions qf
!a−→ qf and qf

!b−→ qf , which
do not decrement N , giving rise to an unbounded trace.

In a nutshell, all the runs of C′M that do not visit qf are terminating, being
of length bounded by nc. Consequently, C′M is unbounded if and only if qf is
reachable, if and only if it was also reachable in CM, if and only if M halts.

We conclude the proof by remarking that both the weak computation of
nc and the perfect simulation of M keep working with the functional lossy
semantics. �
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5.2.4. Non Primitive-Recursive Size of a Bounded Expression for Petri Nets.
We derive a non primitive-recursive lower bound on the computation of the
words w1, . . . , wn, already in the case of Petri nets. Indeed, the size of a
covering tree can be non primitive-recursive compared to the size of the
Petri net [17, who attribute the idea to Hack]. Using the same insight, we
demonstrate that the words w1, . . . , wn themselves can be of non primitive-
recursive size. This complexity is thus inherent to the computation of
the wi’s.

Proposition 20. There exists a free labeled Petri net N with a bounded
trace set T (N ) but such that for any words w1, . . . , wn, if T (N ) ⊆ w∗1 · · ·w∗n,
then the size

∑n
i=1 |wi| is not primitive-recursive in the size of N .

Proof. We consider for this proof a Petri net that “weakly” computes a non
primitive-recursive function A : N→ N. The particular example displayed in
Figure 9 is taken from a survey by Jantzen [49], where A is defined for all m
and n by

A(n)
def
= A′n(2) A′0(n)

def
= 2n+ 1

A′m+1(0)
def
= 1 A′m+1(n+ 1)

def
= A′m(A′m+1(n)) .

The marked Petri net N for A(n) is of linear size in n and its trace set L is
finite, and therefore bounded, but contains words of non primitive-recursive
length compared to n.

Although it might seem intuitively clear that we need a collection of words
w1, . . . , wn of non primitive-recursive size in order to capture this trace set,
the proof is slightly more involved. Observe for instance that the finite
trace set {ap} where p is an arbitrary number is included in the bounded
expression a∗ of size |a| = 1. Thus there is no general upper bound to the
ratio between the size

∑
w∈L |w| of a finite trace set L and the size of the

minimal collection of words that proves that L is bounded.
Let us consider the maximal run in the Petri net for A(n). We focus on

the two black transitions labeled a and b in Figure 9, and more precisely on
the suffix of the run where we compute A′n(2) = A′1(p) with

p = A′2(A′3(. . . (A′n(1)− 1) . . . )− 1) .

This computation takes place in the subnet for A′0 and A′1 solely, and this
suffix is of form v = abk0abk1 · · · abkp with k0 = 1, ki+1 = 2ki + 1, and
kp = A′1(p) = A′n(2). By Lemma 13 any bounded expression such that
v ∈ w∗1 · · ·w∗n has size

∑n
i=1 |wi| > p.

We conclude by noting (1) that p is already the image of n by a non
primitive-recursive function, and (2) that v is the suffix of the projection u
of a word in T (N ) on the alphabet {a, b}: hence, if a bounded expression of
primitive-recursive size with T (N ) ⊆ w∗1 · · ·w∗n existed, then the projections
w′i of the wi on {a, b} would be such that |w′i| ≤ |wi| and u ∈ w′∗1 · · ·w′

∗
n, and

would yield an expression of primitive-recursive size for v. �

In the case of Petri nets we are in a situation comparable to that of
context-free languages: trace boundedness is decidable with a sensibly smaller
complexity than the complexity of the size of the corresponding bounded
expression (see Gawrychowski et al. [42] for a PTime algorithm for deciding
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Figure 9. A Petri net that “weakly” computes A′m+1 [49].

trace boundedness of a context-free grammar, and Habermehl and Mayr [47]
for an example of an expression exponentially larger than the grammar).

5.3. Upper Bounds. We provide another recipe, this time for proving
upper bounds for trace-boundedness in cd-WSTS, relying on existing length
function theorems on wqos, which prove upper bounds on the length of
controlled bad sequences.

5.3.1. Controlled Good and Bad Sequences. Let (S,≤) be a quasi order. A
sequence s0 · · · s` in S∗ is r-good if there exist 0 ≤ i0 < i1 < · · · < ir ≤ `
with sij ≤ sij+1 for all 0 ≤ j < r, and is r-bad otherwise. In the case r = 1,
we say more simply that the sequence is good (resp. bad). The wqo condition
thus ensures that any infinite sequence is good.

Given a norm function ‖.‖S → N with S≤n
def
= {s ∈ S | ‖s‖ ≤ n} finite for

every n, a control function g:N→ N, g monotone s.t. g(x) > x for all x, and
an initial norm n in N, a sequence s0 · · · s` is controlled by (‖.‖, g, n) if, for
all i, ‖si‖ ≤ gi(n) the ith iteration of g; in particular, ‖s0‖ ≤ n initially.

A cd-WSTS 〈S, s0,Σ,→,≤〉 is (strongly) controlled by (‖.‖, g, n) if

(1) ‖s0‖ ≤ n,
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(2) for any single step s
a−→ s′, ‖s′‖ ≤ g(‖s‖), and

(3) for any accelerated step s
uω−→u
ω

−→ s′, ‖s′‖ ≤ g|u|(‖s‖).
Using these notions, and by a careful analysis of the proof of Proposition 5,

we exhibit in §5.3.2 a witness of trace unboundedness under the form of a
good (‖.‖, g2, n)-controlled sequence s0 · · · s` of S∗ in a (‖.‖, g, n)-controlled
WSTS. There is therefore a longest bad prefix to this witness, which is still
controlled.

The particular way of generating this sequence yields an algorithm, since
as a consequence of the wqo, the depth of exploration in the search for
this witness of trace unboundedness is finite, and we can therefore replace
the two semi-algorithms of Section 3 by a single algorithm that performs
an exhaustive search up to this depth. Furthermore, we can apply length
function theorems to obtain upper bounds on the maximal length of bad
controlled sequences, and thus on this depth; this is how the upper bounds
of Table 1 are obtained (see §5.3.3 and §5.3.6).

5.3.2. Extracting a Controlled Good Sequence. Let us assume we are given a
trace unbounded (‖.‖, g, n)-controlled cd-WSTS S, and let us consider the
three infinite sequences defined in the proof of Lemma 11, namely (vi, ui)i>0

of pairs of words in Σ∗ × Σ+, (Li)i≥0 of unbounded languages, and (si)i≥0

of states starting with the initial state s0. By construction, (si)i≥0 is good;
however, this sequence is not controlled by a “reasonable” function in terms
of g, because we use the wqo argument at each step (when we employ
Lemma 10 to construct si+1 from si), hence the motivation for refining
this first sequence. A solution is to also consider some of the intermediate
configurations along the transition sequence vi+1ui+1 starting in si, so that
the index of each state in the new sequence better reflects how the state was
obtained.

Lemma 21. Let S = 〈S, s0,Σ,→,≤〉 be a (‖.‖, g, n)-controlled cd-WSTS.
Then we can construct a specific (‖.‖, g2, n)-controlled sequence which is good
if and only if S is trace unbounded.

Proof. As in the proof of Lemma 11, we construct inductively on i the
following three infinite sequences (vi, ui)i>0, (Li)i≥0 starting with L0

def
= T (S),

and (si)i≥0 starting with the initial state s0 of S, such that

• vi+1, ui+1 are chosen using Lemma 10 such that
(1) vi+1u

ω
i+1 is in Tacc(S(si)),

(2) vi+1ui+1 is in Pref(Li),
(3) |vi+1| ≥ |ui| if i > 0 (and thus |vi+1ui+1| ≥ |ui| as in the proof

of Lemma 11),
(4) ui+1(v−1

i+1Li) is unbounded, and
(5) there do not exist two successive strict prefixes p, p′ of vi+1ui+1

such that |p| ≥ |ui| and si
p−→ s′i

p′−→ s′′i with s′i ≤ s′′i , i.e. vi+1ui+1

is the shortest choice for Lemma 10 and (1–4) above;

• si
vi+1u

ω
i+1−−−−−→

vi+1u
ω
i+1−−−−−→ si+1;

• Li+1
def
= ui+1(v−1

i+1Li).
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We define another sequence of states (si,j)i≥0,j∈Ji by si
pi,j−−→ si,j with pi,j the

prefix of length j of vi+1ui+1, where

J0
def
= {0, . . . , |v1u1| − 1} and

Ji
def
= {|ui|, . . . , |vi+1ui+1| − 1} for i > 0.

Because |ui| > 0 for each i > 0, none of the (si)i>0 appears in the sequence
(si,j)i≥0,j∈Ji . Note that condition (5) on the choice of vi+1ui+1 ensures that,
for each i ≥ 0, each factor (si,j)j∈Ji is a bad sequence.

This infinite sequence of states (si,j)i≥0,j∈Ji can be constructed whenever
we are given a trace unbounded cd-WSTS, and is necessarily good due to
the wqo. Our aim will be later to bound the length of its longest bad prefix.
In order to do so, we need to control this sequence:

Claim 21.1. The sequence (si,j)i≥0,j∈Ji is controlled by (‖.‖, g2, n).

Proof. Since S is (‖.‖, g, n)-controlled, we can control the accelerated transi-
tion sequence that led to a given si,j : first reach si, and then apply j single
step transitions. Formally, put for all i ≥ 0

k0
def
= 0, ki+1

def
= ki + |vi+1|+ |ui+1| ,

where |vi+1| accounts for the single steps and |ui+1| for the accelerated step

in si
vi+1u

ω
i+1−−−−−→

vi+1u
ω
i+1−−−−−→ si+1; then we have for all i ≥ 0 and j ∈ Ji

‖si,j‖ ≤ gki+j(n) .

We need to relate this norm with the index of each si,j in the (si,j)i≥0,j∈Ji
sequence. We define accordingly for all i ≥ 0 and j ∈ Ji

`0,min J0

def
= 0, `i,j+1

def
= `i,j + 1, `i+1,min Ji+1

def
= `i,min Ji + |Ji| .

In order to prove our claim, namely that

‖si,j‖ ≤ (g2)`i,j (n) ,

we show by induction on (i, j) ordered lexicographically that

ki + j ≤ 2 · `i,j .
The base case for i = 0 and j = min J0 = 0 is immediate, since ki + j = 0 =
2 · `0,0. For the induction step on j, ki + j + 1 ≤ 2 · `i,j + 1 ≤ 2 · `i,j+1, and
for the induction step on i,

ki+1 + min Ji+1 = ki+1 + |ui+1| (by def. of Ji+1)

= ki + 2|ui+1|+ |vi+1| (by def. of ki+1)

= ki + |ui|+ 2|ui+1|+ |vi+1| − |ui|
= ki + min Ji + 2|ui+1|+ |vi+1| − |ui| (by def. of Ji)

≤ 2 · `i,min Ji + 2|ui+1|+ |vi+1| − |ui| (by ind. hyp.)

≤ 2 · `i,min Ji + 2|ui+1|+ 2|vi+1| − 2|ui|
(since |vi+1| ≥ |ui|)

= 2 · `i+1,min Ji+1 . (by def. of `i+1,min Ji+1)

Thus by monotonicity of g,

‖si,j‖ ≤ gki+j(n) ≤ g2·`i,j (n) . �
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Figure 10. The construction of an increasing fork in the
proof of Claim 21.2.

We also need to show that such a good sequence is a witness for trace
unboundedness, which we obtain thanks to Lemma 7 and the following claim:

Claim 21.2. If the sequence (si,j)i≥0,j∈Ji is good, then S has an increasing
fork.

Proof. Let si,j and si′,j′ be two elements of the sequence witnessing goodness,
such that si,j occurs before si′,j′ and si,j ≤ si′,j′ . Due to the constraints put
on the choices of vi+1 and ui+1 for each i, we know that i < i′. Similarly
to the proof of Lemma 11, there exists a longest common prefix x in Σ∗

and two symbols a 6= b in Σ such that vi+2ui+2 = xaz and ui+1 = xby for
some y and z in Σ∗. Let us further call p′i,j the suffix of vi+1ui+1 such that

vi+1ui+1 = pi,jp
′
i,j , hence we get a fork by selecting s, sa, and sb with

si,j
p′i,ju

ω
i+1x−−−−−−→

p′i,ju
ω
i+1x−−−−−−→ s s

azuωi+2···vi′uωi′pi′,j′−−−−−−−−−−−−→
azuωi+2···vi′uωi′pi′,j′−−−−−−−−−−−−→ si′,j′

p′i,ju
ω
i+1x−−−−−−→

p′i,ju
ω
i+1x−−−−−−→ sa s

byx−−→ sb .

Note that because |x| < |ui+1| and i < i′, si′,j′ is necessarily met after s and
the construction is correct. See also Figure 10. �

This concludes the proof of the lemma: S is trace unbounded if and only
if (si,j)i≥0,j∈Ji is good. �

In the following, we essentially bound the complexity of trace boundedness
using bounds on the length of the (si,j)i≥0,j∈Ji sequence. This is correct
modulo a few assumptions on the concrete systems we consider, and because
the fast growing upper bounds we obtain dwarfen any additional complex-
ity sources. For instance, a natural assumption would be for the size of
representation of an element s of S to be less than ‖s‖, but actually any
primitive-recursive function of ‖s‖ would still yield the same upper bounds!

5.3.3. Fω Upper Bound for Affine Counter Systems. We match the Ack
lower bound of Proposition 18 for affine counter systems, thus establishing
that trace boundedness is Ack-complete. We employ the machinery of
Claims 21.1 and 21.2, and proceed by showing that

(1) complete affine counter systems are controlled, and that
(2) one can provide an upper bound on the length of bad sequences in

(N ] {ω})k.



28 P. CHAMBART, A. FINKEL, AND S. SCHMITZ

5.3.4. Controlling Complete Affine Counter Systems. Recall that an affine
counter system (ACS) 〈L,x0〉 is a finite set L of affine transition functions
of form f(x) = Ax + b, with A a matrix in Nk×k and b a vector in Zk,
along with an initial configuration x0 in Nk. A transition f is firable in
configuration x of Nk if f(x) ≥ 0, and leads to a new configuration f(x).

Define the norm ‖x‖ of a configuration in (N] {ω})k as the infinity norm

among finite values ‖x‖ def
= max({0} ∪ {x[j] 6= ω | 1 ≤ j ≤ k}). Also set m1

as the maximal coefficient

m1
def
= max

f(x)=Ax+b∈L,1≤i,j≤k
A[i, j]

and m2 as the maximal constant

m2
def
= max

f(x)=Ax+b∈L,1≤i≤k
b[i] .

In case of a single step transition using some function f in L, one has

‖f(x)‖ ≤ k ·m1 · ‖x‖+m2 ,

while in case of an accelerated transition sequence, one has the following:

Claim 22.1. Let u = fn◦· · ·◦f1 be a transition sequence in L+ with u(x) ≥ x.
Then ‖(uω(x))‖ ≤ (k ·m1)n·k · (‖x‖+ n · k ·m2).

Proof. We first proceed by proving that k iterations of u are enough in order
to compute the finite values in uω(x).

Let us set u(x) = Ax + b and dn
def
= un+1(x) − un(x) for all n. Since

u(x) ≥ x, for any coordinate 1 ≤ j ≤ k, the limit limn→ω u
n(x)[j] exists,

and is finite if and only if x[j] < ω and there exists m such that for all n ≥ m,
dn[j] = 0. As dn+1 = un+2(x)−un+1(x) = A·un+1(x)+b−(A·un(x)+b) =
A · (un+1(x)− un(x)) = A · dn, we have dn = An · d0.

If we consider A as the adjacency matrix of a weighted graph with
k vertices, its An[i, j] entry is the sum of the weights of all the paths
ψ = ψ0 ψ1 · · ·ψn of length n through the matrix, which start from ψ0 = i
and end in ψn = j, i.e.

An[i, j] =
∑

ψ∈{i}×[1,k]n−1×{j}

∏
`∈[0,n−1]

A[ψ`, ψ`+1]

dn[j] =
∑

ψ∈×[1,k]n×{j}

d0[ψ0] ·
∏

`∈[0,n−1]

A[ψ`, ψ`+1]

 .

Since u(x) ≥ x and A contains non negative integers from N, dn[j] = 0
iff each of the above products is null, iff there is no path of length n in the
graph of A starting from a non-null d0[i]. Therefore, if there exists n > k
such that dn[j] > 0, then there is a path with a loop of positive weight in
the graph. In such a case there are infinitely many m such that dm[j] > 0.
A contrario, if there exists m such that for all n ≥ m, dn[j] = 0, then m = k
is enough: if uω(x)[j] ∈ N, then uω(x)[j] = uk(x)[j].

Let us now derive the desired upper bound on the norm of uω(x): either
uω(x)[j] = ω and the jth coordinate does not contribute to ‖uω(x)‖, or
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uω(x)[j] ∈ N and uω(x)[j] = uk(x)[j]. Let fi(x)
def
= Ai · x + bi; we have

A =
1∏
i=n

Ai b =
n∑
j=1

(
j+1∏
i=n

Ai

)
· bj

uk(x) = Ak · x +
k−1∑
`=0

A` · b

=

(
1∏
i=n

Ai

)k
· x +

k−1∑
`=0

n∑
j=1

(
1∏
i=n

Ai

)̀
·

(
j+1∏
i=n

Ai

)
· bj

thus

‖uω(x)[j]‖ ≤ ‖Ak · x‖+
k−1∑
j=0

‖Aj · b‖

≤ (k ·m1)n·k · ‖x‖+ n · k · (k ·m1)n·k ·m2

= (k ·m1)n·k · (‖x‖+ n · k ·m2) �

5.3.5. Length Function Theorem. It remains to apply the bounds of Figueira
et al. [30] on the length of controlled r-bad sequences over Nk:

Proposition 22. Trace boundedness for affine counter systems is in Ack.

Proof. Define the projections p1 and p2 from (N ] {ω}) to N and {1, ω}
respectively by

p1(ω)
def
= 0 p1(n)

def
= n p2(ω)

def
= ω p2(n)

def
= 1

for n < ω, and their natural extensions from (N ] {ω})k to Nk and {1, ω}k.
Consider the projection (xi,j)i≥0,j∈Ji = (p1(si,j))i≥0,j∈Ji on Nk of the

sequence defined in §5.3.2. This sequence is (‖.‖, g, ‖x0‖)-controlled if
(si,j)i≥0,j∈Ji is (‖.‖, g, ‖x0‖)-controlled, and is r-good for any finite r whenever
the trace set of the affine counter system is unbounded.

Conversely, if the sequence (xi,j)i≥0,j∈Ji is 2k-good for the product ordering

≤ on Nk, then the system has an increasing fork. Indeed, let r = 2k;
by definition of a r-good sequence, we can extract an increasing chain
xk0 ≤ xk1 ≤ · · · ≤ xkr from the sequence (xi,j)i≥0,j∈Ji . Since r = 2k, there
exist ki < kj such that p2(ski) = p2(skj ), and therefore ski ≤ skj and we can
apply Claim 21.2 to construct an increasing fork.

By Claim 22.1, the sequence (xi,j)i≥0,j∈Ji is (‖.‖, g, ‖x0‖)-controlled by
a primitive-recursive function g (that depends on the size ‖L‖ of the affine
counter system 〈L,x0〉 at hand), hence it is of length ≤ Fω(p(k, ‖L‖, ‖x0‖))
for some fixed primitive-recursive function p [30]. �

5.3.6. Fωω Upper Bound for Lossy Channel Systems. Proposition 19 estab-
lished a HAck lower bound for the trace boundedness problem in lossy
channel systems. We match this lower bound, thus establishing that trace
boundedness is HAck-complete. As in §5.3.3, we need two results in order
to instantiate our recipe for upper bounds: a control on complete functional
LCS, and a miniaturization for their sequences of states.
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5.3.7. Controlling Complete Functional LCS. According to Abdulla et al. [4],
LCS queue contents on an alphabet M can be represented by simple regular
expressions (SRE) over M , which are finite unions of products over M .
Products, endowed with the language inclusion ordering, suffice for the
completion of functional LCS [33, Section 5], and thus for the representation
of the effect of accelerated sequences in functional LCS.

Products can be seen as finite sequences over a finite alphabet

ΠM = {(a+ ε) | a ∈M} ∪ {A∗ | A ⊆M}

with |ΠM | = 2|M | + |M |, with associated languages L(a + ε)
def
= {a, ε} and

L(A∗)
def
= A∗. We consider the scattered subword ordering � on Π∗M , defined

as usual by a1 · · · am � b1 · · · bn if there exists a monotone injection f :
{1, . . . ,m} → {1, . . . , n} such that, for all 1 ≤ i ≤ n, ai = bf(i). The
scattered subword ordering is compatible with language inclusion, thus we
can consider the subword ordering instead of language inclusion in our
completed functional LCS:1

Claim 24.1. For all products π, π′ in Π∗M , π � π′ implies L(π) ⊆ L(π′).

Let us fix for the remainder of this section an arbitrary complete func-
tional LCS C = 〈Q× (ΠM )∗, (q0, ε), {!, ?} ×M,→,≤〉, where ≤ is defined on
configurations in Q× (ΠM )∗ by (q, π) ≤ (q′, π′) if q = q′ and L(π) ⊆ L(π′).

Claim 24.2. Functional LCS are controlled by (‖.‖, g, 0) with ‖q, π‖ def
= |π|

and g(x)
def
= 2x+2 + x.

Proof. The claim follows from the results of Abdulla et al. [4] on SREs. Let

the current configuration be s
def
= (q, π).

In the case of a single transition step s
a−→ s′, a product grows by at most

one atomic expression (a+ ε) [4, Lemma 6.1].

In the case of an accelerated transition step s
uω−→u
ω

−→ s′ on a sequence u,

since s
u−→ s′′ with s ≤ s′′, we are in one of the first three subcases of the

proof of Lemma 6.4 of Abdulla et al. [4]: the first two subcases yield the
addition of an atomic expression A∗, while the third subcase adds at most
|u||π|+2 atomic expressions of form (a+ ε). �

5.3.8. Length Function Theorem. Schmitz and Schnoebelen [64] give an upper
bound on the least N such that any (‖.‖, g, n)-controlled sequence σ with
|σ| = N of elements in (Σ∗,�) is r-good.

Fact 23 (Schmitz and Schnoebelen, 2011). Let g be a primitive-recursive
unary function and n in N. Then, if σ is a (‖.‖, g, n)-controlled r-bad sequence
of (Σ∗,�), then |σ| ≤ F r

ω|Σ|−1(p(n)) for some primitive-recursive p.

Proposition 24. Trace boundedness for functional LCS is in HAck.

1We could first define a partial ordering ≤ on ΠM such that (a + ε) ≤ A∗ whenever
a ∈ A, and A∗ ≤ B∗ whenever A ⊆ B. The corresponding subword ordering (using
ai ≤ bf(i) in its definition) would be equivalent to language inclusion, and result in shorter

bad sequences.
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Proof. We consider the sequence of products (πi,j)i≥0,j∈Ji extracted from the
sequence of configurations (si,j)i≥0,j∈Ji defined in §5.3.2. This sequence of
configurations is r-good for any finite r whenever the trace set of the LCS is
unbounded. Conversely, if the sequence (πi,j)i≥0,j∈Ji is (|Q|+ 1)-good for the
subword ordering �, then C has an increasing fork. Indeed, let r = |Q|+ 1;
by definition of an r-good sequence, we can extract an increasing chain
πk0 � πk1 � · · · � πkr of length |Q|+ 1 from the sequence (πi,j)i≥0,j∈Ji . By
Claim 24.1, this implies L(πk0) ⊆ L(πk1) ⊆ · · · ⊆ L(πkr). Since r = |Q|,
there exist ki < kj such that ski = (q, πki) and skj = (q, πkj ) for some q in Q.
Thus ski ≤ skj , and we can apply Claim 21.2 to construct an increasing fork.

As the sequence (πi,j)i≥0,j∈Ji is (‖.‖, g, 0)-controlled by a primitive-recursive
function according to Claim 24.2, the length of the sequence (si,j)i≥0,j∈Ji
need not exceed F

|Q|
ω|ΠM |−1(p(|Q|)) for some primitive-recursive p by Fact 23,

thus the upper bound of is multiply-recursive, and we obtain the desired
Fωω upper bound. �

6. Verifying Trace Bounded WSTS

As already mentioned in the introduction, liveness is generally undecidable
for cd-WSTS. We show in this section that it becomes decidable for trace
bounded systems obtained as the product of a cd-WSTS S with a determin-
istic Rabin automaton: we prove that it is decidable whether the language
of ω-words of such a system is empty (Section 6.2) and apply it to the
LTL model checking problem (Section 6.3). We conclude the section with a
short survey on decidability issues when model checking WSTS (Section 6.4);
but first we emphasize again the interest of trace boundedness for forward
analysis techniques.

6.1. Forward Analysis. Recall from the introduction that a forward anal-
ysis of the set of reachable states in an infinite LTS typically relies on
acceleration techniques [see e.g. 7] applied to loops w in Σ∗, provided one
can effectively compute the effect of w∗. Computing the full reachability set
(resp. coverability set for cd-WSTS) using a sequence w∗1 · · ·w∗n requires post∗

flattability (resp. cover flattability); however, as seen with Proposition 16
[resp. 34, Proposition 6], both these properties are already undecidable for
cd-WSTS.

Trace bounded systems answer this issue since we can compute an ap-
propriate finite sequence w1, . . . , wn and use it as acceleration sequence.
Thus forward analysis techniques become complete for trace bounded sys-
tems. The Presburger accelerable counter systems of Demri et al. [21] are
an example where, thanks to an appropriate representation for reachable
states, the full reachability set is computable in the trace bounded case. In
a more WSTS-centric setting, the forward Clover procedure of Finkel and
Goubault-Larrecq for ∞-effective cd-WSTS terminates in the cover flattable
case [34, Theorem 3], thus:

Corollary 25. Let S be a trace bounded ∞-effective cd-WSTS. Then a finite
representation of CoverS(s0) can effectively be computed.



32 P. CHAMBART, A. FINKEL, AND S. SCHMITZ

Using the Cover set, one can answer state boundedness questions for WSTS.
Furthermore, Cover sets and reachability sets coincide for lossy systems, and
lossy channel systems in particular.

6.2. Deciding ω-Language Emptiness.

6.2.1. ω-Regular Languages. Let us recall the Rabin acceptance condition
for ω-words (indeed, our restriction to deterministic systems demands a
stronger condition than the Büchi one). Let us set some notation for infinite
words in a labeled transition system S = 〈S, s0,Σ,→〉. A sequence of states
σ in Sω is an infinite execution for the infinite word a0a1 · · · in Σω if

σ = s0s1 · · · with si
ai−→ si+1 for all i. We denote by Tω(S) the set of

infinite words that have an execution. The infinity set of an infinite sequence
σ = s0s1 · · · in Sω is the set of symbols that appear infinitely often in σ:
inf(σ) = {s ∈ S | |{i ∈ N | si = s}| = ω}.

Let S = 〈S, s0,Σ,→,≤〉 be a deterministic WSTS and A = 〈Q, q0,Σ, δ〉 a
DFA. A Rabin acceptance condition is a finite set of pairs (Ei, Fi)i of finite
subsets of Q. An infinite word w in Σω is accepted by S × A if its infinite
execution σ over (S×Q)ω verifies

∨
i(inf(σ)∩(S×Ei) = ∅∧inf(σ)∩(S×Fi) 6=

∅). The set of accepted infinite words is denoted by Lω(S × A, (Ei, Fi)i).
Thus an infinite run is accepting if, for some i, it goes only finitely often
through the states of Ei, but infinitely often through the states of Fi.

6.2.2. Deciding Emptiness. We reduce the emptiness problem for Lω(S ×
A, (Ei, Fi)i) to the trace boundedness problem for a finite set of cd-WSTS,
which is decidable by Theorem 2. Remark that the following does not hold
for nondeterministic systems, since any system can be turned into a trace
bounded one by simply relabeling every transition with a single letter a.

Theorem 26. Let S be an ∞-effective cd-WSTS, A a DFA, and (Ei, Fi)i
a Rabin condition. If S × A is trace bounded, then it is decidable whether
Lω(S ×A, (Ei, Fi)i) is empty.

Proof. Set S = 〈S, s0,Σ,→,≤〉 and A = 〈Q, q0,Σ, δ〉.
We first construct one cd-WSTS Si,1 for each condition (Ei, Fi) by adding

to Σ a fresh symbol ei, to S ×Q the pairs (s, qi) where s is in S and qi is a

fresh state for each q in Ei, and replace in → each transition (s, q)
a−→ (s′, q′)

of S ×A with q in Ei by two transitions (s, q)
ei−→ (s, qi)

a−→ (s′, q′). Thus we
read in Si an ei marker each time we visit some state in Ei.

Claim 26.1. Each Si,1 is a trace bounded cd-WSTS.

Proof of Claim 26.1. Observe that any trace of Si,1 is the image of a trace of
S×A by a generalized sequential machine (GSM) Ti = 〈Q, q0,Σ,Σ, δ, γ〉 using
Σ both as input and output alphabet, and constructed from A = 〈Q, q0,Σ, δ〉
with the same set of states and the same transitions, and by setting the
output function γ from Q× Σ to Σ∗ to be

(q, a) 7→ eia if q ∈ Ei
(q, a) 7→ a otherwise.

A GSM behaves like a DFA on a word a1 · · · an by defining a run q0
a1−→

q1 · · · qn−1
an−→ qn with qi+1 = δ(qi, ai+1) for all i, but additionally outputs
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the word γ(q0, a1)γ(q1, a2) · · · γ(qn−1, an), hence defining a function from
finite words over its input alphabet to finite words over its output alphabet.
Since bounded languages are closed under GSM mappings [45, Corollary on
p. 348] and S ×A is trace bounded, we know that Si,1 is trace bounded. �

In a second phase, we add a new symbol fi and the elementary loops

(s, q)
fi−→ (s, q) for each (s, q) in S ×Fi to obtain a system Si,2. Any run that

visits some state in Fi has therefore the opportunity to loop on f∗i .
In S×A, visiting Fi infinitely often implies that we can find two configura-

tions (s, q) ≤ (s′, q) with q in Fi. In Si,2, we can thus recognize any sequence

in {fi, w}∗, where (s, q)
w−→ (s′, q), from (s′, q): Si,2 is not trace bounded.

Claim 26.2. Each Si,2 is a cd-WSTS, and is trace unbounded iff there exists
a run σ in S ×A with inf(σ) ∩ (S × Fi) 6= ∅.

Proof of Claim 26.2. If there exists a run σ in S×A with inf(σ)∩(S×Fi) 6= ∅,
then we can consider the infinite sequence of visited states in S × Fi along σ.
Since ≤ is a well quasi ordering on S ×Q, there exist two steps (s, q) and
later (s′, q′) in this sequence with (s, q) ≤ (s′, q′). Observe that the same
execution σ, modulo the transitions introduced in Si,1, is also possible in
Si,2. Denote by w in Σ∗ the sequence of transitions between these two steps,

i.e. (s, q)
w−→ (s′, q′). By monotonicity of the transition relation of Si,2, we

can recognize any sequence in {fi, w}∗ from (q′, s′). Thus Si,2 is not trace
bounded.

Conversely, suppose that Si,2 is not trace bounded. By Lemma 11, it has

an increasing fork with (s0, q0)
w−→w−→ (s, q)

au−→au−→ (sa, q) and (s, q)
bv−→ (sb, q),

sa ≥ s, sb ≥ s, a 6= b in Σ ] {ei, fi}, u, w in (Σ ] {ei, fi})acc, and v in
(Σ ] {ei, fi})∗.

Observe that if fi only appears in the initial segment labeled by w, then
a similar fork could be found in Si,1, since (s, q) would also be accessible.
Thus, by Lemma 7, Si,1 would not be trace bounded. Therefore fi appears
in au or bv, and thus the corresponding runs for au or bv visit some state in
Fi. But then, by monotonicity, we can construct a run that visits a state in
Fi infinitely often. �

In the last, third step, we construct the synchronous product Si,3 =
Si,2×Ai, where Ai is a DFA for the language (Σ]{ei})∗fi(Σ]{fi})∗ (where
] denotes a disjoint union). This ensures that any run of Si,3 that goes
through at least one fi cannot go through ei any longer, hence it visits
the states in Ei only finitely many often. Since a run can always choose
not to go through a fi loop, the previous claim still holds. Therefore each
Si,3 is a cd-WSTS, is trace unbounded iff there exists a run σ in S × A
with inf(σ) ∩ (S × Ei) = ∅ and inf(σ) ∩ (S × Fi) 6= ∅, and we can apply
Theorem 2. �

6.3. Model Checking LTL Formulæ. By standard automata-theoretic
arguments [69, 62], one can convert any linear-time temporal logic (LTL)
formula ϕ over a finite set AP of atomic propositions, representing transition
predicates, into a deterministic Rabin automaton A¬ϕ that recognizes exactly
the runs over Σ = 2AP that model ¬ϕ. The synchronized product of A¬ϕ with
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a complete, deterministic, ∞-effective, and trace bounded WSTS S is again
trace bounded, and such that Lω(S×A, (Ei, Fi)i) = Tω(S)∩Lω(A, (Ei, Fi)i).
Theorem 26 entails that we can decide whether this language is empty, and
whether all the infinite traces of S verify ϕ, noted S |= ϕ. This reduction
also works for LTL extensions that remain ω-regular.

Corollary 27. Let S = 〈S, s0, 2
AP,→,≤〉 be an ∞-effective trace bounded

cd-WSTS, and ϕ a LTL formula on the set AP of atomic propositions. It is
decidable whether S |= ϕ.

An alternative application of Theorem 26 is, rather than relying on the
trace boundedness of S, to ensure that A¬ϕ is trace bounded. To this end, the
following slight adaptation of the flat counter logic of Comon and Cortier [19]
is appropriate:

Definition 28. A LTL formula on a set AP of atomic propositions is co-flat
if it is of form ¬ϕ, where ϕ follows the abstract syntax, where a stands for a
letter in 2AP:

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | αUϕ | Gα (flat formulæ)

α ::=
∧
p∈a

p ∧
∧
p 6∈a
¬p . (alphabetic formulæ)

In a conjunction ϕ ∧ ϕ′, one of ϕ or ϕ′ could actually be an arbitrary LTL
formula.

One can easily check that flat formulæ define languages of infinite words
with bounded sets of finite prefixes, and we obtain:

Corollary 29. Let S = 〈S, s0, 2
AP,→,≤〉 be an ∞-effective cd-WSTS, and

ϕ a co-flat LTL formula on the set AP of atomic propositions. It is decidable
whether S |= ϕ.

Extensions of Corollary 29 to less restrictive LTL fragments seem possible,
but our ideas thus far lead to rather unnatural conditions on the shape of
formulæ.

6.4. Beyond ω-Regular Properties. We survey in this section some re-
sults from the model checking literature and their consequences for several
classes of trace bounded WSTS. Outside the realm of ω-regular properties, we
find essentially two kinds of properties: state-based properties or branching
properties, or indeed a blend of the two [21, 9, 46].

6.4.1. Affine Counter Systems. Not all properties are decidable for trace
bounded cd-WSTS, as seen with the following theorem on affine counter
systems. Since these systems are otherwise completable, deterministic, and
∞-effective, action-based properties are decidable for them using Theorem 26,
but we infer that state-based properties are undecidable for trace bounded
∞-effective cd-WSTS.

Theorem 30 (Cortier, 2002). Reachability is undecidable for trace bounded
affine counter systems.

Affine counter systems are thus the only class of systems (besides Minsky
counter machines) in Figure 2 for which trace boundedness does not yield a
decidable reachability problem.
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6.4.2. Presburger Accelerable Counter Systems. Demri et al. [21] study the
class of trace bounded counter systems for which accelerations can be ex-
pressed as Presburger relations.2 Well-structured ∞-effective Presburger
accelerable counter systems include trace bounded reset/transfer Petri nets
and broadcast protocols, and Theorem 26 shows that ω-regular properties
are decidable for them.

By the results of Demri et al., not only is the full reachability set com-
putable for these systems, but furthermore an extension of state-based CTL∗

model checking with Presburger quantification on the paths is also decidable.

6.4.3. Guarded Properties. Let us recall that state-based LTL model checking
is already undecidable for Petri nets [27]. However, state-based properties
become decidable for WSTS if they only allow to reason about upward-closed
sets. This insight is applied by Bertrand and Schnoebelen [9], who define an
upward and downward guarded fragment of state-based µ-calculus and prove
its decidability for all WSTS. Goubault-Larrecq [46] presents a generalization
to open sets in well topological spaces. Extensions of Theorem 26 along these
lines could be investigated.

7. On Trace Unbounded WSTS

As many systems display some commutative behavior, and on that account
fail to be trace bounded, Bardin et al. [7, Section 5.2] introduce reductions
in order to enumerate the possible bounded expressions more efficiently, e.g.
removal of identity loops, of useless conjugated sequences of transitions, and
of commuting sequences. Such reductions are systematically looked for, up
to some fixed length of the considered sequences.

Increasing forks suggest a different angle on this issue: whenever we identify
a source of trace unboundedness, we could try to check whether the involved
sequences commute, normalize our system, and restart the procedure on
the new system, which is trace-equivalent modulo the spotted commutation.
Considering again the example Petri net of Figure 3, the two sequences c
and d responsible for an increasing fork do commute. If we were to force any
sequence of transitions in {c, d}∗ to be in the set (cd)∗(c∗ ∪ d∗), then

• the set of reachable states would remain the same, but
• the normalized trace set would be

a∗ ∪
⋃

0≤2m≤n
anb(cd)m(c≤n−2m ∪ d≤n−2m) ,

which is bounded.

Provided the properties to be tested do not depend on the relative order of c
and d, we would now be able to apply Theorem 26.

We formalize this idea in Section 7.3 using a partial commutation relation
(see Section 7.1 for background on partial commutations), and illustrate its
interest for a bounded-session version of the Alternating Bit Protocol (see
Section 7.2 for background on this protocol).

2Whether trace boundedness is decidable for deterministic Presburger accelerable counter
systems (i.e. not necessarily well-structured) is not currently known, while Proposition 15
answers negatively in the nondeterministic well-structured case.
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7.1. Partial Commutations. Let Σ be a finite alphabet; a dependence
relation D ⊆ Σ×Σ is a reflexive and symmetric relation on Σ. Its complement
I = (Σ×Σ)\D is an independence relation. On words in Σ∗, an independence
relation can be interpreted as a congruence ∼I ⊆ Σ∗ × Σ∗ generated by
repeated applications of ab ↔I ba for some (a, b) in I: ∼I =↔∗I , where
w ↔I w′ if and only if there exist u and v in Σ∗ and (a, b) in I with
w = uabv and w′ = ubav. We work on infinite words modulo the partial
commutations described by I.

7.1.1. Closure. The limit extension ∼lim
I ⊆ Σω × Σω of the congruence

∼I [23, 60] is defined by σ ∼lim
I σ′ iff,

• for every finite prefix u of σ, there is a finite prefix u′ of σ′ and a
finite word v of Σ∗ such that uv ∼I u′, and
• symmetrically, for every finite prefix u′ of σ′, there is a finite prefix
u of σ and a finite word v′ of Σ∗ such that u′v′ ∼I u.

Consider for instance the relation I
def
= {(a, b), (b, a)}; then (aab)ω ∼lim

I (ab)ω

(e.g. (aab)nbn ∼I (ab)2n and (ab)nan ∼I (aab)n), but (aab)ω 6∼lim
I aω (e.g.

(aab)nv 6∼I am for all n > 0, m > 0, and v in Σ∗).
A language L ⊆ Σ∗ (resp. L ⊆ Σω) is I-closed, if for any σ in L, and for

every σ′ with σ ∼I σ′ (resp. σ ∼lim
I σ′), σ′ is also in L. The closure of an

ω-regular language for a given partial commutation is decidable, and more
precisely PSpace-complete if the language is given as a Büchi automaton or
an LTL formula [60].

Definition 31. An LTS is I-diamond if, for any pair (a, b) of I, and for any

states s in dom
ab−→ ∩ dom

ba−→ and s′ in S, s
ab−→ s′ iff s

ba−→ s′.

We have the following sufficient condition for the closure of Tω(S), which
is decidable for I-diamond WSTS: just compare the elements in the finite

bases for dom
ab−→ and dom

ba−→.

Lemma 32. Let I be an independence relation and S an LTS, both on Σ.

If S is I-diamond and, for all (a, b) of I, dom
ab−→ = dom

ba−→, then Tω(S) is
I-closed.

Proof. One can easily check that this condition implies that the set of finite
traces T (S) is I-closed.

Let now σ be an infinite word in Tω(S), and σ′ an infinite word in Σω with
σ ∼lim

I σ′, but suppose that σ′ is not in Tω(S). Thus there exists a finite

prefix u′ of σ′ that does not belong to T (S). By definition of ∼lim
I , there is

however a prefix u of σ and a word v′ of Σ∗ such that u′v′ ∼I u. But this
contradicts the closure of T (S), since u is in T (S), but u′v′ is not—or u′

would be in the prefix-closed language T (S). �

However, already in the case of I-diamond WSTS and already for finite
traces, I-closure is undecidable; a sufficient condition like Lemma 32 is the
best we can hope for.

Proposition 33. Let I be an independence relation and S an I-diamond
cd-WSTS, both on Σ. It is undecidable whether T (S) is I-closed or not.
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Figure 11. The transfer Petri net N ′ of the proof of Proposition 33.

Proof. We reduce the (undecidable) reachability problem for a transfer Petri
net N and a marking m [24] to the I-closure problem for a new transfer
Petri net N ′. Let us recall that a transfer arc (p, t, p′) transfers all the tokens
from a place p to another place p′ when t is fired.

The new transfer Petri net N ′ extends N with three new places sim, sum,
and test, and three new transitions t, a, and b (see Figure 11). Its initial
marking is expanded so that sim originally contains one token, sum the sum
sm0 =

∑
pm0(p) of all the tokens in the initial marking of N , and test no

token. It simulates N while a token resides in sim, and updates sum so that
it contains at all times the sum of the tokens in all the places of N . Transfer
arcs are not an issue since they do not change this overall sum of tokens.
Nondeterministically, N ′ fires t, which removes m(p) in each place p of N ,
one token from sim, sm =

∑
pm(p) tokens from sum, and places one token

in test.
Now, a token can appear in test if and only if a marking m′ larger than m

can be reached in N ′. Furthermore, the distance
∑

pm
′(p)−m(p) is in sum,

so that m is reachable in N if and only if a marking with one token in test
and no token in sum is reachable in N ′.

The latter condition is tested by having a remove one token from test
and put one token in sum and one back in test, and b remove one from sum
and test and put them back. Set I

def
= {(a, b), (b, a)}; N ′ is I-diamond. The

transition sequence ab can be fired if and only if there if a token in test, but
ba further requires sum not to be empty. Thus a and b do not commute if
and only if m is reachable in N . �

7.1.2. Foata Normal Form. Let us assume an arbitrary linear ordering < on
Σ. For an independence relation I, we denote by C(I) the set of cliques of I,
i.e.

C(I)
def
= {C ⊆ Σ | ∀a, b ∈ C, (a, b) ∈ I} .

We further introduce a homomorphism ν : 2Σ → Σ∗ by

ν({a1, a2, . . . , ak}) = a1a2 · · · ak if a1 < a2 < · · · < ak.
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An infinite word σ in Σω is in Foata normal form [see e.g. 41] if there is
an infinite decomposition σ = ν(C0)ν(C1) · · · with each Ci in C(I), and for
each a in Ci, there exists b in Ci−1 such that (a, b) is in D. As indicated by
its name, for any word σ in Σω, there exists a unique word fnfI(σ) in Foata
normal form such that σ ∼lim

I fnfI(σ). For instance fnfI((aab)
ω) = (ab)ω for

I = {(a, b), (b, a)}.
Let us finally define the normalizing language NI of I as the set of all

infinite words in Foata normal form. The following lemma shows that NI is
very well behaved, being recognized by a deterministic Büchi automaton BI
with only accepting states. Thus its synchronous product with a WSTS S does
not require the addition of an acceptance condition: Tω(S×BI) = Tω(S)∩NI .

Lemma 34. Let I be an independence relation on Σ. Then NI is a topolog-
ically closed ω-regular language.

Proof. The topologically closed ω-regular languages, aka “safety” languages,
are the languages recognized by finite deterministic Büchi automata with
only accepting states. We provide such an automaton BI = 〈Q,Σ, q0, δ, Q〉
such that L(BI) = NI .

Set Q
def
= {q0} ∪ (C(I) ∪ {Σ})× C(I)× Σ. We define δ(q0, a) as (Σ, {a}, a)

for all a in Σ; for all C1 in C(I) ∪ {Σ}, C2 in C(I), a, b in Σ, we define
δ((C1, C2, a), b) by

(C1, C2 ∪ {b}, b) if a < b, ∃d ∈ C1, (b, d) ∈ D,
and ∀d ∈ C2, (b, d) ∈ I,

(C2, {b}, b) if ∃d ∈ C2, (b, d) ∈ D .

The automaton simultaneously checks that consecutive cliques enforce the
Foata normal form, and that the individual letters of each clique are ordered
according to <. �

7.2. The Alternating Bit Protocol. The Alternating Bit Protocol (ABP)
is one of the oldest case studies [12]. It remains interesting today because
no complete and automatic procedure exists for its verification. It can be
nicely modeled as a lossy channel system [see 4, and the next discussion “A
Quick Tour”], but even in this representation, liveness properties cannot be
checked. We believe it provides a good illustration of the kind of issues that
make a system trace unbounded, which we categorize into commutativity
issues, which we tackle through normalization, and main control loop issues,
which we avoid by bounding the number of sessions.

7.2.1. A Quick Tour. If the ABP is modeled as a fifo automaton (in fact
two finite automata communicating through two fifo queues), then all non-
trivial properties are undecidable, because fifo automata can simulate Turing
machines [see e.g. 16]. Nevertheless, several classes of fifo automata have
been studied in the literature, often with decidable reachability problems:

• One may observe that for any control state q of this particular fifo
automaton, the language of the two fifo queues is recognizable (as
a subset of {q} × A∗ × B∗ where A and B are the alphabets of
the queues). Pachl [59] has shown that reachability and safety are
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Figure 12. The Alternating Bit Protocol.

then decidable. But this recognizability property itself is in general
undecidable.
• One may also observe that the languages of the fifo queues contents

are bounded [32], and then one may simulate the fifo automaton
with a Petri net and decide reachability. Again, this subclass of fifo
automata is not recursive.
• Yet another way is to use loop acceleration with QDDs [13] or more

generally CQDDs [15] as symbolic representations, and to observe
that the reachability set is CQDD computable; but still without
termination guarantee when applied to non-flat systems.

Neither of these techniques is fully automatic nor allows to check liveness
properties.

The most effective approach is arguably to model the ABP as a lossy
channel system (see Figure 12); reachability and safety are then decidable,
but liveness remains undecidable. Furthermore, a forward analysis using
SREs as symbolic representations—as performed by a tool like TReX—,
will terminate and construct a finite symbolic graph (for the verification of
safety properties) [4]: indeed, the ABP is cover flattable, but unfortunately
this property is in general undecidable.

7.2.2. Verification. We model the ABP as two functional lossy channel sys-
tems (Sender and Receiver) that run in parallel, and communicate through
two shared channels cM for messages and cA for acknowledgments. Our cor-
rectness property is whether each sent message (proposition snd) is eventually
received (proposition rcv):

G(snd⇒ X(¬ snd U rcv)) , (ϕABP)

under a weak fairness assumption (every continuously firable transition is
eventually fired).

The full system is displayed for its useful accessible part in Figure 13, with
Receiver’s transitions in grey. This system is clearly not trace bounded, thus
we cannot apply Theorem 26 alone.

7.3. Trace Bounded Modulo I. The search for increasing forks on the
ABP successively finds four witnesses of trace unboundedness in states 10,
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Figure 13. Synchronized view of the ABP.

12, 32, and 30, where at each occasion two competing elementary loops can
be fired. Thankfully, all these loops commute, because they involve two
different channels. Our goal is to transform our system in order to remove
these forks, while maintaining the ability to verify (ϕABP).

Definition 35. A WSTS S is trace bounded modulo I an independence
relation, if Tω(S) is I-closed and the set of finite prefixes of the normalized
language Tω(S) ∩NI is trace bounded.

By Lemma 34, we can construct a cd-WSTS S ′ for Tω(S)∩NI , and decide
whether it is trace bounded thanks to Theorem 2. Thus trace boundedness
modulo I is decidable for I-closed WSTS.

Finally, provided the language L(¬ϕ) of the property to verify is also
I-closed, the normalized system and the original system are equivalent when
it comes to verifying ϕ. Indeed, we can generalize Theorem 26 to trace
bounded modulo I cd-WSTS and I-closed ω-regular languages:

Theorem 36. Let I be an independence relation, S be a trace bounded
modulo I cd-WSTS, and L an I-closed ω-regular language, all three on Σ.
Then it is decidable whether Tω(S) ∩ L is empty.

Proof. By Lemma 34, we can construct a cd-WSTS S ′ for Tω(S)∩NI , which
will be trace bounded by hypothesis. Wlog., we can assume that we have a
DFA with a Rabin acceptance condition for L, and can apply Theorem 26
to decide whether Tω(S ′) ∩ L = ∅.

It remains to prove that

Tω(S) ∩ L = ∅ iff Tω(S ′) ∩ L = ∅ .

Obviously, if Tω(S)∩L is empty, then the same holds for Tω(S ′)∩L. For the
converse, let σ be a word in Tω(S)∩L. Then, since S is I-closed, fnfI(σ) also
belongs to Tω(S) and to NI , and thus to Tω(S ′). And because L is I-closed,
fnfI(σ) further belongs to L, hence to Tω(S ′) ∩ L. �

Once our system is normalized against partial commutations, the only
remaining source of trace unboundedness is the main control loop. By
bounding the number of sessions of the protocol, i.e. by unfolding this main
control loop a bounded number of times, we obtain a trace bounded system.
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Table 2. Some decidability results for selected classes of
cd-WSTS—Petri nets (PN), affine counter systems (ACS),
and functional lossy channel systems (LCS)—in the general
and trace bounded cases (t.b.).

PN t.b. PN ACS t.b. ACS LCS t.b. LCS

Reachability Yes Yes No No Yes Yes
Post∗ inclusion No Yes No No No Yes
Liveness Yes Yes No Yes No Yes

This transformation would disrupt the verification of (ϕABP), if it were
not for the two following observations:

(1) The full set of all reachable configurations is already explored after two
traversals of the main control loop. This is established automatically
thanks to Corollary 25 on the 2-unfolding of the normalized ABP,
which is a trace bounded cd-WSTS. Thus any possible session, with
any possible reachable initial configuration, can already be exhibited
at the second traversal of the system.

(2) Our property (ϕABP) is intra-session: it only requires to be tested
against any possible session.

The overall approach, thanks to the concept of trace boundedness modulo
partial commutations, thus succeeds in reducing the ABP to a trace bounded
system where our liveness property can be verified.

8. Trace Boundedness is not a Weakness

To paraphrase the title Flatness is not a Weakness [19], trace boundedness
is a powerful property for the analysis of systems, as demonstrated with the
termination of forward analyses and the decidability of ω-regular properties
for trace bounded WSTS (see also Table 2)—and is implied by flatness.
More examples of its interest can be found in the recent literature on the
verification of multithreaded programs, where trace boundedness of the
context-free synchronization languages yields decidable reachability [50, 40].

Most prominently, trace boundedness has the considerable virtue of being
decidable for a large class of systems, the ∞-effective complete deterministic
WSTS. There is furthermore a range of unexplored possibilities beyond partial
commutations (starting with semi-commutations or contextual commutations)
that could help turn a system into a trace bounded one.

Acknowledgments. We thank the anonymous reviewers for their careful
reading, which improved the paper.
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