
Consecutive ones property testing: cut or swap

Mathieu Raffinot1

LIAFA, Univ. Paris Diderot - Paris 7, 75205 Paris Cedex 13, France.
raffinot@liafa.jussieu.fr

Abstract. Let C be a finite set of n elements and R = {R1, R2, . . . , Rm}
a family of m subsets of C. The family R verifies the consecutive ones
property if there exists a permutation P of C such that each Ri in R
is an interval of P . There already exist several algorithms to test this
property in O(

∑m

i=1
|Ri|) time, all being involved. We present a simpler

algorithm, based on a new partitioning scheme.

1 Introduction

Let C = {c1, . . . , cn} be a finite set of n elements and R = {R1, R2, . . . , Rm} a
family of m subsets of C. Those sets can be seen as a 0-1 matrix, where the C
represents the columns and each Ri the ones of row i. Figure 1 shows such a
matrix.

1

1

1 1

1 1 1 1 1 1

1 1

1 1 1 1

1

1

1

1

0 0 0

0 0 0 0

0 0 0

0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

1

10 1 1 0000 0

3 10

PQ−tree Overlap classes

1

1

2

3

4

5

6

7

8

9

c c c c c c c c

R

R

R

R

R

R

R

R

R

R

c c c c c c c c c c c c c c c c

2 3 4 5 6 7 8

4 2 6 1 3 7 5 8 4 2 6 1 3 7 5 8

R R R

RR

5 6 4

Fig. 1. A matrix verifying the consecutive ones property, its associated PQ-tree
and the information contained in overlap classes. In the PQ-tree, Q nodes are
represented by boxes, while P nodes by circles.

The family R verifies the consecutive ones property (C1P) if there exists a
permutation P of C such that each Ri in R is an interval of P . For instance, the
family given by the matrix of 1 verifies C1P. Efficiently testing C1P has received
a lot of attention in the literature for this problem to be strongly related to
the recognition of interval graphs, the recognition of planar graphs, modular
decomposition and others graph decompositions. The consecutive ones property
is the core or many other algorithms that have applications in a wide range

ar
X

iv
:1

00
8.

37
86

v1
 [

cs
.D

S]
 2

3
A

ug
 2

01
0

of domains, from VLSI circuit conception through planar embeddings [10] to
computational biology for the reconstruction of a chromosome from a set of
contigs [3]. We denote |R| =

∑m
i=1 |Ri|. Several O(|R|) time algorithms have

been proposed to test this property, following five main approaches.

The first approach and still the most well known one is the use of PQ-tree
structure [1]. A PQ-tree is a tree that represents a set of permutations defined
by the possible orders of its leaves obtained by changing the order of the children
of any internal node depending of its type which can be P or Q. For a P node,
any order of its children is valid, while for a Q node only the complete reversal
of its children is accepted. For instance, in Figure 1, the PQ-tree represents the
order c4c2c6c1c3c7c5c8, but also c4c2c6c7c3c1c5c8, c4c6c2c7c3c1c8c5, and so on.
The main point for using PQ-trees is that if a family verifies C1P, then one can
build a PQ-tree representing exactly all column orders for which the C1P will be
verified. For instance, the PQ-tree in Figure 1 represents all orders for which the
family given by the matrix at its right verifies C1P. If a family does not verify
C1P, its associated PQ-tree is said empty.

Given a family, in order to build its associated PQ-tree, each row is inserted
one after the other in the tree while the PQ-tree is not empty. This update is
done through a procedure called Refine which complexity is amortized on the
size of the tree. The main drawback of this approach is that the implementation
of Refine in its linear time complexity is still a challenge. It uses a series of 11
templates depending on the form of the tree and choosing which to use in con-
stant time is a huge programming difficulty, that has only slightly been reduced
by Young [11] using a recursive Refine that allows us to reduce the number of
templates. Moreover, extracting a certificate that the family does really not ver-
ify C1P from this approach is hard. Therefore, given a PQ-tree implementation,
one can hardly be confident neither in its validity nor in its time complexity.
This is the reason why many other algorithmic approaches have been tempted
to test C1P using simpler and/or certified algorithms.

One of those attempt consists in first transforming the C1P testing problem
to interval graph recognition by adding fake rows and then use a special LexBFS
traversal that produces a first order on C that has some special properties [5]. A
recursive partitioning phase is then necessary following both this LexBFS order
and an order on the rows derived from a clique tree built from the LexBFS
traversal. This approach is also complex, both to understand and to program,
and surprisingly the links between these two first approaches are not that clear.

A third approach was to try to design the PC-tree [8], an easiest structure
to refine than the PQ-tree. However as Haeupler and Tarjan noticed in [6],
the authors of [8] did not consider ”implementations issues” (sic) than lead to
incorrect algorithms for C1P testing and planar graph recognition.

A fourth approach appeared in [7] with the idea of simplifying the C1P test
by avoiding PQ-tree. However, the algorithm remains very involved.

A last and more recent approach has been presented by R. McConnell in [9].
This approach is a breakthrough in the understanding of the intrinsic constraints
of C1P and the real nature of the PQ-tree. We describe this approach in details

since our method is a tricky simplification of it. McConnell shows that each Q
node of the PQ-tree represents in fact an overlap class of a subset of the rows.
Two rows Ri and Rj of R overlap if Ri ∩Rj 6= ∅, Ri \Rj 6= ∅, and Rj \Ri 6= ∅.
An overlap class is a equivalence class of the overlap relation, that is, two rows
Ri and Rj are in the same class if there is a chain of overlaps from Ri to Rj .
For instance, the two non trivial overlap classes of the family example given
by the matrix of Figure 1 are shown on the same figure on the right. Overlap
classes partition the set of rows and form a laminar family, and thus they can
be organized in an inclusion tree.

This tree is the skeleton of the PQ-tree and the remaining P node might also
been derived from the overlap classes. However, for an equivalence class to be
a node of the PQ-tree, it also has to verify the consecutive one property. Thus,
where is the gain ? The trick used by McConnell is that verifying the C1P of
an overlap class is independent of the other overlap classes and somehow easier
provided a spanning tree of the overlap graph of the class. Using a partitioning
approach guided by this tree, it is linear in the total size of the rows in an overlap
class to test if this overlap class verifies C1P. Consequently, by testing overlap
classes one after the other, one can verify if the whole setR fulfills C1P in O(|R|)
time. The technical complexity of the approach is twofold: (a) compute overlap
classes and (b) a spanning tree of each class.

Point (a) is performed in [9] through an algorithm of Dahlhaus published as
a routine of [4] used for undirected graph split decomposition. It is considered
by McConnell as a black box that takes as input R and returns a list of overlap
classes and for each overlap class the list of rows that belongs to.

Point (b) is then computed in [9] for each overlap class by a complex add-on
from the list of rows in the class.

In this article we present a simplification of this last approach by introducing
a new partitioning scheme. It should be noted first that McConnell’s approach
can already be very slightly simplified using existing tools. Indeed, the algo-
rithm of Dahlhaus for computing overlap classes is an algorithmic pearl that
has been recently simplified and made computationable in the sense that the
original version uses an LCA while the simplified version presented in [2] only
uses partitioning. Moreover, a modification of Dahlhaus’s approach allows us to
extract a spanning tree of each overlap class. This modification is not obvious
but remains simpler than the add-on of [9]. However, building a spanning tree
from Dahlhaus is intrinsically difficult, because the two concepts are somehow
antinomic: Dahlhaus’s approach maintains some ambiguities in the row overlaps
that permit to gain on the overall computation, while computing a spanning
tree requires solving most of these ambiguities, which is sometimes difficult. In
this paper, we successfully maintain these ambiguities even in the partitioning
phase, avoiding buliding a spanning tree.

To clearly present our approach let us consider the difference between the
PQ-tree approach and that of McConnell in terms of partitioning. The PQ-tree
records a partition of C induced by the rows even if some rows can be included in
others (a row might not cut any class of the partition). The difficulty arises when

updating the structure: in the same time we need to update both a partition
and an inclusion tree that are intrinsically merged. In the second approach the
idea is to impose that each row added surely overlaps a previous one, which
simplifies the partitioning since the inclusion tree as not to be maintained. This
also insures the linear time complexity without any amortizing need, but at the
cost of the computation of a spanning tree of each overlap class.

Our approach lies in between. For each overlap call we update a partition,
but we also allow some fail and swap in the partitioning scheme. We compute
an order that guaranties that when adding a new row R1, if it does not overlap
any row already considered, then the row following R2 will, and moreover R1

overlaps R2 and will be considered next. We thus swap R1 and R2 in the order
we update the partition if R1 does not cut. We call this order a ”swap overlap
order”. This order could of course be obtained from a spanning tree, but we
explain below how we can compute such an order at a very small computational
price by entering deeper in Dahlhaus’s algorithm, that we also slightly simplify
for our needs. Our algorithm thus runs in 3 main steps: (1) the computation of
each overlap class using an algorithm close to that of Dahlhaus, (2) for each class
we compute of a swap overlap order, and (3) we partition each class guided by
this order using a new partitioning scheme. If the partitioning fails on a class,
the C1P is not verified. Steps 1 and 2 are performed in the same time, but for
clarity we present them in two distinct steps.

This article is organized as follows. In the following Section 2 we present two
variations of Dahlhaus’s algorithm for computing overlap classes. In Section 3
we explain our main notion of swap overlap order and explain how to slightly
modify Dahlhaus’s algorithm to generate such an order for each overlap class.
In Section 4 we eventually explain how to test C1P on each overlap class using
the swap overlap order associated to. We added two appendixes. The first is an
example of the construction of a swap overlap order. The second is a technical
routine used in Dahlhaus’s algorithm revisited in [2] that we mainly recall.

2 Computing Overlap Classes

In this section we recall and slightly modify the algorithm of Dahlhaus for com-
puting overlap classes already simplified and presented in [2]. The computational
problem to efficiently compute the overlap classes comes from the fact that the
underlying overlap graph, where Ri are the vertices and (Ri, Rj) is an edge if
Ri overlaps Rj , might have Θ(|R|2) edges and thus be quadratic in O(|R|). An
overlap class is a connected component of this graph.

Let LR be the list of all R ∈ R sorted in decreasing size order. The ordering
of sets of equal size is arbitrarily fixed, and thus LR is a total order. Given
R ∈ R, we denote Max(R) as the largest row X ∈ R taken in LR order such
that X <LR R and X overlaps R. This definition is modified from that in [2] to
consider the order LR in the definition of Max(R).

Note that Max(R) might be undefined for some sets of R. In this latter
case, in order to simplify the presentation of some technical points, we write
Max(R) = ∅. Dahlhaus’s algorithm is based on the following observation:

Lemma 1 ([4,2]). Let R ∈ R such that Max(R) 6= ∅. Then for all X ∈ R such
that X ∩R 6= ∅ and |R| ≤ |X| ≤ |Max(R)|, X overlaps R or Max(R).

The trick we propose below for computing the overlap order of each overlap
class is also based on lemma 1.

Let us assume first that we already computed all Max(R). For each column
c ∈ C we compute the list SL(c) of all sets R ∈ R to which c belongs. This
list is sorted in increasing order of the sizes of the sets respecting LR, thus in
decreasing order in LR. Computing and sorting all lists for all c ∈ C can be done
in O(|R|) time using a stable bucket sort.

Dahlhaus’s overlap class identification is built on those lists. For all c ∈ C,
let R be a set containing c such that Max(R) 6= ∅. We define a new interval on
SL(c) beginning in R, continuing from R in the order of SL(c) and finishing by
the greatest row in SL(c) such that |Y | ≤ |Max(R)|. Notice that this greatest
row Y is not necessarily equal to Max(R). If it is the case, the interval is said
of type M (for Max included), of type E (for External) otherwise. Given an
interval I, First(I) is the first row of the interval, thus the row which generates
the interval.

We ”bucket” sort the intervals in a table TI[1..m] of m entries the following
way. For an interval I = [Ri1 . . . Rik], I is added to all TI[ij], 1 ≥ j ≥ k.

An example of a family and the intervals associated to is shown in figure 2.

b R R 9RR
27 1

c R 2 R3

d R R4 2R3

M5

e

f

R

R

4 R R 3

6 R R5 3

5

M6

6Rg RR5 3

Ri 11 R 9

Rh
7
R 5R 3

M8

l R

k R 9

R10 9

10 8R R

Rj 8R 9

a R11 1R
E1

M7

E4

M3

E2

M9

9

10

11

5

6

7

8

1

2

3

4

E1 E2

M3 M5 E4 E2

M3 M5 M7

M6 M7

M7 E2

M9

M8 E2

M9

M8 E1

TI

R

R

R

1

R

R 4

R 5

6

7

8

a

b

c
d

e

f
g

h

i

j
k

l10R

R2 R3

R11

R 9

M6 E4

Fig. 2. Example: a family R, its corresponding sets SL and the associated TI
table. Intervals of type M are denoted by a plain line, while intervals of type E
are denoted by a dash one.

To compute overlap classes, we mark them one after the other, keeping the
numbering of the overlap class each row belongs to in a table NC[1..m] all ini-
tialized to 0.

Algorithm 1: computing all overlap classes

1. Initialize the counter nc = 1 to count the overlap class we are tagging;
2. Choose an arbitrary l, 1 ≤ l ≤ m such that there exist at least on interval in
TI[l];

3. For all interval(s) I = [Ri1 . . . Rik], in TI[l].
(a) remove all occurrences of I out of TI;
(b) mark each row in I to belong to overlap class nc, thus NC[ij] = nc,

1 ≤ j ≤ k;
(c) recurse this algorithm from step 3 on all ij , 1 ≤ j ≤ k, such that TI[ij]

is not empty;
(d) end the recursive procedure;

4. Increment nc and apply step 2 while TI[l] is not empty.

Rows that are not marked during this algorithm are themselves an overlap
class of a single element that it is not necessary to consider further for testing
C1P. We focus below on overlap classes that contain at least 2 rows.

By lemma 1, all rows in a given interval belong to the same overlap class.
We prove now that Algorithm 1 computes all overlap classes.

First, assume that 2 rows Ri and Rj are such that NC[Ri] = NC[Rj]. Then
the two rows have been marked during a recursive call of Step 3 that recurse on
each interval containing a row. Thus the whole process computes the closure of
belonging to a same interval, which guaranties that the two rows are linked by
a chain of overlap(s).

Secondly, assume that two rows R1 and R2 overlap. Let us consider wlog that
R2 <LR R1. Then Max(R1) exists and as R1 and R2 intersect on at least one
column c, R2 is in an interval beginning in R1 on SL(c). We thus proved that:

Proposition 1 ([4]). Algorithm 1 computes all overlap classes of R.

Worst case complexity of Algorithm 1. Algorithm 1 can be implemented to run
in O(|R|), provided that for a given row R computing Max(R) is O(1) time (see
Appendix B for details on this computation).

Up to now we dispose of a general scheme for computing all overlap classes of
R that is directly adapted from [4,2]. We now modify this approach to consider
the two types M and E of intervals successively for each row, beginning with
intervals of type M and then intervals of type E.

Algorithm 2: the computation of all overlap classes revisited

1. Initialize the counter nc = 1 to count the overlap class we are tagging;
2. Choose an arbitrary l, 1 ≤ l ≤ m such that there exist at least on interval in
TI[l] of type M ;

3. For all interval(s) I = [Ri1 . . . Rik] of type M in TI[l],
(a) remove all occurrences of I out of TI;
(b) mark each row in I to belong to overlap class nc, thus NC[ij] = nc,

1 ≤ j ≤ k;
(c) recurse this algorithm from step 3 on all ij , 1 ≤ j ≤ k, such that TI[ij]

is not empty;
4. For all interval(s) J = [Ri1 . . . Rik] of type E in TI[l],

(a) remove all occurrences of J out of TI;
(b) mark each row in J to belong to overlap class nc, thus NC[ij] = nc,

1 ≤ j ≤ k;
(c) recurse this algorithm from step 3 on all ij , 1 ≤ j ≤ k, such that TI[ij]

is not empty;
(d) end the recursive procedure;

5. Increment nc and apply step 2 while TI[l] is not empty.

Algorithm 2 is still valid since (a) it is a simple modification of Algorithm 1
only considering two types of intervals and (2) in each overlap class there exist
at least one interval of type M to begin with at step 2.

3 Swap Overlap Order

A swap overlap order is an order Ri1 . . . Rik on the rows of an overlap class such
that, for all 2 ≤ l ≤ k, at least one of the two following cases is true:

– Ril overlaps one Rig , 1 ≤ g < l,
– l < k and Ril+1

overlaps Rig , 1 ≤ g < l, and Ril overlaps Ril+1
.

We now modify Algorithm 2 to output for each overlap class a swap overlap
order.

Algorithm 3: outputing a swap overlap order for all overlap classes

1. Initialize the counter nc = 1 to count the overlap class we are tagging;
Initialize Onc to the empty word ε,

2. Choose an arbitrary l, 1 ≤ l ≤ m such that there exist at least on interval in
TI[l] of type M ;

3. For all interval(s) I = [Ri1 . . . Rik] of type M in TI[l],
(a) remove all occurrences of I out of TI;
(b) concatenate to Onc successively the rows Ri1 ,Rik , Ri2 , .. ,Rik−1

in this
order, adding a row only if NC[ij] = 0. After adding a row, change
NC[ij] to no.

(c) recurse this algorithm from step 3 on all ij , 1 ≤ j ≤ k, such that TI[ij]
is not empty;

4. For all interval(s) J = [Ri1 . . . Rik] of type E in TI[l],
(a) remove all occurrences of J out of TI;
(b) recurse step 3 on TI[i1];

(c) concatenate to Onc successively the rows Ri2 , Ri3 , .. ,Rik in this order,
adding a row only if NC[ij] = 0. After adding a row, change NC[ij] to
no.

(d) recurse this algorithm from step 3 on all ij , 1 < j ≤ k, such that TI[ij]
is not empty;

(e) end the recursive procedure;

5. Increment nc and apply step 2 while TI[l] is not empty.

The main difference with Algorithm 2 in terms of recursive call is step 4.(b),
where we first recurse on First(J) when considering an interval of type E before
processing the interval itself.

A trace of the execution of Algorithm 3 is given in Appendix A. For the
largest overlap class of our current example, it returns the swap overlap order
O1 = R2R3R4R5R7R1R9R11.

What is the idea behind algorithm 3 ? We begin an order by considering
and interval of type M , say I = [Ri1 . . . Rik]. By placing Ri1 and then Rik =
Max(Ri1) before all other rows in I, Lemma 1 guaranties that the following rows
in I overlap either Ri1 or Rik .

Then, assume that there exits a row X between Ri1 and Rik in I. We re-
curse on X. If the line corresponding to X in TI contains and interval, say
I ′ = [R′i1 . . . R

′
ik′

], it be of two types, M or E.

Case 1. If I ′ is of type M then it will be process first before all type E intervals
corresponding to X. Then, either X is the fist row of the interval, either not.
Whatever, as X already appears in Onc by interval I, then by concatenating the
rows in the order R′i1R

′
ik′
... if not already in Onc, we guaranty that:

– one of R′ik′ = Max(R′i1) or R′i1 overlaps X that is already placed in Onc by
Lemma 1.

– each following row in I ′, if any, either overlaps R′ik′ or R′i1 , or already ap-
pears in Onc.

Case 2. If I ′ is of type E, then R′i′
k

is not Max(R′i1). Thus there is not guaranty

that Max(R′i1) (that has to exist since I ′ is an interval beginning in R′i1) has
already been placed in Onc. Thus we first recurse on R′i1 (step 4-(a)) to guaranty
that after some recursion the rows R′i1 and Max(R′i1) appear somewhere in Onc

before processing I. Then, by lemma 1, each row following R′i1 in I ′ overlaps ei-
ther Max(R′i1) or R′i1 . As both are already in Onc, we simply concatenate them
to Onc in step 4-(c).

Thus, summarizing the 2 cases, when concatenating new rows to Onc, we can
insure that either (a) we add a couple (X,Max(X)), provided that at least one
of those rows overlaps a row Y already placed in Onc (note that if one of those
rows is already in Onc, then the result also holds), or (b) a row X that surely
overlaps a row already in Onc. Using this approach we identify each overlap class

and in the same time we build a swap overlap order for each overlap class.

Complexity. It is obvious that the time complexity is the same that Algorithm
1 or Algorithm 2, that is, O(|R|).

4 Partitioning Each Overlap Class

At this point, we built a swap overlap order for each non trivial overlap class. It
remains to explain how to test C1P on each such class using this order.

We use a partitioning that is relatively similar to that of [9], except that
instead of being driven by a spanning tree it uses a swap overlap order that
is easier to build since it is in the direct continuation of Dahlhaus’s approach
for computing overlap classes. However, the important difference is that using a
swap overlap order we can not certify that we cut each time the current partition
when refined by a new row. Instead, we can certify that if the new row R1 does
not cut, the following row R2 will, and R1 will then cut R2. We thus swap the
two rows in the partitioning.

Let us enter details. We maintain an ordered set of sets, called parts, of
columns of C. When adding a row, a part C can only be cut in two parts C ′C”
such that C ′ ∪ C” = C and C ′ ∩ C” = ∅. In the partitioning, C is replaced by
C ′C ′′ or C”C ′ depending the case, but the general order of the initial partition
is maintained.

To begin the partitioning phase, we consider the first row Ri1 of the overlap
order Onc = Ri1Ri2 . . . Rik of overlap class nc. We create a first part in our
partition P1 that is composed of the columns of Ri1 . We then refine this partition
with R2 by first marking all elements of R2. Suppose first that R2 overlaps (or
cuts) R1 and let X = R1∩R2. We partition P by R2 in P2 = (R1\X)(X)(R2\X),
thus we simply placed all common elements of R1 and R2 on a line in such a
way that both R1 and R2 are intervals of P , which is the core of the C1P.

Let us now consider a new row Rij . We mark elements of Rij in Pj−1. Suppose
again that Rij cuts a row already integrated to Pj−1. Let Y be the set of elements
of Rij that already appear in Pj . Two cases may occur:

(a) if Y = Rij , we only try to group together the elements of R3 in P2. If we
can, we only cut the parts accordingly to build Pj

(b) if Y 6= Rij , then we try to cluster the elements of Y on a border (left or
right) of Pj−1. If we can, we cut the parts accordingly and add a new part
(Rij \Y) before (resp. after) all parts of Pj−1 if the border was the left (resp.
right) one to eventually build Pj .

Example of partitioning on the first overlap class of our current data set with
the order R2R3R4R5R7R3R1R9R11.

Row Columns Partition
R2 {b, c, d} (bcd)
R3 {c, d, e, f, g, h} (b)(cd)(efgh)
R4 {d, e} (b)(c)(d)(e)(fgh)
R5 {e, f, g, h} (b)(c)(d)(e)(fgh)
R7 {b, h} fail

The main point of this approach is that if this process fails for a given row,
the overlap call does not verify C1P.

Proposition 2 ([9]). Let Ri1Ri2 . . . Rik be a total order of the rows of a given
overlap class nc such that each row Rij , j > 2, overlaps a previous row Ril , 1 ≤
l < j. Then the above partitioning fails if and only if the overlap class nc does
not verify C1P.

Proof. The intuition behind this theorem is that if two rows Ra and Rb overlap,
the intersection X = Ra ∩ Rb must rely in between and the only two possible
column orders respecting C1P are (Ra \X)(X)(Rb \X) or (Rb \X)(X)(Ra \X).

Each part of the partition derives from the intersection of two rows or the
difference of a row and its intersection with the other rows. Thus the order of the
elements inside a part is not relevant and can be changed, but the global order
of all parts is fixed and can not be changed (not considering a global reversal)
without breaking the C1P of the previous rows. This has for consequence that
when adding a new row that overlaps (at least) one row that is already embedded
in the current permutation, C1P will be maintained only if the elements of the
new rows can be embedded in P respecting the order of its parts. The fact that
the order of the elements inside each parts is not relevant allows us to split some
parts (placed in the extremities of the touched zone) in two subparts, those
touched by the new row on a side, the rest on the other side. This is the only
operation authorized when adding a row to test if we can maintain C1P adding
the new row.

A new row can be embedded in P under those conditions only in the two
cases (a) and (b) equivocated above. Therefore, if the partitioning is feasible,
then the new partition “encodes” all possible column order for the set of rows
considered up to this point to verify C1P. If not, this insures that no column
order could be valid for the set of rows to verify C1P. 2

In our approach, as we manipulate swap overlap orders, the partitioning
phase must be slightly modified in the following way. Suppose that we want to
refine the partition Pj−1 with Rij . If Rij does not overlap any previous row use
in the partitioning, that is if all columns of Rij either belong to the same part of
Pj−1 of to none, we swap Rij and Rij+1 , refine the partition with Rij+1 and only
then with Rij . The swap overlap order guaranties that Rij+1

will cut a previous
row, and that Rij overlaps Rij+1

. We call this partitioning a swap partitioning.

Theorem 1. Let Ri1Ri2 . . . Rik be a swap overlap order of the rows of a given
overlap class nc. Then the above swap partitioning fails if and only if the overlap
class nc does not verify C1P.

Proof. By swapping the rows when necessary, we insure that the order of the
Ri1Ri2 . . . Rik rows in which we refine the partition verifies that each row Rij , j >
2, overlaps a previous row Ril , 1 ≤ l < j, thus satisfying the conditions of
proposition 2. 2

Implementation issues. Let us now consider the time complexity of our par-
titioning. We show below how it might be implemented in time O(|Onc|) where
|Onc| is the sum of the size of all rows belonging to the overlap class.
The data structure we need must allow us to

1. split a part C in C ′C ′′ in the number of the elements of C touched;
2. add a new part to the left of to the right of the current partition in the

number of the elements added;
3. test if the elements touched can be made consecutive;
4. test if a new row cut another one already embedded in the partition;

There might be many data structures implementation having these proper-
ties. We propose below a simple one. This structure can also replace that used
in [2] for identifying all Max(X) used by Dahlhaus’s algorithm (see Appendix
B), and thus our whole algorithm only uses a single data structure.

We basically use an array of size |C| to store a stack which encodes a per-
mutation of elements of C. Each cell of this array contains a column and a link
to the part it belongs to. A part is coded as a pair of its beginning and end-
ing positions in the array, relatively to the beginning of the array. A schematic
representation of this data structure is given in Figure 3.

9,12

b c d

EndBegin

1,3

e f g h

BeginEnd

cd b

1,2 3,3

Fig. 3. Example continued: implementation of (bcd) and then (efgh)(dc)(b)
when refining R2 = {b, c, d} by R3 = {c, d, e, f, g, h}.

Using this data structure, refining a part C by one of its subset C ′′ can be easily
done in O(|C ′′|). Indeed, let [i, j] be the bounds of C. We swap elements in the
subtable [i, j] to place all s = |C ′′| elements of C ′′ at the end or at the beginning
of this subtable as necessary. We then adjust the bounds of C to [i, j − s] or
[i+ s, j] depending of the case and create a new set [j − s+ 1, j] or [i, i+ s− 1]
on which the s elements of C ′′ now point.

Adding a new part to the left of to the right of the current partition in the
number of the elements added is easy since it suffices to create a new part and
move the pointers of the beginning or ending modulo |C|. An example of such
operation is shown in Figure 3.

Assume that a new row R used for refining cut a class in the partition P ,
and let Y ⊂ R be the elements of R that are already in the partition.

If Y 6= R, then, to verify C1P, all classes touched by Y must be placed at
an extremity of P , all parts from this extremity must be fully touched except
the last one of which all elements touched has to be placed on the side of the
extremity we considered. All these requirements can easily be checked in the
number of elements of R, and if they are verified, a new part containing R \ Y
is added to the extremity.

If Y = R, then to verify C1P there should be a left part that might not be
fully touched followed by a series (that can be empty) of plenty touched parts
and eventually a last part also not necessary fully touched. This is also not
difficult to check in O(|R|).

The novelty in our approach is that a new row R might not cut the current
partition, which has to be tested efficiently. This can also easily be checked in
O(|R|) on our structure. Indeed, it suffices to test if R is included in a single
part, in none, or contains all parts. We thus have:

Theorem 2. Testing the C1P of the rows belonging to a same overlap class can
be done in O(|Onc|) time provided a swap overlap order Onc of it.

And eventually:

Corollary 1. Testing the C1P of a family R can be done in O(|R|) using a
swap overlap order of each overlap class.

Proof. It suffices to compute all overlap classes of R using Algorithm 3 that
provides for each overlap class a swap overlap order. Then Theorem 2 insures
that C1P can be tested on each overlap class in the number of rows belonging
to this class. As overlap classes partition R and that R verifies C1P if an only
if each overlap class verifies C1P, the whole test can be done in O(|R|) time. 2

References

1. K.S. Booth and G.S. Lueker. Testing for the consecutive ones properties, interval
graphs and graph planarity using pq-tree algorithm. J. Comput. Syst. Sci., 13:335–
379, 1976.

2. P. Charbit, M. Habib, V. Limouzy, F. de Montgolfier, M. Raffinot, and M. Rao. A
note on computing set overlap classes. Information Processing Letters, 108(4):186–
191, 2008.

3. T. Christof and J. Kececioglu. Computing physical maps of chromosomes with
nonoverlapping probes by branch-and-cut. In RECOMB ’99: Proceedings of the
third annual international conference on Computational molecular biology, pages
115–123, 1999.

4. E. Dahlhaus. Parallel algorithms for hierarchical clustering and applications to
split decomposition and parity graph recognition. J. Algorithms, 36(2):205–240,
2000.

5. M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-bfs and partition refine-
ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theoretical Computer Science, 234:59–84, 2000.

6. B. Haeupler and R. E. Tarjan. Planarity algorithms via pq-trees (extended ab-
stract). Electronic Notes in Discrete Mathematics, 31:143–149, 2008.

7. W.-L. Hsu. A simple test for the consecutive ones property. J. Algorithms, 43(1):1–
16, 2002.

8. W.-L. Hsu and R. M. McConnell. PC-trees and circular-ones arrangements. The-
oretical Computer Science, 296:99–116, 2003.

9. R. M. McConnell. A certifying algorithm for the consecutive-ones property. In
SODA, pages 768–777, 2004.

10. T. Nishizeki and Md. S. Rahman. Planar Graph Drawing. World Scientific, 2004.
11. S. Young. Implementation of PQ-tree Algorithms. Master’s thesis, University of

Washington, 1977. A scan version is available at http://www.liafa.jussieu.fr/

~raffinot/ftp/Young-PQ-tree.pdf.

http://www.liafa.jussieu.fr/~raffinot/ftp/Young-PQ-tree.pdf
http://www.liafa.jussieu.fr/~raffinot/ftp/Young-PQ-tree.pdf

A Trace of Algorithm 3 on Our Example

We trace below the recursive steps of Algorithm 3 on our example for the identi-
fication of the first overlap class while outputting the order O1 = R2R3R4R5R7

R3R1R9R11.

1. Step 1. Onc = ε, nc = 1
2. TI[2] is choosen in step 2 since it con-

tains an interval of type M.
3. Step 31. We consider I1 = M3 =

[R2R3]
4. 31-(a) all occurrences of M3 are re-

moved out of TI
5. 31-(b) O1 = R2R3, NC[2] = 1,

NC[3] = 1
6. 31-(c) Recursive call to Step 32 on R2

from M3. We consider I2 = M5 =
[R2R3]

7. 32-(a) all occurrences of M5 are re-
moved out of TI

8. 32-(b) as NC[2] = NC[3] = 1 no row
si added to O1

9. 32-(c) Recursive call to Step 33 on R2

from M5.
10. Entering Step 43 since there is no

more interval of type M in TI[2]. We
consider I3 = E4 = [R4R2]

11. 43-(a) all occurrences of E4 are re-
moved out of TI

12. 43-(b) Recursive call to Step 34 on
TI[4]. We consider I4 = M6 = [R4R5]

13. 34-(a) all occurrences of M6 are re-
moved out of TI

14. 34-(b) O1 = R2R3R4R5, NC[4] = 1,
NC[5] = 1

15. 34-(c) Recursive call to Step 35 on
TI[4]. As TI[4] is now empty, we re-
turn to step 34

16. 34-(c) Recursive call to Step 36 on
TI[5]. We consider I6 = M7 =
[R7R5R3]

17. 36-(a) all occurrences of M7 are re-
moved out of TI

18. 36-(b) O1 = R2R3R4R5R7, NC[7] =
1

19. 36-(c) Recursive call to Step 37 on R7

from M7. We consider I7 = E2 =
[R7R1R2R9]

20. 47-(a) all occurrences of E2 are re-
moved out of TI

21. 47-(b) Recursive call to Step 38 on
TI[7]. As TI[7] is now empty, we re-
turn to step 47

22. 47-(c) O1 = R2R3R4R5R7R1R9,
NC[1] = 1, NC[9] = 1

23. 47-(d) Recursive call to Step 39 on R1

We consider I9 = E1 = [R11R1]
24. 49-(a) all occurrences of E1 are re-

moved out of TI
25. 49-(b) Recursive call to Step 310 on

R11 We consider I10 = M8 = [R11R9]
26. 310-(a) all occurrences of M8 are re-

moved out of TI
27. 310-(b) O1 = R2R3R4R5R7R1R9R11,

NC[11] = 1
28. 310-(c) Recursive call to Step 311 on

TI[11]. As TI[11] is now empty, we
return to step 310

29. 310-(c) Recursive call to Step 312 on
TI[9]. As TI[9] is now empty, we re-
turn to step 310 than also ends, re-
turning to Step 49

30. 49-(c) Nothing to concatenate from
E1 = [R11R1] since the two rows are
already in O1.

31. 49-(d) Recursive call to Step 313 on
TI[1]. As TI[1] is now empty, we re-
turn to step 49 which also ends, thus
returning to Step 47-(d)

32. 47-(d) Recursive call to Step 314 on
TI[2]. As TI[2] is now empty, we re-
turn to step 47-(d)

33. 47-(d) Recursive call to Step 315 on
TI[9]. As TI[9] is now empty, we re-
turn to step 47 which also ends, thus
returning to Step 36-(c)

34. 36-(c) Recursive call to Step 316 on R1

from M7. As TI[1] is now empty, we
return to step 36-(c)

35. 36-(c) Recursive call to Step 317 on R2

from M7. As TI[2] is now empty, we
return to step 36-(c)

36. 36-(c) Recursive call to Step 318 on R9

from M7. As TI[9] is now empty, we

return to step 36-(c) which also ends,
returning to Step 34-(c)

37. 34-(c) Recursive call to Step 319 on R3

from M7. As TI[3] is now empty, we
return to step 34-(c) which also ends,
returning to Step 43-(b)

38. 43-(c) Recursive call to Step 320 on R2

from E4. As TI[2] is now empty, we
return to step 34-(c) which also ends,
returning to Step 32-(c).

39. 32-(c) Recursive call to Step 321 on R3

from M5. As TI[3] is now empty, we
return to step 32-(c) which also ends,
returning to Step 31-(c).

40. 31-(c) Recursive call to Step 322 on
R3 from M3. As TI[3] is now empty,
we return to step 31-(c) which also
ends, ending the identification fo the
first overlap class. The returning or-
der for nc = 1 is thus O1 =
R2R3R4R5R7R1R9R11.

B Computing all Max(X)

In this appendix we recall the computation of Max(R) only slightly modified
compared to the that published in [2]. The very small modifications is that we
impose Max(R) to be greater or equal to R in the LR order, while in [2] the
constraint for Max(R) is only to be of size greater or equal to that of R. This
implies that in [2] and also in the original paper of Dahlhaus [4] Max(R) can
be after R in the LR order if |Max(R)| = |R|, which in fact complexifies the
understanding of the algorithm.

We consider a boolean matrix BM of size |F| × |C| such that each row rep-
resents a set R ∈ F in the order of LR, and each column an element c ∈ C. The
value BM[i, j] is 1 if and only if cj ∈ Ri.

Let us consider first below that all columns of BM are lexicographically
sorted. Figure 4 shows the BM matrix for the set family of Figure 2.

X

X

X

X

X

X

X

X

X

X

X

10

11

a

3

9

5

2

1

4

8

7

6

1

1

1

1

1

1

1 1

1

1 1

1

1

1

1

1

1 1 1

1

1

1 1

1 1

i l j k b c d f g

0

0

0

0 0 0 0 0

0 0

0 0

0 0

0 0 0 0 0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0 0

0000

0

0

0

0

0

2 3 5 6 7 8 9 10 121141

1

0

left

7 12

2 6

9 12

6 8

1 6

8 12

10 11

6 9

4 5

3 5

1 2

e

0

0

0

0

0

1

1

1

h

0

0

0

0

0

1

1

1

right

Fig. 4. Example continued: BM matrix which lines are sorted in LR order and
which columns are sorted in lexicographic order.

For each R ∈ F we denote left(R) (resp. right(R)) the number of the column
of BM containing the leftmost (resp. rightmost) 1 in the row of R.

Lemma 2 ([2]). Let R1, R2 ∈ F such that R2 overlaps R1 in BM . Then there
exists a row R ≤LR R2 such that BM[R, left(R1)] = 0 and BM[R, right(R1)] = 1.

Lemma 3 ([2]). Let R1 ∈ F . Then Max(R1) 6= ∅ if and only if there exists
a row R in BM such that BM[R, left(R1)] = 0 and BM[R, right(R1)] = 1 and
verifying |R| ≥LR |R1|.

Lemma 4 ([2,4]). Let R1 ∈ F such that Max(R1) 6= ∅. Then Max(R1) corre-
sponds to the highest row R in BM such that BM[R, left(R1)] = 0 and BM[R,
right(R1)] = 1.

Dahlhaus’s approach for computing all Max(R1) the smallest R in LR order
such that BM[R, left(1)] = 0 and BM[R, right(R1)] = 1. Dahlhaus reduces the
problem to LCA computations, which has been simplified in [2] using partitions.

Computing all Max(R) using set partitioning. We manipulate sorted par-
titions of V that we refine by each R ∈ R taken in LR order, that is, in decreasing
order of their sizes. The initial partition is the whole set C and denoted PC . The
refinement is slightly restricted compared to that of Section 4 in the sense that
C is always split in C ′C ′′ (and never C ′′C ′) if C ′′ represents the set of elements
in R. Refining a partition P by a set R ∈ R consists in refining successively all
parts in P . We note this refinement P |R.

For example (continued), if P = {a}{i, j, k, l}{b}{c, d}{e, f, g, h} and R =
R4 = {d, e}, P |R = {a}{i, j, k, l}{b}{c}{d}{f, g, h}{e}.

The approach requires 3 steps:

1. refine PV by all R ∈ R taken in LR order;

2. then compute for each R ∈ R the values of left(R) and right(R) and sort all
R ∈ R in a special order in regard with these values;

3. eventually refine PV again by all R ∈ R taken in LR order but using the
informations computed in step 2 to compute all Max(R).

These 3 steps are detailed below.

Step 1 - Refining PV . Let us consider the final partition we obtain after
refining PV by each R ∈ R taken in LR order. We note this partition Pf .

Lemma 5 ([2]). The elements of Pf are sorted accordingly to the lexicographical
order of the columns of BM.

For example (continued), on the data in Figure 4, Pf = {a}{i}{l}{j}{k}{b}
{c}{d}{h}{f, g}{e}. Note that equal columns of BM are in the same part of Pf

on which we fix an arbitrary order.

Step 2 - Computing all left(R) and right(R) values. We then compute all
left(R) and right(R) values on Pf . This can be done easily in O(|R| + n) time
by scanning each R ∈ R and keeping the minimum and maximum position of
one of its element in Pf . We also compute a data structure AM that for each
position 1 ≤ i ≤ |V | of Pf gives a list of all R ∈ R such that i = right(R). All
those lists are sorted in increasing order of left(R). The structure also allows an
element R ∈ R to be removed from the list AM [right(R)] in O(1) time. This
can be insured for instance using doubly linked list to implement each list, and
the whole structure can easily be built in O(n+m) time using bucket sorting.

Step 3 - Refining PV again and identifying all Max(R). The main idea
is the following. Assume that at a step of the refinement process in LR order we
refine a part C = {ci1 , . . . , cik} of a partition P by R2 ∈ R and that it results
two non empty parts C ′C ′′.

Lemma 6 ([2]). Let R ∈ R such that |R| ≤ |Y2|, left(R) ∈ C ′ and right(R) ∈
C ′′. Then R2 = Max(R).

The last phase of the algorithm thus consists in refining PC again by all R2 ∈ R
taken in LR order. We first initialize all values Max(R) to ∅. Each time a new
split C ′C ′′ appears (say between positions l and l + 1), for all c ∈ C ′′ all lists
AM [c] are inspected the following way: let R be the top of one of those the
list; while left(R) ≤ l, R is popped off the list and Max(R)← R2. After having
refined with R2, R2 is removed from the AM structure.

Lemma 7 ([2]). The above algorithm correctly computes in 3 steps all Max(R),
R ∈ R.

The partition refinement can be efficiently implemented using the data struc-
ture presented in Section 4 of that in [2] which is a simpler version of the first
one.

Theorem 3 ([2]). The identification of all Max(R), R ∈ R, using partition
refinement can be done in Θ(|R|) time.

	Consecutive ones property testing: cut or swap
	 Mathieu Raffinot

