Skip to main content

Data Driven Bandwidth for Medoid Shift Algorithm

  • Conference paper
  • 2046 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6783))

Abstract

Adaptive data driven bandwidth for medoidshift algorithm has been proposed in this work. The proposed method has made it possible to perform clustering on a variety of high resolution statistically different images. Experiments are performed on natural images as well as daily life images. The images have been chosen such that a comparison analysis between fixed sample point estimator k and adaptive k can be carried out in detail. The results show that a fixed value of k=10 is good for statistically compact images but gives undesirable results in dispersed images. Data driven bandwidth is proposed for each data point/ pixel as well as the complete data set/ image. Experimental results have shown our algorithm to be robust. Performance is evaluated on the basis of root mean square error for the quality of clusters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xu, R., Wunsch II, D.: Survey of Clustering Algorithms. IEEE Transactions On Neural Networks 16(3) (2005)

    Google Scholar 

  2. Cherkassky, M.F.: Learning From Data: Concepts, Theory and Methods. Wiley, New York (1998)

    MATH  Google Scholar 

  3. Bishop, C.: Neural Networks for Pattern Recognition. Oxford Univ. Press, New York (1995)

    MATH  Google Scholar 

  4. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, ew York (2001)

    MATH  Google Scholar 

  5. Fukunaga, K., Hostler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on IT IT-21(1), 32–40 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, Y.: Mean shift, mode seeking, and clustering. PAMI 17(8), 790–799 (1995)

    Article  Google Scholar 

  7. Comaniciu, D., Peter, M.: Mean shift: A robust approach toward feature space analysis. PAMI 24(5), 603–619 (2002)

    Article  Google Scholar 

  8. Comaniciu, D.: An Algorithm for Data-Driven Bandwidth Selection. PAMI 25(2), 281–288 (2003)

    Article  Google Scholar 

  9. Comaniciu, D., Ramesh, V., Meer, P.: The Variable Bandwidth Mean Shift and Data-Driven Scale Selection. In: Proc. ICCV (2001)

    Google Scholar 

  10. Sheikh, Y.A., Khan, E.A., Kanade, T.: Mode seeking by medoidshift. IEEE Trans. ICCV, 1–8 (2007)

    Google Scholar 

  11. Asghar, A., Rao, N.I.: Color Image Segmentation Using Multilevel Clustering Approach. In: DICTA, Canberra, pp. 519–524 (December 2008)

    Google Scholar 

  12. Asghar, A., Rao, N.I.: Semantics Sensitive Segmentation and Annotation of Natural Images. In: 2008 IEEE International Conference on SITIS, Indonesia, pp. 387–394 (2008)

    Google Scholar 

  13. Vedaldi, A., Soatto, S.: Quick Shift and Kernel Methods for Mode Seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Breiman, L., Meisel, W., Purcell, E.: Variable kernel estimates of multivariate densities. Technometrics 19, 135–144 (1977)

    Article  MATH  Google Scholar 

  15. Garcia, A.L.: Probability and Random Processes for Electrical Engineers, ch. 5.2, 2nd edn. Pearson Education, London

    Google Scholar 

  16. Corel, http://cs.brekeley.edu/projects/vision/grouping/segbench/

  17. LableMe, http://labelme.csail.mit.edu/

  18. Flickr, http://flickr.com

  19. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions PAMI 22(8), 888–905 (2000)

    Article  Google Scholar 

  20. Georgescu, B., Shimshoni, I., Meer, P.: Mean shift based clustering in high dimensions: A texture classification example. IEEE Transactions, ICCV (2003)

    Google Scholar 

  21. Gilani, Z., Rao, N.I.: Fast Block Clustering Based Optimized Adaptive Mediod Shift. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 435–443. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gilani, S.Z.A., Rao, N.I. (2011). Data Driven Bandwidth for Medoid Shift Algorithm. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21887-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21887-3_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21886-6

  • Online ISBN: 978-3-642-21887-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics