Skip to main content

Removal of Surface Artifacts of Material Volume Data with Defects

  • Conference paper
Book cover Computational Science and Its Applications - ICCSA 2011 (ICCSA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6783))

Included in the following conference series:

Abstract

The three-dimensional defect distribution in material test specimens is a very important piece of information for us to understand the deformation and failure mechanism of materials. This distribution is sometimes complicated by the surface roughness of specimens in the defect detection of computed tomography data. In this paper, we proposed a new local differentiation algorithm to remove the surface artifacts caused by surface roughness in the defect detection of material specimens from computed tomography (CT) volume data. The accuracy of our method is compared with a traditional scan-line algorithm in terms of defect volume fraction measured in an independent scanning electron microscope (SEM) test. The experimental result indicates that our method is significantly better than the existing scan-line approach for predicting the defect volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salvo, L., Cloetens, P., Maire, E., Zabler, S., Blandin, J.J., Buffiere, J.Y., Ludwig, W., Boller, E., Bellet, D., Josserond, C.: X-ray micro-tomography an attractive characterisation technique in materials science. Nuclear Instruments and Methods in Physics Research B 200, 273–286 (2003)

    Article  Google Scholar 

  2. Jia, H., Murphey, L.Y., Chang, T., Shi, J., Gutchess, D.: Real-time surface defect detection in hot rolling process. In: CD-ROM, Proceedings of Iron and Steel Exposition and, AISE Annual Convention (2003)

    Google Scholar 

  3. Tsai, D.M., Chang, C.C., Chao, S.M.: Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion. Image and Vision Computing 28(3), 491–501 (2010)

    Article  Google Scholar 

  4. Chan, C.H., Pang, K.H.: Fabric defect detection by Fourier analysis. IEEE Transactions on Industry Applications 36(5), 1267–1276 (2000)

    Article  Google Scholar 

  5. Paschos, G.: Fast color texture recognition using chromaticity moments. Pattern Recognition Letters 21(8), 837–841 (2000)

    Article  Google Scholar 

  6. Maruo, K., Shibata, T., Yamaguchi, T., Ichikawa, M., Ohmi, T.: Automatic defect pattern detection on LSI wafers using image processing techniques. IEICE Transactions on Electronics E Series C 86(2), 1003–1012 (1999)

    Google Scholar 

  7. Ngan, H.Y.T., Pang, G.K.H., Yung, S.P., Ng, M.K.: Wavelet based methods on patterned fabric defect detection. Pattern Recognition 38(4), 559–576 (2005)

    Article  Google Scholar 

  8. Song, L., Qu, X., Xu, K., Lv, L.: Three-dimensional measurement and defect measurement based on single image. Journal of Optoelectronics and Advanced Materials 7(2), 1029–1038 (2005)

    Google Scholar 

  9. Sun, Y., Bai, P., Sun, H.Y., Zhou, P.: Real-time automatic detection of weld defects in steel pipe. NDT & E International 38(7), 522–528 (2005)

    Article  Google Scholar 

  10. Nakazawa, M., Aoki, Y., Kobayashi, M., Toda, H.: 3D image analysis for evaluating internal deformation/fracture characteristics of materials. In: Proceedings of SPIE, the International Society for Optical Engineering, vol. 6718, pp. 67180C.1–67180C.8 (2007)

    Google Scholar 

  11. Schilling, P.J., Karedla, B.P., Tatiparthi, A.K., Verges, M.A., Herrington, P.D.: X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites. Composites Science and Technology 65(15-16), 2071–2078 (2005)

    Article  Google Scholar 

  12. Taubin, G.: A Signal Processing Approach to Fair Surface Design. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 351–358 (1995)

    Google Scholar 

  13. Taubin, G.: Linear anisotropic mesh filtering, IBM Research Division. Technical Report RC22213 (2001)

    Google Scholar 

  14. Vollmer, J., Mencl, R., Muller, H.: Improved Laplacian smoothing of noisy surface meshes. Computer Graphics Forum 18(3), 131–138 (1999)

    Article  Google Scholar 

  15. Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.: Interactive Multi-resolution Modeling on Arbitrary Meshes. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 105–114 (1998)

    Google Scholar 

  16. Belyaev, A., Ohtake, Y.: A comparison of mesh smoothing methods. In: Israel-Korea Bi-National Conference on Geometric Modeling and Computer Graphics, pp. 83–87 (2003)

    Google Scholar 

  17. Yagou, H., Ohtake, Y., Belyaev, A.: Mesh Smoothing via Mean and Median Filtering Applied to Face Normals. In: Geometric Modeling and Processing, pp. 124–131 (2002)

    Google Scholar 

  18. Shen, Y., Barner, K.E.: Fuzzy vector median-based surface smoothing. IEEE Transactions on Visualization and Computer Graphics 10(3), 266–277 (2004)

    Article  Google Scholar 

  19. Yagou, H., Ohtake, Y., Belyaev, A.: Mesh denoising via iterative alpha-trimming and non-linear diffusion of normals with automatic thresholding. In: Proceedings of Computer Graphics International 2003, pp. 28–33 (2003)

    Google Scholar 

  20. Ohtake, Y., Belyaev, A., Seidel, H.: Mesh smoothing by adaptive and anisotropic Gaussian filter. In: Vision, Modeling, and Visualization 2002, pp. 203–210 (2002)

    Google Scholar 

  21. Oliensis, J.: Local reproducible smoothing without shrinkage. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(3), 307–312 (1993)

    Article  Google Scholar 

  22. Peng, J., Strela, V., Zorin, D.: A simple algorithm for surface denoising. In: IEEE Visualization 2001, pp. 107–112 (2001)

    Google Scholar 

  23. Alexa, M.: Wiener filtering of meshes. In: Proceedings of Shape Modeling International, pp. 51–57 (2002)

    Google Scholar 

  24. Pauly, M., Gross, M.: Spectral processing of point-sampled geometry. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 379–386 (2001)

    Google Scholar 

  25. Guskov, I., Sweldens, W., Schroder, P.: Multiresolution signal processing for meshes. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 325–334 (1999)

    Google Scholar 

  26. Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface processing. In: Proceedings of IEEE Visualization, pp. 397–405 (2000)

    Google Scholar 

  27. Clarenz, U., Rumpf, M., Telea, A.: Robust feature detection and local classification for surfaces based on moment analysis. IEEE Transactions on Visualization and Computer Graphics 10(5), 516–524 (2004)

    Article  Google Scholar 

  28. Desbrun, M., Meyer, M., Schroder, P., Barr, A.H.: Anisotropic feature-preserving denoising of height fields and bivariate. Graphics Interface, 145–152 (2000)

    Google Scholar 

  29. Clarenz, U., Dziuk, G., Rumpf, M.: On generalized mean curvature flow in surface processing. In: Karcher, H., Hildebrandt, S. (eds.), pp. 217–248. Springer, Heidelberg (2003)

    Google Scholar 

  30. Desbrun, M., Meyer, M., Schroder, P., Barr, A.H.: Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 317–324 (1999)

    Google Scholar 

  31. Sun, Y., Page, D.L., Paik, J.K., Koschan, A., Abidi, M.A.: Triangle mesh-based surface modeling using adaptive smoothing and implicit texture integration. In: Proceedings of First International Symposium on 3D Data Processing Visualization and Transmission, pp. 588–597 (2002)

    Google Scholar 

  32. Schneider, R., Kobbelt, L.: Generating fair meshes with g1 boundary conditions. In: Proceedings of Geometric Modeling and Processing, pp. 251–261 (2000)

    Google Scholar 

  33. Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  34. Zhang, H., Fiume, E.L.: Mesh smoothing with shape or feature preservation. In: Vince, J., Earnshaw, R. (eds.), pp. 167–182. Springer, Heidelberg (2002)

    Google Scholar 

  35. Ohtake, Y., Belyaev, A., Bogaevski, I.A.: Mesh regularization and adaptive smoothing. Computer Aided Design 33(11), 789–800 (2001)

    Article  Google Scholar 

  36. Hildebrandt, K., Polthier, K.: Anisotropic filtering of non-linear surface features. Computer Graphics Forum 23(3), 391–400 (2004)

    Article  Google Scholar 

  37. Tasdizen, T., Whitaker, R.T., Burchard, P., Osher, S.: Anisotropic geometric diffusion in surface processing. In: IEEE Visualization 2002, pp. 125–132 (2002)

    Google Scholar 

  38. Bajaj, C., Xu, G.: Anisotropic diffusion of subdivision surfaces and functions on surfaces. ACM Transactions on Graphics 22(1), 4–32 (2003)

    Article  Google Scholar 

  39. Bulow, T.: Spherical diffusion for 3D surface smoothing. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(12), 1650–1654 (2004)

    Article  Google Scholar 

  40. Tasdizen, T., Whitaker, R.T.: High-order nonlinear priors for surface reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(7), 878–891 (2004)

    Article  Google Scholar 

  41. Mederos, B., Velho, L., De Figueiredo, L.H.: Smoothing surface reconstruction from noisy clouds. Journal of the Brazilian Computer Society 9(3), 52–66 (2004)

    Article  Google Scholar 

  42. Jones, T.R., Durant, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. In: Proceedings of the 30th Annual Conference on Computer Graphics and Interactive Techniques, pp. 943–949 (2003)

    Google Scholar 

  43. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. In: Proceedings of the 30th Annual Conference on Computer Graphics and Interactive Techniques, pp. 950–953 (2003)

    Google Scholar 

  44. Choudhury, P., Tumblin, J.: The trilateral filter for high contrast images and meshes. In: Christensen, P.H., Cohen, D. (eds.) Proceedings of the Eurographics Symposium on Rendering, pp. 186–196 (2003)

    Google Scholar 

  45. Levin, D.: Mesh-independent surface interpolation. In: Geometric Modeling for Scientific Visualization, pp. 37–49. Springer, Heidelberg (2003)

    Google Scholar 

  46. Fleishman, S., Cohen-Or, D., Silva, C.: Robust moving least-squares fitting with sharp features. ACM Transactions on Graphics 24(3), 544–552 (2005)

    Article  Google Scholar 

  47. Dey, T.K., Sun, J.: An adaptive MLS surface for reconstruction with guarantees. In: Desbrun, M., Pottmann, H. (eds.) Eurographics Symposium on Geometry Processing (2005)

    Google Scholar 

  48. Shen, C., O’Brien, J.F., Shewchuk, J.R.: Interpolating and approximating implicit surfaces for polygon soup. In: Proceedings of ACM SIGGRAPH 2003, pp. 641–650 (2004)

    Google Scholar 

  49. Amenta, N., Kil, Y.: Defining point-set surfaces. ACM Transactions on Graphics 23(3), 264–270 (2004)

    Article  Google Scholar 

  50. Xie, H., McDonnell, K.T., Qin, H.: Surface reconstruction of noisy and defective data sets. In: IEEE Visualization 2004, pp. 259–266 (2004)

    Google Scholar 

  51. Kolluri, R., Shewchuk, J.R., O’Brien, J.F.: Spectral surface reconstruction from noisy point clouds. In: Symposium on Geometry Processing, pp. 11–21 (2004)

    Google Scholar 

  52. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F. (eds.): Computer Graphics, Principles and Practice. Addison-Wesley Publishing Company, Reading (1997)

    Google Scholar 

  53. Meyer-Spadow, J., Ropinski, T., Mensmann, J., Hinrichs, K.: Voreen: a rapid-prototyping environment for ray-casting-based volume visualization. IEEE Computer Graphics & Applications 29(6), 6–13 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, J., Diego, V., Yoon, D. (2011). Removal of Surface Artifacts of Material Volume Data with Defects. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21887-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21887-3_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21886-6

  • Online ISBN: 978-3-642-21887-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics