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Abstract. The goal of clustering is to form groups of similar elements.
Quality criteria for clusterings, as well as the notion of similarity, depend
strongly on the application domain, which explains the existence of many dif-
ferent clustering algorithms and similarity measures. In this paper we focus
on the problem of clustering annotated nodes in a graph, when the simi-
larity between nodes depends on both their annotations and their context
in the graph (“hybrid” similarity), using k-means-like clustering algorithms.
We show that, for the similarity measure we focus on, k-means itself can-
not trivially be applied. We propose three alternatives, and evaluate them
empirically on the Cora dataset. We find that using these alternative clus-
tering algorithms with the hybrid similarity can be advantageous over using
standard k-means with a purely annotation-based similarity.
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1 Introduction

1.1 Clustering

Clustering is a common data mining task. It can be defined as: given a set of data
elements, partition it into subsets (“clusters”) such that elements within a subset are
highly similar to each other, and elements in different subsets are highly dissimilar.
This is a very broad definition: first, one needs to specify the notion of similarity;
second, even if this is clearly defined, there is the question of exactly how to measure
the quality of the clustering. As a result, many different clustering methods have
been proposed, each with their own strengths and weaknesses.

Within clustering, we can distinguish the clustering of elements of a set (where
each element has its own independent description, and “similarity” refers to the sim-
ilarity of these descriptions) and clustering of nodes in a graph (where “similarity”
refers to their topological closeness or connectedness in the graph). We call the first
setting standard clustering, the second graph clustering. (We use the latter
term to be consistent with some of the literature, even if it could be misunderstood
as clustering graphs rather than nodes in a graph - we do mean the latter.)

A setting in between these two is where each node in a graph has its own
description (here called annotation), in addition to being connected to other nodes.
We call this setting annotated graph clustering. While there has been much research
on standard and graph clustering, this mixed setting has only recently started to
receive attention, despite its obvious application potential in web mining, systems
biology, etc. It is clear that neither standard clustering, nor graph clustering, is
optimal in this setting, as each exploits only one part of the available information.



We will call any method that exploits both the information in the annotations and
in the graph structure a hybrid clustering method. It has been shown before that
hybrid methods can yield better clustering results [15,16].

In this paper we build on earlier work by Witsenburg and Blockeel [15], who
proposed a hybrid similarity measure and showed that it can be used successfully
for agglomerative clustering. We investigate to what extent the same similarity
measure can be used in k-means-like clustering approaches. It turns out that k-
means cannot be used as is with this measure, because no suitable center measure
can be defined. We propose three alternatives: one is the use of k-medoids instead
of k-means, the other two are new variants of k-means. An empirical evaluation
shows that these variants can yield a better clustering than plain k-means with a
standard similarity measure.

In the following section, we provide some more background and discuss related
work. In Section 3, we discuss the hybrid similarity measure we will use, and the
k-means algorithm. In Section 4, we discuss the problem with using the hybrid
similarity with k-means, which boils down to the lack of a good center measure, and
we present three ways in which this problem can be solved. In Section 5 we present
experiments showing that the proposed algorithms, with the hybrid measure, can
indeed yield better clusters. We conclude in Section 6.

2 Related Work

Standard clustering methods include bottom-up hierarchical clustering methods,
the well-known k-means algorithm [9], and many more methods and variants; for an
overview, see, e.g., Hartigan [5]. In graph clustering, too, a variety of methods exist
(e.g., [1,14,3]); many of these handle weighted edges and construct minimal cuts [2],
i.e., the quality criterion for a clustering is that the total weight of connections
between clusters should be minimal.

Hybrid methods have not received much attention. One thread of approaches
can be found in inductive logic programming, where methods for relational clus-
tering have been proposed [13]. These methods usually consider objects that are
assumed to be independent but have an internal structure that is relational. They
are typically not set in the context of clustering nodes in a graph. Neville et al. [12]
were among the first to explicitly discuss the need for incorporating node content
information into graph clustering. More specifically, they consider graph clustering
algorithms that can work with weighted edges, and define the weights according
to the similarity of the nodes connected by the edge. Thus, they map the hybrid
clustering problem to a graph clustering problem, after which any graph clustering
method can be used.

More recently, Zhou et al. [16] proposed a method that inserts nodes in the
graph for every attribute value in the annotations. Then, edges connect the original
nodes with these attribute nodes when this attribute value is in the annotation of
this original node. This approach is somewhat more flexible with respect to trading
off the different goals of standard clustering and graph clustering similarity; for
instance, two nodes that originally did not have a path between them could still
be in the same cluster, since they can be connected through one or more attribute
nodes. This is not the case for most graph clustering methods.

While the above mentioned approaches reduce the hybrid clustering problem to
a graph clustering problem, Witsenburg and Blockeel [15] did the opposite: they in-
corporated graph information into a standard clustering approach. They proposed
a similarity measure that combines similarity of annotations with context informa-
tion from the graph, and showed that bottom-up hierarchical clustering methods
can be made to produce better results by using this new similarity measure, instead
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of a pure annotation-based one. One advantage of translating to standard cluster-
ing is that a plethora of clustering methods become available, more than for the
translation to graph clustering.

However, not all of those may be as readily available as it may seem. For in-
stance, k-means clustering does not only require a similarity measure, but also a
center measure (sometimes referred to as centroid or prototype definition) that is
compatible with it. For Witsenburg and Blockeel’s hybrid similarity measure, it is
not obvious what that center measure should be. Hence, the hybrid similarity can-
not simply be plugged in into k-means. In this paper we discuss and compare three
ways around this problem.

3 Background Definitions

We here recall Witsenburg and Blockeel’s similarity measures [15] and the k-means
algorithm [9].

Content-based, Contextual and Combined Similarity Consider the data set
that needs to be clustered to be an annotated graph, then this data set D can
be defined as D = (V, E, λ) where V = {v1, v2, . . . , vn} is a set of n vertices or
elements, E ⊆ V × V is the set of edges, and λ : V → A a function that assigns to
any element v of V an “annotation”; this annotation λ(v) is considered to be the
content of vertex v. The graph is undirected and an edge cannot loop back to the
same vertex, so with two elements v, w ∈ V this means that (v, w) ∈ E ⇔ (w, v) ∈ E
and (v, v) /∈ E.

The space of possible annotations is left open; it can be a set of symbols from,
or strings over, a finite alphabet; the set of reals; an n-dimensional Euclidean space;
a powerset of one of the sets just mentioned; etc. The only constraint on A is
that it must be possible to define a similarity measure Scontent : A × A → R as a
function that assigns a value to any pair of annotations expressing the similarity
between these annotations. Since this similarity is entirely based on the content of
the vertices, it will be called the content-based similarity. Normally the value of this
similarity is in the range [0, 1] where 0 stands for no similarity at all and 1 means
that they are considered to be identical.

Now let φ : V × V → {0, 1} be a function that assigns a value to a pair of
elements in the data set such that φ(v, w) = 1 if (v, w) ∈ E and 0 otherwise. We
define the neighbor similarity Sneighbor : V × V → R between two elements v and
w from V as the average content-based similarity between v and all neighbors of w:

Sneighbor(v, w) =

∑
u∈V Scontent(λ(v), λ(u)) · φ(u, w)

∑
u∈V φ(u, w)

(1)

This similarity is not symmetric, but we can easily symmetrize it, leading to the
contextual similarity Scontext : V × V → R:

Scontext(v, w) =
Sneighbor(v, w) + Sneighbor(w, v)

2
(2)

The motivation behind defining this similarity measure is that, if similar nodes
tend to be linked together, then the neighbors of w in general are similar to w.
Hence, if similarity is transitive, a high similarity between v and many neighbors
of w increases the reasons to believe that v is similar to w, even if there is little
evidence of such similarity when comparing v and w directly (for instance, due to
noise or missing information in the annotation of w).
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This contextual similarity measure is complementary to the content-based one;
it does not use the content-based similarity between v and w at all. Since in prac-
tical settings it may be good not to ignore this similarity entirely, Witsenburg and
Blockeel also introduced the combined similarity Scombined : V × V → R:

Scombined(v, w) = c · Scontent(v, w) + (1 − c) · Scontext(v, w) (3)

with 0 ≤ c ≤ 1. c determines the weight of the content-based similarity in the
combined similarity. As Witsenburg and Blockeel [15] found no strong effect of
using different values for c, from now on we consider only the combined similarity
with c = 1

2
.

Both the contextual and the combined similarity measures are hybrid similarity
measures, since they use both content-based and graph information. The contextual
similarity measure between two nodes v and w does take the contents of v and w
into account, it just does not use the direct similarity between these contents.

Note that any standard clustering method that can cluster nodes based on (only)
their content similarity, can also cluster nodes based on the contextual or combined
similarity, and in the latter case it implicitly takes the graph structure into account;
the method itself need not know that these data come from a graph.

The k-means algorithm k-means [9] is a clustering algorithm that works as
follows. Data set elements are assumed to be vectors in an n-dimensional space,
and similarity is expressed by Euclidean distance (the smaller the distance, the
greater the similarity). The number of clusters k is a parameter of the algorithm.
k-means proceeds as follows:

1. Choose randomly k different points Mi (i = 1, . . . , k) in the data space; each
Mi will serve as a prototype for a cluster Ci.

2. Assign each data element to the cluster with the closest prototype.
3. Recalculate each Mi as the mean of all elements of Ci.
4. Repeat steps 2 and 3 until the Mi and Ci no longer change.

Here step 2 is known as the assignment step and step 3 is known as the update step.
k-means always converges to a (possibly local) optimum. The proof of this (see,

for instance [10]) involves the fact that the sum of all distances from one element to
its cluster’s prototype can only decrease in each update and assignment step, and
only a finite number of such decrements is possible.

4 K-Means with the Hybrid Similarity Measure

K-means can in principle be used with all sorts of similarity measures; however,
it also needs a center measure (e.g., the mean), and to guarantee convergence this
center measure must be compatible with the similarity measure, that is, reassigning
elements to clusters must lead to a monotonic increase (or decrease) of some aggre-
gate function of the similarities beween elements and centers (e.g., increasing sum
of similarities). We will call this aggregate function the overall similarity.

In our setting, the data elements are annotated vertices in a graph. This raises
the question how to calculate the “prototypical vertex” of a subset of vertices from
an annotated graph. If annotations are vectors, we can easily define the annotation
of prototype Mi as the mean of all annotations λ(v) where v ∈ Ci. But our hybrid
similarity measures are based on Sneighbor : V × V → R, which also needs the
prototype to be connected to nodes in the graph. Since this is not the case, we cannot
compute the contextual similarity between the prototype and a data element.
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We will discuss three ways around this problem. The first one is to use k-medoids
instead of k-means; k-medoids always uses existing data elements as centers, which
solves the above problem. An alternative is to define the center as an annotation,
and define similarity between a node and an annotation, rather than between two
nodes. Our third method will be a more efficient approximation of the second. We
next discuss these three methods.

4.1 K-Medoids

K-medoids [7] is similar to k-means, but differs from it in that the prototype of a
cluster (in this case known as the medoid) is always an element from the data set:
in the beginning (step 1) it is a random data element; and during an update step
(step 3), Mi becomes the element of Ci for which the overall similarity to all others
elements of Ci is maximal.

It is easy to see that the hybrid similarity measure can be applied here without
problems: since the prototype is always an element in the data set (i.e., a node in the
graph), the similarity with other elements can be calculated. To compute the new
prototype, one only needs to compute for each element the sum of the similarities
to all other elements in that cluster, to determine which is the largest.

K-medoids can be a good alternative for k-means. It is known to be better than
k-means when it comes to handling outliers [4], but more limited in its choice of
prototypes [8], and less efficient when handling big data sets [4]. The latter is due
to the fact that to calculate the new prototype of a cluster in k-medoids one needs
to calculate the distance from every node in that cluster to every other node in that
cluster, while for k-means one only needs to calculate the mean of all nodes in it.

4.2 K-Means-NAM: K-Means with neighbor annotation means

The second solution we explore, is to define the center as an annotation instead of
a node. Recall that the contextual similarity Scontext is a symmetrized version of
Sneighbor . The definition of the latter (see (1)) uses for the first element (v) only
its annotation λ(v), not its location in the graph. Thus, the neighbor similarity
Sneighbor can be rewritten as a function S′

neighbor : A× V → R that is defined by:

S′

neighbor(M, v) =

∑
w∈V Scontent(M, λ(w)) · φ(w, v)

∑
w∈V φ(w, v)

(4)

We can use this asymmetric neighbor similarity instead of the contextual similarity
as described in (2). Also the combined similarity can then be rewritten as a function
S′

combined : A× V → R that is defined by:

S′

combined(M, v) = c1 · Scontent(M, v) + c2 · S
′

neighbor(M, v) (5)

In this case the new mean of a cluster can be calculated as the average of the
annotations of all elements in that cluster, and it is still possible to calculate the
similarity between a mean and an element from the data set.

This approach causes a new problem though: the proposed center measure and
similarity measure are not compatible, and as a result, k-means may no longer
converge. In the update step, the new prototype is the mean of the cluster element’s
annotations, which increases the average content similarity between M and the
nodes, but not necessarily the neighbor similarity between M and these nodes.
Consider an element v from the data set whose annotations of the neighbors differ a
lot from its own annotation. When using contextual similarity, v will be placed in a
cluster with a mean that is close to the annotations of the neighbors of v, but when
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updating the new mean for this cluster, this will be done using the annotation of v;
this will pull the mean towards v’s own annotation, and away from the annotation of
its neighbors. The effect could be that the new mean will be far from the annotations
of v’s neighbors, so the monotonic increase of the overall similarity is no longer
guaranteed, and the algorithm may not converge.

To ensure convergence, we need to redefine the center measure to be compatible
with the similarity measure. As described in Section 3, λ : V → A assigns an
annotation to a vertex. Now let λ′ : V → A be a new function that assigns another
annotation to a vertex:

λ′(v) =

∑
w∈V λ(w) · φ(v, w)
∑

w∈V φ(v, w)
(6)

λ′(v) is the mean annotation of all neighbors of v. It is easily seen that calculating
the center as the average of these new annotations is compatible with the proposed
similarity measure.

Following the same reasoning, when using the combined similarity instead of the
contextual one, the annotation function λ′′ : V → A should be used:

λ′′(v) =
λ(v) + λ′(v)

2
(7)

This setup, which we call k-means-NAM (k-means with neighbor annotation
means) is the second solution proposed to enable the use of a k-means-like algorithm
with a hybrid similarity measure.

4.3 K-Means-NAMA: k-means-NAM efficiently approximated

The solution proposed in Section 4.2 is less efficient than the original k-means
algorithm. To calculate the similarity between a mean and an element v, k-means
only needs to calculate one content similarity. k-means-NAM, on the other hand,
needs to calculate the content similarity between the prototype and all neighbors
of v (in order to compute their average), which makes it a number of times slower.

A more efficient alternative to this is to average out the neighbor annotations
themselves, instead of averaging out the similarities. That is, with v1, . . . , vn the
neighbors of v, instead of computing

∑
i Scontent(M, λ(vi))/n, we could compute

Scontent(M,
∑

i λ(vi)/n)) = Scontent(M, λ′(v)). These two are mathematically dif-
ferent, and generally do not give the same outcome, but they approximate each
other well when the vi are “in the same direction” from a. The advantage of this
additional approximation is that for each v, λ′(v) can be computed once in advance,
and substituted for λ(v), after which the standard k-means algorithm can be run.
In the same way that using λ′ instead of λ allows us to approximate k-means-NAM
with contextual distance, using λ′′ approximates k-means-NAM with the combined
distance. We call this approximation k-means-NAMA.

5 Experimental Results

To evaluate the usefulness of the proposed methods, a few questions need to be an-
swered experimentally. K-medoids can be used both with contents-based or hybrid
similarities; does the use of a hybrid similarity yield better results? For k-means, we
have to choose between standard k-means with the content-based similarity, or an
approximative variant that takes contextual information into account; does the use
of contextual information compensate for a possible quality loss due to having to use
an approximate method? Finally, how do the three contextual methods compare?
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data set classes papers edges density

D1 8 752 2526 3.36

D2 17 1779 6658 3.74

D3 24 2585 10754 4.16

D4 31 4779 19866 4.17

D5 45 8025 41376 5.16

Table 1. Characteristics of the five subsets created from the Cora data set.

5.1 Experimental Setup

We evaluate the methods on the Cora dataset [11], an often-used benchmark. This
set contains scientific papers divided into 70 categories. A paper can have multiple
classes. For 37,000 of these papers, abstracts are available for keyword extraction,
and the citations between papers are also available. In our context, papers are nodes
in a graph, the abstracts are their annotations, and the citations between papers
form the edges. We cluster the papers based on their annotations and citations.
The quality measure for the clustering will relate to how well papers in the same
cluster belong to the same classes (note that the classes themselves are not part of
the annotation, only the abstracts are).

From Cora, five different subsets have been created. The first subset contains
papers from 8 different classes. For every next subset, papers from several additional
classes have been added. Only papers that have an abstract and are connected to
(i.e., cite or are cited by) at least one other paper in the subset are regarded. Table 1
shows some of the characteristics of these subsets.

For every data set D1 through D5, V is defined by all papers in that data set.
For all v, w ∈ V , (v, w) ∈ E when v cites w or vice versa. Let W be the set of all
keywords that can be found in the abstracts of all elements of all data sets Di, and
m the total number of keywords; A ⊆ Rm and λ(v) is the set of keywords that are
in the abstract of v. For the content-based similarity between two elements v, w ∈ V
we use the Jaccard index [6]:

Scontent =
|λ(v) ∩ λ(w)|

|λ(v) ∪ λ(w)|
. (8)

The three solutions as proposed in Section 4, have been used to cluster the
elements in the 5 data sets as described in this section. For every combination this
has been done for all three similarities (content-based, contextual and combined).
The value for k was varied from 100 to 2. Keep in mind that k-means-NAM(A),
used with the content-based similarity, is actually the regular k-means algorithm.

The found clusterings were evaluated by looking at every pair of elements in
a cluster and calculating the Jaccard index of their categories. In the Cora data
set, papers can have multiple categories, hence, the Jaccard index is used to resolve
partial matching. The average of all these Jaccard indices is the quality of the
clustering.

The experiments have been done for k = 100, 95, 90, . . . , 20, 18, 16, . . . , 2. A set
of experiments where a clustering is found once for every k is called a series. As
k-means and k-medoids depend on the random initial choice of prototypes, every
“series” has been done 100 times and 100 experiments with the same k on the same
data set is called a run. Of these runs the average results are reported.

5.2 K-Means-NAM vs K-Means-NAMA

In Section 4.3 we hypothesized that k-means-NAMA would get similar results as k-
means-NAM, but faster. This can be tested by regarding the percentual difference in
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contextual similarity combined similarity

absolute average absolute average

data set difference difference difference difference

D1 2.4% -1.2% 2.7% -1.3%

D2 2.4% +1.0% 1.9% -0.2%

D3 1.6% -0.7% 1.8% +0.7%

D4 0.9% +0.2% 1.3% -0.8%

D5 1.3% +0.4% 2.0% +1.2%

Table 2. Percentual difference in quality of the found clusters by k-means-NAMA com-
pared to the found clusters by k-means-NAMA.

score between the results of the runs with k-means-NAMA and the same runs with
k-means-NAM. A positive percentage means that k-means-NAMA outperformed
k-means-NAM, and a negative percentage the opposite. Also the absolute value of
these percentages are taken into concern. Table 2 shows these results. First, the
averages of all runs in a data set for the absolute value of these percentages are
small, indicating there is not a lot of difference in performance. Second, when the
sign of the percentual differences are also taken into account, the differences are even
smaller, indicating that one is not overall better than the other. These conclusions
hold for both the contextual and the combined similarity.

Table 3 shows the average computation time each method needed to finish one
series of clusterings. With the content-based similarity, there is not much difference.
This is as expected, since here, k-means-NAM boils down to regular k-means. For
the contextual and combined similarities, however, there is a big difference: the time
that it takes k-means-NAMA to complete a series remains about the same, while
k-means-NAM needs about 4 times as long for the contextual similarity and about
5 times as long for the combined similarity.

Since there is no real difference in quality between k-means-NAM and k-means-
NAMA, from now on we only consider the results for k-means-NAMA.

content-based contextual combined

k-means- k-means- k-means- k-means- k-means- k-means-

data set NAM NAMA NAM NAMA NAM NAMA

D1 7.2 · 101 8.6 · 101 3.0 · 102 1.1 · 102 4.0 · 102 1.1 · 102

D2 4.8 · 102 5.9 · 102 1.5 · 103 6.0 · 102 2.1 · 103 5.8 · 102

D3 9.7 · 102 1.2 · 103 4.0 · 103 1.3 · 103 4.9 · 103 1.3 · 103

D4 3.5 · 103 4.2 · 103 1.3 · 104 4.7 · 103 1.7 · 104 4.4 · 103

D5 1.1 · 104 1.3 · 104 4.5 · 104 1.6 · 104 5.4 · 104 1.4 · 104

Table 3. CPU time, in seconds, for k-means-NAM and k-means-NAMA to do one series
as defined in Section 5.1 (on a Intel R© Quad CoreTM2, 2.4GHz with 4 Gb memory), for
the content-based, contextual, and combined similarities.

5.3 Quality Improvement due to the Hybrid Similarity Measures

Figure 1 shows the results for clustering the subsets D1 and D4. The other subsets
show similar characteristics. Table 4 shows the average results for all data sets for k-
medoids and k-means-NAMA. On Cora, using the hybrid similarity measure indeed
improves the quality of the found clustering, as compared to using the content-
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k-medoids

content-based contextual combined

data set quality quality improvement quality improvement

D1 0.44 0.57 +29% 0.58 +32%
D2 0.25 0.36 +41% 0.39 +55%
D3 0.19 0.29 +50% 0.33 +71%
D4 0.19 0.25 +33% 0.30 +59%
D5 0.14 0.19 +35% 0.24 +72%

k-means-NAMA

content-based contextual combined

data set quality quality improvement quality improvement

D1 0.32 0.52 +60% 0.49 +51%
D2 0.23 0.42 +79% 0.40 +71%
D3 0.21 0.37 +77% 0.35 +70%
D4 0.22 0.37 +68% 0.34 +55%
D5 0.19 0.36 +74% 0.31 +62%

Table 4. Average quality found and percentual improvement with regards to the content-
based similarity, for k-medoids (upper half) and k-means-NAMA (lower half).

based similarity, for both k-medoids and k-means. There is no conclusive evidence,
however, which one is best among k-medoids and (approximative) k-means.

6 Conclusion

We have discussed how a hybrid similarity for nodes in a graph (taking into account
both contents and context) can be used with k-means-like clustering methods. K-
means cannot be employed in a straightforward way because the concept of a “mean
node” cannot be defined; however, it can be approximated by k-medoids and by two
newly proposed methods. These two methods boil down to using approximate simi-
larity or center measures so that k-means becomes applicable. The main conclusions
from this work are that: (1) k-means clustering can indeed work with hybrid simi-
larities, if adapted appropriately; (2) the use of a hybrid similarity with (adapted)
k-means or k-medoids does yield better clusters, compared to content-based similar-
ities; (3) the adapted k-means approaches sometimes work better than k-medoids,
so they are a valuable alternative to it but do not make it redundant.
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