Skip to main content

Potential Decomposition in the Multiconfiguration Time-Dependent Hartree Study of the Confined H Atom

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6784))

Abstract

The Coulomb potential characterising the interaction between an electron and a proton in a spherical cavity has been optimally decomposed into a sum-of-products form, where the products are functions in one degree of freedom. The problem is a six-dimensional one, formulated in the three spherical polar coordinates describing the proton and the three ones describing the electron. As a result, each term in the potential is a product of six functions, one for each coordinate. This reduction of the potential allows the treatment of the problem in a multi-configuration time-dependent Hartree study of the energy levels of the confined H atom.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fermi, E.: Z. Phys. 26, 54 (1924)

    Article  Google Scholar 

  2. Capitelli, M., Giordano, D., Colonna, E.: Phys. Plasmas 15, 082115 (2008)

    Article  Google Scholar 

  3. Griem, H.R.: Principles of Plasma Spectroscopy. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  4. Capitelli, M., Giordano, D.: Phys. Rev. A 80, 032113 (2009)

    Article  Google Scholar 

  5. Stevanovic, L.: J. Phys. B - Atomic and Molecular Physics 43(16), 165002 (2010)

    Article  Google Scholar 

  6. Fernandez, F.M.: Eur. J. Phys. 31, 285–290 (2010)

    Article  Google Scholar 

  7. Fernandez, F.M.: Eur. J. Phys. 31, 611–616 (2010)

    Article  Google Scholar 

  8. Meyer, H.-D., Manthe, U., Cederbaum, L.S.: Chem. Phys. Lett. 165, 73 (1990)

    Article  Google Scholar 

  9. Manthe, U., Meyer, H.-D., Cederbaum, L.S.: J. Chem. Phys. 97, 3199 (1992)

    Article  Google Scholar 

  10. Beck, M.H., Jäckle, A., Worth, G.A., Meyer, H.-D.: Phys. Rep. 324, 1 (2000)

    Article  Google Scholar 

  11. Meyer, H.-D., Worth, G.A.: Theor. Chem. Acc. 109, 251 (2003)

    Article  Google Scholar 

  12. Meyer, H.-D., Gatti, F., Worth, G.A.: In: Meyer, H.-D., Gatti, F., Worth, G.A. (eds.) Multidimensional Quantum Dynamics: MCTDH Theory and Applications, p. 17. Wiley-VCH Verlag, Chichester (2009)

    Chapter  Google Scholar 

  13. Zanghellini, J., Kitzler, M., Fabian, C., Brabec, T., Scrinzi, A.: Laser Phys. 13, 1064 (2003)

    Google Scholar 

  14. Caillat, J., et al.: Phys. Rev. A 71, 012712 (2005)

    Article  Google Scholar 

  15. Kato, T., Kono, H.: Chem. Phys. Lett. 392, 533 (2004)

    Article  Google Scholar 

  16. Nest, M., Klamroth, T., Saalfrank, P.: J. Chem. Phys. 122, 124102 (2005)

    Article  Google Scholar 

  17. Nest, M.: Chem. Phys. Lett. 472, 171 (2009)

    Article  Google Scholar 

  18. Skouteris, D., Gervasi, O., Laganà, A.: Chem. Phys. 500, 144–148 (2010)

    Google Scholar 

  19. Laganà, A., Crocchianti, S., Lago, N.F., Pacifici, L., Ferraro, G.: Coll. of Czech. Comm. 68, 307 (2003)

    Article  Google Scholar 

  20. Laganà, A.: Towards a Grid based universal molecular simulator. In: Laganà, A., Lendvay, G. (eds.) Theory of Chemical Reaction Dynamics, p. 363. Kluwer, Dordrecht (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skouteris, D., Laganà, A. (2011). Potential Decomposition in the Multiconfiguration Time-Dependent Hartree Study of the Confined H Atom. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21931-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21931-3_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21930-6

  • Online ISBN: 978-3-642-21931-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics