
Complexity Measures in 4GL EnvironmentCsaba Nagy1, László Vidá
s2, Rudolf Feren
1, Tibor Gyimóthy1,Feren
 Ko
sis3, and István Ková
s3
1 Department of Software Engineering, University of Szeged

2 Resear
h Group on Arti�
ial Intelligen
e, University of Szeged & HAS
3 SZEGED Software Zrt.Abstra
t. Nowadays, the most popular programming languages are so-
alled third generation languages, su
h as Java, C# and C++, but higherlevel languages are also widely used for appli
ation development. Ourwork was motivated by the need for a quality assuran
e solution for afourth generation language (4GL) 
alled Magi
. We realized that thesevery high level languages lie outside the main s
ope of re
ent stati
 anal-ysis te
hniques and resear
hes, even though there is an in
reasing needfor solutions in 4GL environment.During the development of our quality assuran
e framework we fa
edmany 
hallenges in adapting metri
s from popular 3GLs and de�ningnew ones in 4GL 
ontext. Here we present our results and experimentsfo
using on the 
omplexity of a 4GL system. We found that popular 3GLmetri
s 
an be easily adapted based on synta
ti
 stru
ture of a language,however it requires more 
omplex solutions to de�ne 
omplexity metri
sthat are 
loser to developers' opinion. The resear
h was 
ondu
ted in
o-operation with a 
ompany where developers have been programmingin Magi
 for more than a de
ade. As an out
ome, the resulting metri
sare used in a novel quality assuran
e framework based on the Columbusmethodology.Keywords: 4GL, Magi
, software metri
s, software 
omplexity, soft-ware quality assuran
e1 Introdu
tionProgramming languages are usually 
ategorized into �ve levels or �generations� [1℄.Solely binary numbers, the ma
hine languages are the �rst generation languages(1GLs). Lower level programming languages (e.g. assembly) are the se
ond gen-eration languages (2GLs) and 
urrently popular pro
edural and obje
t-orientedlanguages are the third generation languages (3GLs). The higher level languagesare all 
loser to human thinking and spoken languages. Using fourth generationlanguages (4GLs) a programmer does not need to write sour
e 
ode, but he 
anprogram his appli
ation at a higher level of abstra
tion, usually with the helpof an appli
ation development environment. Finally, �fth generation languages(5GLs), would involve a 
omputer whi
h responds dire
tly to spoken or writteninstru
tions, for instan
e English language 
ommands.



The main motivation of this work was to provide a quality assuran
e solutionfor a 4GL 
alled Magi
. Quality assuran
e tools are built heavily on softwaremetri
s, whi
h re�e
t various properties of the analyzed system. Although severalprodu
t metri
s are already de�ned for mainstream programming languages,these metri
s re�e
t the spe
ialties of third generation programming languages.We fa
ed the la
k of software quality metri
s de�ned for 4GLs. As we revealedthe inner stru
ture of Magi
 programs, we identi�ed key points in de�ning newmetri
s and adapting some 3GL metri
s to Magi
. Our work was 
arried outtogether with a software 
ompany, where experts helped us in 
hoosing the rightde�nitions. The greatest 
hallenge we fa
ed was the de�nition of 
omplexitymetri
s, where experien
ed developers found our �rst suggestions inappropriateand 
ounterintuitive. Enhan
ing our measures we involved several developers inexperiments to evaluate di�erent approa
hes to 
omplexity metri
s.In this paper we present our experien
es in de�ning 
omplexity metri
sin 4GL environment, parti
ularly in the appli
ation development environment
alled Magi
, whi
h was re
ently renamed to uniPaaS. Our 
ontributions are:� we adapted two most widespread 3GL 
omplexity metri
s to Magi
 4GL(M
Cabe 
omplexity, Halstead);� we 
arried out experiments to evaluate our approa
hes (we found no signi�-
ant 
orrelation between developers ranking and our �rst adapted M
Cabe
omplexity, but we found strong 
orrelation between a modi�ed M
Cabe
omplexity, Halstead's 
omplexity and between the developers ranking);� as an out
ome of the experiments we de�ned new, easily understandable andappli
able 
omplexity measures for Magi
 developers.Supporting the relevan
e of the adapted metri
s our experiment was designedto address the following resear
h questions:RQ1: Is there a signi�
ant 
orrelation between adapted metri
s of Magi
 pro-grams?RQ2: Is there a signi�
ant 
orrelation between the 
omplexity ranking given bydevelopers and the ranking given by the adapted metri
s?The paper is organized as follows. First, in Se
tion 2 we introdu
e the readerto the world of Magi
 and then in Se
tion 3 we de�ne our 
omplexity metri
sthat were adapted to 4GL environment. Validating these metri
s we 
arried outexperiments whi
h we des
ribe in Se
tion 4 and evaluate in Se
tion 5. We dis
ussrelated work in Se
tion 6 and �nally we 
on
lude in Se
tion 7.2 Spe
ialties of 4GLs and the Magi
 ProgrammingLanguageIt is important to understand the spe
ialties of a fourth generation language be-fore dis
ussing its quality attributes. Hen
e, in this se
tion we give an introdu
-tion into Magi
 as a fourth generation language. We present the basi
 stru
ture



of a typi
al Magi
 appli
ation and we dis
uss potential quality attributes of aMagi
 appli
ation.Magi
 4GL was introdu
ed by Magi
 Software Enterprises (MSE) in the early80's. It was an innovative te
hnology to move from 
ode generation to the useof an underlying meta model within an appli
ation generator.2.1 The Stru
ture of a Magi
 Appli
ationMagi
 was invented to develop business appli
ations for data manipulating andreporting, so it 
omes with many GUI s
reens and report editors. All the logi
that is de�ned by the programmer, the layout of the s
reens, the pull downmenus, reports, on-line help, se
urity system, reside inside tables 
alled Reposi-tories. The most important elements of the meta model language are the variousentity types of business logi
, namely the Data Tables. A Table has its Columnsand a number of Programs (
onsisting of subtasks) that manipulate it. The Pro-grams or Tasks are linked to Forms, Menus, Help s
reens and they may alsoimplement business logi
 using logi
 statements (e.g. for sele
ting variables, up-dating variables, 
onditional statements).Fo
using on the quality � espe
ially on the 
omplexity � of a Magi
 soft-ware, the most important language elements are those elements that dire
tlyimplement the logi
 of the appli
ation. Figure 1 shows these most importantlanguage entities. A Magi
 Appli
ation 
onsists of Proje
ts, the largest entitiesdividing an appli
ation into separate logi
al modules. A Proje
t has Data Ta-bles and Programs (a top-level Task is 
alled a Program) for implementing themain fun
tionalities. A Program 
an be 
alled by a Menu entry or by otherPrograms during the exe
ution of the appli
ation. When the appli
ation startsup, a spe
ial program, the Main Program is exe
uted. A Task is the basi
 unitfor 
onstru
ting a program. A Program 
an be 
onstru
ted of a main task andsubtasks in tree-stru
tured task hierar
hy. The Task represents the 
ontrol layerof the appli
ation and its Forms represent the view layer. It typi
ally iteratesover a Table and this iteration 
y
le de�nes so-
alled Logi
 Units. For instan
e, aTask has a Pre�x and a Su�x whi
h represent the beginning and the ending of aTask, respe
tively. A re
ord of the iteration is handled by the Re
ord Main logi
unit, and before or after its invo
ation the Re
ord Pre�x or Su�x is exe
uted.A Logi
 Unit is the smallest unit whi
h performs lower level operations (a seriesof Logi
 Lines) during the exe
ution of the appli
ation. These operations 
an besimple operations, e.g. 
alling an other Task or Program, sele
ting a variable,updating a variable, input a data from a Form, output the data to a Form Entry.Programming in Magi
 requires a spe
ial way of thinking. Basi
ally, the whole
on
ept is built on the manipulation of data tables whi
h results in some spe
ialdesigns of the language. It 
an be seen that a Task belongs to an iteration overa data table so when a Task is exe
uted it already represents a loop. Hen
e,the language was designed in a way that loops 
annot be spe
i�ed expli
itly atstatement level. It is also interesting that the expressions of a Task are handledseparately so an expression 
an be reused more than on
e simply by referringto its identi�er. For example, ea
h Logi
 Line has a 
ondition expression whi
h



hasProject

hasProgram

hasSubTask

hasLogicUnit
hasLogicLine

hasTable

hasColumn

uses

*

1..*

*
*

1

1..*

1

1

1 1

*

*

*

1

1..* 1

calls

callsFig. 1. Most important Magi
 s
hema entities.determines whether the operation should be exe
uted or not. This 
ondition 
anbe easily maintained through the appli
ation development environment and thesame expression may be easily used for more statements. So the developers aremore 
omfortable in using 
onditional bran
hes in the logi
 of an appli
ation.Consequently, they 
an easily see when the exe
ution of statements belongs tothe same 
ondition even if the statements do not dire
tly follow ea
h other.2.2 Measuring the Quality of a Magi
 Appli
ationIn previous proje
ts [13℄, [14℄ we re-used and adapted elements of the Colum-bus methodology in the Magi
 environment. This methodology was su

essfullyapplied on obje
t-oriented languages before [8℄ and today it 
overs the mostin�uential areas of the software life 
y
le in
luding the following goals [3℄: de-
rease the number of post-release bugs, in
rease maintainability, de
rease devel-opment/test e�orts, assure sustainability though 
ontinuous measurement andassessment. Goals are targeted with 
ontinuous monitoring: s
heduled analysis,data pro
essing, storing and querying, visualization and evaluation. To a

om-plish these goals it is important to measure the 
hara
teristi
s of the softwareunder question. For more details about Columbus methodology, please refer toour previous paper [3℄.In 
ase of third level languages, usually the best des
ription of the softwareunder question is its sour
e 
ode. It is obvious that the analysis of the sour
e 
odeis important to spe
ify 
ertain quality attributes. In 
ase of fourth generationlanguages, developers do not ne
essarily write sour
e 
ode in the traditional way.In Magi
, developers simply edit tables, use form editors, expression editors,et
. In su
h a language, the meta model of an appli
ation serves as a �sour
e
ode� that 
an be analyzed for quality assuran
e purposes. Using this modelwe 
an des
ribe the main 
hara
teristi
s of an appli
ation and we 
an lo
atepotential 
oding problems or stru
tures whi
h may indi
ate bugs or bad design.We determined a number of produ
t metri
s for Magi
 and 
ategorized themin size, 
oupling, and 
omplexity groups. Most of them are based on popularand well-known produ
t metri
s su
h as the Lines of Code, Number of Classes,



Number of Attributes, Coupling Between Obje
t 
lasses [4℄. We realized thatsome metri
s 
an be easily adapted from third generation languages, but theirmeaning and bene�ts for the developers may be 
ompletely di�erent, 
omparedto 3GL 
ounterparts.In 
ase of size metri
s, for instan
e, there is a possibility to identify a seriesof �Number of� metri
s (e.g. Number of Programs, Menus, Helps), but they are
onsidered less useful and interesting for the developers. The reason for that isthat these numbers 
an be easily queried through the appli
ation developmentenvironment. The Lines of Code (LOC ) metri
 
an be easily adapted by takinginto a

ount that the Logi
al Line language entity of Magi
 
an be 
orrespondedto a �Line of Code� in a third generation language. However, the adapted metri
should be used with 
aution be
ause it 
arries a di�erent meaning 
omparedto the original LOC metri
. In 3GLs LOC typi
ally measures the size of thewhole system and it is used to estimate the programming e�ort in di�erente�ort models (e.g. COCOMO [5℄). In 
ase of Magi
, a proje
t is built on manyrepositories (Menus, Help s
reens, Data Tables, et
.) and LOC measures justone size attribute of the software (the Program repository). Hen
e, LOC is notthe sole size attribute of an appli
ation so it 
annot be used alone for estimatingthe total size of the full system. It is interesting to note that when 4GLs be
amepopular, many studies were published in favor of their use. These studies triedto predi
t the size of a 4GL proje
t and its development e�ort, for instan
e by
al
ulating fun
tion points [16℄,[17℄ or by 
ombining 4GL metri
s with metri
sfor database systems [10℄.Coupling is also interesting in a 4GL environment. In obje
t-oriented lan-guages a typi
al metri
 for 
oupling is the Coupling Between Obje
t 
lasses(CBO) metri
 whi
h provides the number of 
lasses to whi
h a given 
lass is
oupled. A 
lass is 
oupled to another one if it uses its member fun
tions and/orinstan
e variables. 4GLs usually do not have language elements representing ob-je
ts and 
lasses. For instan
e in Magi
, there are no entities to en
apsulatedata and related fun
tionalities, however there are separated data entities (Ta-bles) and their related fun
tionalities are spe
i�ed in 
ertain Tasks or Programs.Therefore it makes sense measuring the Coupling Between Tasks and Data Ta-bles, not unlike the Coupling Between Tasks and Tasks.3 Measuring the Complexity of Magi
 Appli
ationsWe identi�ed di�erent quality attributes and de�ned a bun
h of metri
s for Magi
appli
ations. Simple size and 
oupling metri
s re�e
ted well the opinion of thedevelopers, but this was not the 
ase for 
omplexity metri
s. It was our biggest
hallenge to measure the 
omplexity of a 4GL system. There are many di�erentapproa
hes for third generation languages [6℄. At sour
e 
ode level, well knownapproa
hes were developed by M
Cabe [11℄ and Halstead [9℄, whi
h are widelyused by software engineers, e.g., for software quality measurement purposes andfor testing purposes.We adapted M
Cabe's 
y
lomati
 
omplexity and Halstead's 
omplexity met-ri
s in 4GL environment, but when we showed the results to developers, their



feedba
k was that all the programs that we identi�ed as most 
omplex programsin their system are not that mu
h 
omplex a

ording to their experien
e. Wenote here that all the programmers have been programming in Magi
 for morethan 3 years (some of them for more than a de
ade) and most of them were wellaware of the de�nition of stru
tural 
omplexity [1℄, but none of them have heardbefore about 
y
lomati
 or Halstead 
omplexity.3.1 M
Cabe's Cy
lomati
 Complexity Metri
In this se
tion we present our adaptations of 
omplexity metri
s and a modi�ed
y
lomati
 
omplexity measure.First, we adapted M
Cabe's 
omplexity metri
 [11℄ to Magi
. M
Cabe useda graph-theory measure, the 
y
lomati
 number to measure the 
omplexity ofthe 
ontrol �ow of a program. It was shown that of any stru
tured programwith only one entran
e and one exit point, the value of M
Cabe's 
y
lomati

omplexity is equal to the number of de
ision points (i.e., the number of �if�statements and 
onditional loops) 
ontained in that program plus one.M
Cabe's 
omplexity is usually measured on method or fun
tion level. Forobje
t-oriented languages it is possible to aggregate 
omplexities of methodsto 
lass level. The idea of Weighted Methods per Class (WMC ) [7℄ is to giveweights to the methods and sum up the weighted values. As a 
omplexity measurethis metri
 is the sum of 
y
lomati
 
omplexities of methods de�ned in a 
lass.Therefore WMC represents the 
omplexity of a 
lass as a whole.In 
ase of Magi
, the basi
 operations are exe
uted at Logi
 Unit level. ALogi
 Unit has its well-de�ned entry and exit point too. Likewise, a Task hasprede�ned Logi
 Units. That is, a Task has a Task Pre�x, Task Su�x, Re
ordPre�x, Re
ord Main, Re
ord Su�x, et
. This stru
ture is similar to the 
onstru
-tion of a Class where a Class has some prede�ned methods, e.g., 
onstru
torsand destru
tors. Hen
e, we de�ned M
Cabe's 
omplexity at Logi
 Unit level withthe same de�nition as it is de�ned for methods (see de�nition of McCC (LU) inDe�nition 1). So it 
an be simply 
al
ulated by 
ounting the statements withpre
onditions (i.e., the bran
hes in the 
ontrol �ow) in a Logi
 Unit. Likewise,the 
omplexity of a Task 
an be measured by summing up the 
omplexity valuesof its Logi
 Units. We 
all this 
omplexity measure as the Weighted Logi
 Unitsper Task (see WLUT (T ) in De�nition 2).
McCC (LU) = Number of decision points in LU + 1.LU: a Logi
 Unit of a TaskDef. 1: The de�nition of M
Cabe's 
y
lomati
 
omplexity for Logi
 Units.
WLUT (T ) =

∑

LU∈T

McCC (LU)T: a Task in the Proje
tLU: a Logi
 Unit of TDef. 2: The de�nition of Weighted Logi
 Units per Task (WLUT).



The McCC (LU) and WLUT (T ) metri
s were adapted dire
tly from the 3GLde�nitions simply based on the synta
ti
 stru
ture of the language. When we�rst showed the de�nitions to the developers they agreed with them and theywere interested in the 
omplexity measures of their system. However, the resultsdid not 
onvin
e them. Those Tasks that we identi�ed as the most 
omplex tasksof their system were not 
omplex a

ording to the developers, not unlike, thosetasks that were identi�ed 
omplex by the developers had lower WLUT values.Developers suggested us, that in addition to the synta
ti
 stru
ture of thelanguage, we should add the semanti
 information that a Task is basi
ally a loopwhi
h iterates over a table and when it 
alls a subtask it is rather similar to anembedded loop. This semanti
 information makes a Task 
ompletely di�erentfrom a Class. Considering their suggestion we modi�ed the M
Cabe 
omplexityas follows (McCC2 ). For a Logi
 Unit we simply 
ount the number de
isionpoints, but when we �nd a 
all for a subtask it is handled as a loop and it in
reasesthe 
omplexity of the Logi
 Unit by the 
omplexity of the 
alled subtask. Thatis, the 
omplexity of a Task is the sum of the 
omplexity of its Logi
 Units. Forthe formalized de�nition see De�nition 3.
McCC 2(LU) = Number of decision points in LU +

∑

TC∈LU

McCC2(TC) + 1.
McCC 2(T ) =

∑

LU∈T

McCC 2(LU)LU: a Task of the Proje
tLU: a Logi
 Unit of TTC: a 
alled Task in LUDef. 3: The de�nition of the modi�ed M
Cabe's 
y
lomati
 
omplexity(McCC2 ).The main di�eren
e between WLUT (T ) and McCC2 (T ) is that McCC2 (T )takes into a

ount the 
omplexity of the 
alled subtasks too in a re
ursive way.A re
ursive 
omplexity measure would be similar for pro
edural languages whena fun
tion 
all would in
rease the 
omplexity of the 
allee fun
tion by the 
om-plexity of the 
alled fun
tion. (Loops in the 
all graph should be handled.)Developers found the idea of the new metri
 more intuitive as it takes into a
-
ount the semanti
s too. Later, in our experiments we found that the new metri

orrelates well with the 
omplexity ranking of the developers (see Se
tion 4).3.2 Halstead's Complexity Metri
sSome of the developers also 
omplained that our metri
s do not re�e
t the 
om-plexity of the expressions in their programs. It should be noted here that Magi
handles the expressions of a Task separately. An expression has a unique identi-�er and 
an be used many times inside di�erent statements simply by referringto its identi�er. The appli
ation development environment has an expressioneditor for editing and handling expressions separately. This results in a 
odingstyle where developers pay more attention on the expressions they use. They seethe list of their expressions and large, 
omplex ones may be easily spotted out.Halstead's 
omplexity metri
s [9℄ measure the 
omplexity of a program basedon the lexi
al 
ounts of symbols used. The base idea is that 
omplexity is a�e
ted



by the used operators and their operands. Halstead de�nes four base values formeasuring the number of distin
t and total operands and operators in a pro-gram (see De�nition 4). The base values are 
onstituents of higher level metri
s,namely, Program Length (HPL), Vo
abulary size (HV ), Program Volume (HPV ),Di�
ulty level (HD), E�ort to implement (HE ). For the formalized de�nitionssee De�nition 5.
n1: the number of distin
t operators
n2: the number of distin
t operands
N1: the total number of operators
N2: the total number of operandsDef. 4: Base values for measuring the number of distin
t and total operandsand operators in a program.
HPL = N1 + N2

HV = n1 + n2

HPV = HPL ∗ log2(HV )
HD = (n1

2
) ∗ (N2

n2

)
HE = HV ∗ HDDef. 5: Halstead's 
omplexity measures.In 
ase of Magi
, symbols may appear inside expressions so the 
hoi
e of Hal-stead's metri
s seemed appropriate for measuring the 
omplexity of expressions.Operands 
an be interpreted as the symbols like in a 3GL language (e.g. variablenames, task identi�ers, table identi�ers) and operators are the operators (plus,minus, et
.) inside expressions.Later, in our experiments we found that the Halstead's metri
s 
orrelatewith the 
omplexity ranking of the developers (see Se
tion 4), but the modi�edM
Cabe's 
omplexity is 
loser to the opinion of the developers.4 Experiments with Complexity Metri
sAlthough the 
lassi
 
omplexity metri
s are su

essfully adapted to the Magi
language, there are no empiri
al data available on how they relate to ea
h otherand on their appli
ability in software development pro
esses. We observed that,ex
ept the M
Cabe metri
, 
omplexity metri
s generally do not have a justi�ed
on
eptual foundation. Rather, they are de�ned based on experien
e [18℄. Weplan to �ll in the gap �rst, by 
al
ulating and evaluating the adapted metri
son industrial size programs to see their relations; se
ond, by surveying expertsat a Magi
 developer 
ompany to see the usability of the de�nitions. We empha-size the importan
e of feedba
k given by Magi
 experts. There is no extensiveresear
h literature on the quality of Magi
 programs. Hen
e, the knowledge a
-
umulated during many years of development is essential to justify our metri
s.Thus, to evaluate our metri
s, metri
al values were 
omputed on a large-s
ale Magi
 appli
ation, and a questionnaire was prepared for experien
ed Magi
developers to see their thoughts on 
omplexity. We sought for answers for thefollowing resear
h questions:



RQ1: Is there a signi�
ant 
orrelation between adapted metri
s of Magi
 pro-grams?RQ2: Is there a signi�
ant 
orrelation between the 
omplexity ranking given bydevelopers and the ranking given by the adapted metri
s?We performed stati
 analysis and 
omputed metri
s on a large-s
ale appli-
ation using the MAGISTER system [13℄ (see Table 1). There are more than2,700 programs in the whole appli
ation, whi
h is a huge number in the world ofMagi
. The total number of non-Remark Logi
 Lines of this appli
ation is morethan 300,000. The appli
ation uses more than 700 tables.Metri
 ValueNumber of Programs 2 761Number of non-Remark Logi
 Lines 305 064Total Number of Tasks 14 501Total Number of Data Tables 786Table 1. Main 
hara
teristi
s of the system under question.There were 7 volunteer developers taking part in the survey at the softwaredeveloper 
ompany. The questionnaire 
onsisted of the following parts:1. Expertise:(a) Current role in development.(b) Developer experien
e in years.2. Complexity in Magi
:(a) At whi
h level of program elements should the 
omplexity be measured?(b) How important are the following properties in determining the 
omplex-ity of Magi
 appli
ations? (List of properties is given.)(
) Whi
h additional attributes a�e
t the 
omplexity?3. Complexity of 
on
rete Magi
 programs developed by the 
ompany.(a) Rank the following 10 Magi
 programs (most 
omplex ones �rst).The most important part of the questionnaire is the ranking of the 
on
reteprograms. This makes possible 
omparing what is in the developers' mind to the
omputed metri
s. Subje
t programs for ranking were sele
ted by an expert ofthe appli
ation. He was asked to sele
t a set of programs whi
h a) is representa-tive to the whole appli
ation, b) 
ontains programs of various size, 
) developersare familiar with. He was not aware of the purpose of sele
tion. The sele
tedprograms and their main size measures 
an be seen in Table 2. The number ofprograms is small as we expe
ted a solid, established opinion of parti
ipants in areasonable time. In the table the Total Number of Logi
 Lines (
ontaining taskhierar
hy) (TNLL), the Total Number of Tasks (TNT ), Weighted Logi
 Unitsper Task (WLUT ) and the 
y
lomati
 
omplexity (McCC2 ) are shown.5 ResultsWe �rst dis
uss our �ndings about 
omplexity measurements gathered via stati
analysis of the whole appli
ation. Later, we narrow down the set of observedprograms to those taking part in the questionnaire, and �nally we 
ompare themto the opinion of the developers.



Id Name TNLL TNT WLUT McCC269 Engedmény számítás egy tétel 1352 24 10 214128 TESZT:Engedmény/rabatt/formany 701 16 14 63278 TÖRZS:Vev® karbantartó 3701 129 47 338281 TÖRZS:Árutörzs összes adata 3386 91 564 616291 Ügyfél zoom 930 29 8 27372 FOK:Fökönyv 1036 31 113 203377 El®leg bekér® levél képzése 335 6 5 20449 HALMOZO:Havi forgalom 900 22 3 117452 HALMOZO:Karton rend/vissz 304 9 4 342469 Export_New 7867 380 382 761Table 2. Sele
ted programs with their size and 
omplexity values.5.1 RQ1: Is there a signi�
ant 
orrelation between adapted metri
sof Magi
 programs?Here we investigate the 
orrelation between the previously de�ned metri
s.TheM
Cabe and Halstead metri
s are basi
ally di�erent approa
hes, so �rst weinvestigate them separately.Halstead metri
s Within the group of Halstead metri
s signi�
ant 
orrelationis expe
ted, be
ause � by de�nition � they depend on the same base measures. Inspite of that, di�erent Halstead measures 
apture di�erent aspe
ts of 
omputa-tional 
omplexity. We performed a Pearson 
orrelation test to see their relationin Magi
. Correlation values are shown in Table 3. Among the high expe
ted
orrelation values, HD and HE metri
s 
orrelate slightly lower with the othermetri
s. We justi�ed Halstead metri
s using the Total Number of Expressions(TNE ), whi
h 
an be 
omputed in a natural way as expressions are separatelyidenti�ed language elements. The relatively high 
orrelation between TNE andother Halstead metri
s shows that the TNE metri
 is a further 
andidate for a
omplexity metri
. This re�e
ts suggestions of the developers too. For the sakeof simpli
ity, in the rest of this paper we use the HPV metri
 to represent all�ve metri
s of the group.
HPL HPV HV HD HE TNE

HPL 1.000 0.906 0.990 0.642 0.861 0.769
HPV 0.906 1.000 0.869 0.733 0.663 0.733
HV 0.990 0.869 1.000 0.561 0.914 0.773
HD 0.642 0.733 0.561 1.000 0.389 0.442
HE 0.861 0.663 0.914 0.389 1.000 0.661Table 3. Pearson 
orrelation 
oe�
ients (R2) of Halstead metri
s and the Total Num-ber of Expressions (TNE) (all 
orrelations are signi�
ant at 0.01 level).Comparison of adapted 
omplexity metri
s Table 4 
ontains 
orrelationdata on M
Cabe-based 
omplexity (WLUT , McCC2 ), HPV and two size met-ri
s. The three 
omplexity measures has signi�
ant, but only a slight 
orrelation,whi
h indi
ates that they show di�erent aspe
ts of the program 
omplexity.



We already presented the di�eren
es between WLUT and McCC2 before.The similar de�nitions imply high 
orrelation between them. Surprisingly, basedon the measured 2700 programs their 
orrelation is the weakest (0.007) 
omparedto other metri
s so they are almost independent. McCC2 is measured on thesubtasks too, whi
h in fa
t a�e
ts the results. Our expe
tation was that, for thisreason, McCC2 has a stronger 
orrelation with TNT than WLUT . However, the
McCC2 metri
 only slightly 
orrelates with TNT . This 
on�rms that developersuse many 
onditional statements inside one task, and the number of 
onditionalbran
hes has a higher impa
t on the McCC2 value.

WLUT McCC2 HPV NLL TNT

WLUT 1.000 0.007 0.208 0.676 0.166
McCC2 0.007 1.000 0.065 0.020 0.028
HPV 0.208 0.065 1.000 0.393 0.213Table 4. Pearson 
orrelation 
oe�
ients (R2) of various 
omplexity metri
s (all 
or-relations are signi�
ant at 0.01 level).Rank-based 
orrelation From this point on, we analyze the rank-based 
or-relation of metri
s. The aim is to fa
ilitate the 
omparison of results to the ranksgiven by the developers. The number of 
onsidered programs is now narroweddown to the 10 programs mentioned before in Se
tion 4. Ranking given by a
ertain metri
 is obtained in the following way: metri
 values for the 10 pro-grams are 
omputed, programs with higher metri
 values are ranked lower (e.g.the program with highest metri
 value has a rank no. 1). The sele
tion of 10programs is justi�ed by the fa
t, that the previously mentioned properties (e.g.di�erent sizes, 
hara
teristi
s) 
an be observed here as well. In Figure 2, theranking of Halstead metri
s is presented. On the x axis the programs are shown(program Id), while their ranking value is shown on the y axis (1-10). Ea
h linerepresents a separate metri
. Strong 
orrelation 
an be observed as the valuesare 
lose to ea
h other. Furthermore, the HD and HE metri
s 
an also be visuallyidenti�ed as a little bit outliers. (Note: Spearman's rank 
orrelation values arealso 
omputed.) The ranking determined by the three main 
omplexity metri
s
an be seen in Figure 3. The x axis is ordered by the McCC2 
omplexity, soprograms with lower McCC2 rank (and higher 
omplexity) are on the left side.The similar trend of the three metri
s 
an be observed, but they behave in a
ontroversial way lo
ally.

����
�����

�� ��� ��� ��� ��� ��� ��� ��� �	� ����
��
 ���������
������������Fig. 2. Ranking of Halstead 
omplexitymetri
s (ordered by program ID). ����

 !�!�
���" � ! �# �" $#� ��" !� �%� �"! $##&'() *+,-+./01

23456788�9:;Fig. 3. Ranking of main 
omplexity met-ri
s (ordered by McCC2 ).



Answering our resear
h question, we found that some of the investigated
omplexity measures are in strong 
orrelation, but some of them are independentmeasures. We found strong 
orrelation between the Halstead metri
s and wealso found that these metri
s 
orrelate to the Total Number of Expressions. Wefound that our �rst adaptation of 
y
lomati
 
omplexity (WLUT ) has only avery weak 
orrelation to our new version (McCC2 ), whi
h 
orrelates well withother measures. This also 
on�rms that the new measure might be a betterrepresentation of the developers opinion about 
omplexity.5.2 RQ2: Is there a signi�
ant 
orrelation between the 
omplexityranking given by developers and the ranking given by theadapted metri
s?In the third part of the questionnaire developers were asked to give an order ofthe 10 programs whi
h represents their 
omplexity order. Previously, developerswere given a short hint on 
ommon 
omplexity measures, but they were asked toexpress their subje
tive opinion too. Most of the sele
ted programs were probablyfamiliar to the developers sin
e the appli
ation is developed by their 
ompany.Furthermore they 
ould 
he
k the programs using the development environmentduring the ranking pro
ess.Ranks given by the 7 developers are shown in Figure 4, where ea
h linerepresents the opinion of one person. It 
an be seen that developers set updi�erent ranks. There are diverse ranks espe
ially in the middle of the ranking,while the top 3 
omplex programs are similarly sele
ted. A

ordingly, developersagree in the least 
omplex program, whi
h is 2469. Correlations of developers'ranks were also 
omputed. Signi�
ant 
orrelation is rare among the developers,only ranks of P4, P5 and P6 are similar (Pi denotes a programmer in Figure 4).
<=>?
@A<A=

=@A =B@ ?C DB= A=@ >>C >E= =CA DBB =>?CFGHI
JKLMKNOPQ

RAR=RDR>RER?RBFig. 4. Ranks given by Magi
 experts. STUV
WXSXT

TWX TYW VZ [YT XTW UUZ U\T TZX [YY TUVZ]̂_̀
abcdbefgh

ijklmkno
Fig. 5. The EC value, min and max ranks.We de�ned the EC value (Experiment Complexity) for ea
h sele
ted programas the rank based on the average rank given by developers. In Figure 5 the ECvalue is shown together with min and max ranks of the developers. We note thatsummarizing the developers' opinion in one metri
 may result in loosing infor-mation sin
e developers may had di�erent aspe
ts in their minds. We elaborateon this later in the Threats to Validity se
tion. We treat this value as the opinionof the developer 
ommunity.



We 
ompared the EC value to the previously de�ned 
omplexity metri
s. Ta-ble 5 
ontains 
orrelation values of main metri
s. The EC value shows signi�
ant
orrelation only with the HE measure.
WLUT McCC2 HPV HE EC

WLUT 1.000 0.575 0.218 0.004 0.133
McCC2 0.575 1.000 0.520 0.027 0.203
HPV 0.218 0.520 1.000 0.389 0.166
HE 0.004 0.027 0.389 1.000 0.497
EC 0.133 0.203 0.166 0.497 1.000Table 5. Correlation of Magi
 
omplexity metri
s and developers` view (Spearman's

ρ2 
orrelation 
oe�
ients, marked values are signi�
ant at the 0.05 level).Besides statisti
al information, 
omplexity ranks are visualized as well. Wefound that the rank based 
orrelation obs
ures an interesting relation between
McCC2 and the EC value. Ranks for ea
h program are shown in Figure 6. Theorder of programs follows the McCC2 metri
. Despite that Spearman's ρ2 val-ues show no signi�
ant 
orrelation, it 
an be 
learly seen that developers and
McCC2 metri
 gives the same ranking, ex
ept for program 2469. This programis judged in an opposite way. The program 
ontains many de
ision points, how-ever developers say that it is not 
omplex sin
e its logi
 is easy to understand.A

ording to the HE metri
, this program is also ranked as the least 
omplex.

0

2

4

6

8

10

12

2469 281 278 69 372 449 128 452 291 377

Ra
nk

Program Id

WLUT

McCC2

HPV

HE

ECFig. 6. The EC value 
ompared to the main 
omplexity metri
sAnswering our resear
h question we found that the rankings given by adaptedmetri
s have signi�
ant and sometimes surprisingly strong relation to the rankinggiven by developers, ex
ept for the WLUT metri
. Halstead's metri
s have asigni�
ant 
orrelation here, espe
ially the HE metri
. However, the strongestrelation was dis
overed in 
ase of the McCC2 metri
.5.3 Dis
ussion of the LimitationsAlthough we 
arefully designed our experiments, there are some points whi
hmay a�e
t our results and observations. Complexity metri
s were 
omputed on



a large-s
ale and data-intensive appli
ation, but the results may be a�e
ted by
oding style and 
onventions of a single 
ompany. Measurements of Magi
 appli-
ations from other domains and developer 
ompanies are needed. This appliesto the questionnaire as well. The number of parti
ipants and sele
ted programsshould be in
reased to draw general 
on
lusions. Programs were sele
ted by aperson, not randomly based on a spe
i�
 distribution, whi
h may also a�e
t ourresults. Evaluation of developers' view is done by means of ranking, whi
h re-sults in loss of information in transforming measured values into ranks. The ECvalue is an average rank given by the developers. It would be more realisti
 toformalize their viewpoints during the ranking pro
ess.6 Related workWe 
ited related papers before when we elaborated on our metri
s and exper-iments. We note here, that there are many di�erent approa
hes for measuringthe 
omplexity of a software at sour
e 
ode level. First, and still popular 
om-plexity measures (M
Cabe [11℄, Halstead [9℄, Lines of Code [2℄) was surveyed byNavlakha [15℄. A re
ent survey whi
h sums up todays 
omplexity measures waspublished by Sheng Yu et al. [18℄. In 4GL environment, to our best knowledge,there were no previous resear
hes to measure stru
tural 
omplexity attributes ofa Magi
 appli
ation. Even though, for other 4GLs there are some attempts tode�ne metri
s to measure the size of a proje
t [16℄, [17℄, [10℄. There are also someindustrial solutions to measure metri
s in 4GL environment. For instan
e Rain-Code Roadmap4 for Informix 4GL provides a set of prede�ned metri
s about 
ode
omplexity (number of statements, 
y
lomati
 
omplexity, nesting level), aboutSQLs (number of SQL statements, SQL tables, et
.), and about lines (numberof blank lines, 
ode lines, et
.). In the world of Magi
, there is a tool for opti-mization purposes too 
alled Magi
 Optimizer5 whi
h 
an be used to performstati
 analysis of Magi
 appli
ations. It does not measure metri
s, but it is ableto lo
ate potential 
oding problems whi
h also relates to software quality.In 3GL 
ontext there are also papers available to analyze the 
orrelationbetween 
ertain 
omplexity metri
s. For instan
e, Meulen et al. analyzed about71,917 programs from 59 �elds written in C/C++ [12℄. Their result showed thatthere are very strong 
onne
tions between LOC and HCM, LOC and CCM. Ourwork found also similar results, but our resear
h was performed in a 4GL 
on-text with newly adapted 
omplexity metri
s. We additionally show, that in our
ontext traditional metri
s have totally di�erent meanings for the developers.7 Con
lusions and Future WorkThe main s
ope of our paper was to adapt most widespread 3GL stru
tural
omplexity metri
s (M
Cabe's 
y
lomati
 
omplexity and Halstead's 
omplex-ity measures) to a popular 4GL environment, the Magi
 language. We introdu
ed4 http://www.rain
ode.
om/fglroadmap.html5 http://www.magi
-optimizer.
om/



the spe
ialties of Magi
 and we presented formal de�nitions of our metri
s in4GL environment. Besides the simple adaptation of the metri
s, we presenteda modi�ed version of M
Cabe's 
y
lomati
 
omplexity (McCC 2), whi
h mea-sured the 
omplexity of a task by aggregating the 
omplexity values of its 
alledsubtasks too. We addressed resear
h questions about our new metri
s whetherthey are in relation with developers' 
omplexity ranking or not. We designedand 
arried out an experiment to answer our questions and we found that:� there is signi�
ant 
orrelation among all the investigated metri
s, and thereis strong 
orrelation between the Halstead measures whi
h also 
orrelate tothe Total Number of Expressions;� the rankings given by adapted metri
s have signi�
ant and very strong re-lation to the ranking given by developers (espe
ially in 
ase of the McCC2,but ex
ept for the WLUT metri
).As an out
ome, we found also that our modi�ed measure has a strong 
orrelationwith developers' ranking.To sum up the 
on
lusions of our work, we make the following remarks:� We made advan
ement in a resear
h area where no established metri
s (pre-vious similar measurements and experien
e reports) were available.� We su

essfully adapted 3GL metri
s in a popular 4GL environment, in theMagi
 language.� We evaluated our metri
s by the developers in a designed experiment andmetri
s were found easily understandable and useful.� A modi�ed version of the M
Cabe's 
y
lometi
 
omplexity was found tore�e
t surprisingly well the ranking given by the developer 
ommunity.Besides gathering all the previously mentioned experien
es, the de�ned met-ri
s are implemented as part of a software quality assuran
e framework, namelytheMAGISTER6 system whi
h was designed to support the development pro-
esses of an industrial Magi
 appli
ation.About our future plans, as we o�er quality assuran
e servi
es, we expe
t togain data from other appli
ation domains to extend our investigations. Mostimportantly we plan to set up appropriate baselines for our new metri
s in orderto better in
orporate them into the quality monitoring pro
ess of the 
ompanyand into the daily use.A
knowledgementsWe thank István Siket, Dániel Fritsi, Feren
 Smohai and the volunteer developersfor their 
ontributions. This resear
h was supported by the Hungarian nationalgrant GOP-1.1.2-07/1-2008-0007, TECH 08-A2/2-2008-0089, GOP-1.1.1-07/1-2008-0081, OTKA K-73688 and by the János Bolyai Resear
h S
holarship of theHungarian A
ademy of S
ien
es.6 http://www.szegedsw.hu/magister



Referen
es1. IEEE Standard Glossary of Software Engineering Terminology. Te
h. rep. (1990)2. Albre
ht, A.J., Ga�ney, J.E.: Software fun
tion, sour
e lines of 
ode, and develop-ment e�ort predi
tion: A software s
ien
e validation. IEEE Transa
tion on SoftwareEngineering 9, 639�648 (November 1983)3. Bakota, T., Beszédes, Á., Feren
, R., Gyimóthy, T.: Continuous software qualitysupervision using Sour
eInventory and Columbus. In: ICSE Companion. pp. 931�932 (2008)4. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of obje
t-oriented design met-ri
s as quality indi
ators. IEEE Transa
tion on Software Engineering 22, 751�761(O
tober 1996)5. Boehm, B.W.: Software Engineering E
onomi
s. Prenti
e Hall PTR, Upper SaddleRiver, NJ, USA, 1st edn. (1981)6. Burgin, M., Debnath, N.: Complexity measures for software engineering. J. Comp.Methods in S
i. and Eng. 5, 127�143 (January 2005)7. Chidamber, S.R., Kemerer, C.F.: A metri
s suite for obje
t oriented design. IEEETransa
tion on Software Engineering 20, 476�493 (June 1994)8. Feren
, R., Beszédes, Á., Tarkiainen, M., Gyimóthy, T.: Columbus � Reverse En-gineering Tool and S
hema for C++. In: Pro
eedings of the 18th InternationalConferen
e on Software Maintenan
e (ICSM'02). pp. 172�181. IEEE ComputerSo
iety (O
t 2002)9. Halstead, M.H.: Elements of Software S
ien
e (Operating and programming sys-tems series). Elsevier S
ien
e In
., New York, NY, USA (1977)10. Ma
Donell, S.: Metri
s for database systems: An empiri
al study. In: Pro
eedings ofthe 4th International Symposium on Software Metri
s. pp. 99�107. IEEE ComputerSo
iety (1997)11. M
Cabe, T.: A 
omplexity measure. IEEE Transa
tion on Software EngineeringSE-2(4) (de
 1976)12. van der Meulen, M., Revilla, M.: Correlations between internal software metri
sand software dependability in a large population of small C/C++ programs. In:Pro
eedings of ISSRE 2007, The 18th IEEE International Symposium on SoftwareReliability. pp. 203�208 (Nov 2007)13. Nagy, C., Vidá
s, L., Feren
, R., Gyimóthy, T., Ko
sis, F., Ková
s, I.: MAGISTER:Quality assuran
e of magi
 appli
ations for software developers and end users.In: Pro
eedings of ICSM 2010, 26th IEEE International Conferen
e on SoftwareMaintenan
e. pp. 1�6. IEEE Computer So
iety (Sep 2010)14. Nagy, C., Vidá
s, L., Feren
, R., Gyimóthy, T., Ko
sis, F., Ková
s, I.: Solutions forreverse engineering 4GL appli
ations, re
overing the design of a logisti
al wholesalesystem. In: Pro
eedings of CSMR 2011, 15th European Conferen
e on SoftwareMaintenan
e and Reengineering. IEEE Computer So
iety (Mar 2011)15. Navlakha, J.K.: A survey of system 
omplexity metri
s. The Computer Journal30, 233�238 (June 1987)16. Verner, J., Tate, G.: Estimating size and e�ort in fourth-generation development.IEEE Software 5, 15�22 (1988)17. Witting, G., Finnie, G.: Using arti�
ial neural networks and fun
tion points toestimate 4GL software development e�ort. Australasian Journal of InformationSystems 1(2) (1994)18. Yu, S., Zhou, S.: A survey on metri
 of software 
omplexity. In: Pro
eedings ofICIME 2010, The 2nd IEEE International Conferen
e on Information Managementand Engineering. pp. 352�356 (April 2010)


