Skip to main content

Osmoprotectants in the Sugarcane (Saccharum spp.) Transcriptome Revealed by in Silico Evaluation

  • Conference paper
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2010)

Abstract

Environmental stresses such as drought and salinity limit crop productivity in worldwide level. These stresses often lead to the accumulation of osmoprotectants in most organisms, including plants. In the present work, a search of known osmoprotectants (P5CS, P5CR, INPS1, BADH, CMO, TPS, TPP, OASTL and SAT) was carried out in the sugarcane transcriptome (237,954 expressed sequence tags) using in silico procedures. Alignments revealed that sugarcane presents a high number of osmoprotectant candidate genes, with 56 clusters found. In silico expression revealed higher expression in stressed callus tissues and those infected by Herbaspirilum rubrisubalbicans (HR), confirming the multi-function character of the osmoprotectants. As expected, the phylogenetic analysis revealed distinct groups among angiosperms, algae, animals, fungi and bacteria, in almost all dendrograms, with high degree of sequence conservation among angiosperms. As observed in comparative analysis between the ORFs of sugarcane and other organisms, the genic structure of these plants was relatively conserved suggesting that the accumulation of compatible solutes is an ancient metabolic adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., Zhu, J.-K.: Techniques for Molecular Analysis. Methods and Concepts in Quantifying Resistance to Drought, Salt and Freezing, Abiotic Stresses that Affect Plant Water Status. Plant J. 45, 523–539 (2006)

    Article  Google Scholar 

  2. Yancey, P.H.: Water stress, Osmolytes and Proteins. Amer. Zool. 41, 699-70 (2001)

    Google Scholar 

  3. Cherian, S., Reddy, M.P., Ferreira, R.B.: Transgenic Plants with Improved Dehydration Stress Tolerance: Progress and Future Prospects. Biol. Plant. 50(4), 481–495 (2006)

    Article  Google Scholar 

  4. Bhatnagar-Mathur, P., Vadez, V., Sharma, K.K.: Transgenic Approaches for Abiotic Stress Tolerance in Plants: Retrospect and Prospects. Plant Cell Rep. 27, 411–424 (2008)

    Article  Google Scholar 

  5. Sugar Cane EST Genome Project, http://www.sucest.lad.dcc.unicamp.br/en/

  6. The Institute for Genomic Research, http://www.tigr.org

  7. Altschul, S.F., Gish, W., Miller, W., Myers, E., Lipman, D.J.: Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  Google Scholar 

  8. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, J., Higgins, D.G.: The ClustalX Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Res. 25, 4876–4882 (1997)

    Article  Google Scholar 

  9. Kumar, S., Tamura, K., Nei, M.: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24(8), 1596–1599 (2007)

    Article  Google Scholar 

  10. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster Analysis and Display of Genomic-Wide Expression Pattern. Proc. Natl. Acad. Sci. USA. 95, 14863–14868 (1998)

    Article  Google Scholar 

  11. Page, R.D.M.: TreeView: An Application to Display Phylogenetic Trees on Personal Computers. Comp. Appl. Biosci. 12, 357–358 (1996)

    Google Scholar 

  12. Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., Somero, G.N.: Living with water stress: evolution of osmolyte systems. Science 217(24), 1214–1222 (1982)

    Article  Google Scholar 

  13. Hare, P.D., Cress, W.A.: Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21, 79–102 (1997)

    Article  Google Scholar 

  14. Kavi-Kishor, P.B.: Effect of Salt Stress on Callus Cultures of Oryza sativa L. J. Exp. Bot. 39, 235–240 (1988)

    Article  Google Scholar 

  15. Ober, E., Sharp, R.: Proline Accumulation in Maize (Zea mays L.) Primary Root at Low Water Potentials. Plant Physiol. 105(3), 981–987 (1994)

    Article  Google Scholar 

  16. Kumari, A., Patade, V.Y., Suprasanna, P.: In Silico Analysis of P5CS Gene Evolution in Plants. Online J. Bioinf. 9(1), 1–11 (2008)

    Google Scholar 

  17. Rontein, D., Basset, G., Hanson, A.D.: Metabolic Engineering of Osmoprotectant Accumulation in Plants. Metab. Eng. 4(1), 49–56 (2002)

    Article  Google Scholar 

  18. Jagendorf, A.T., Takabe, T.: Inducers of Glycine-betaine Synthesis in Barley. Plant Physiol. 127, 1827–1835 (2001)

    Article  Google Scholar 

  19. Elbein, A.D.: The Metabolism of Alpha-Trehalose. Adv. Carb. Chem. Biochem. 30, 227–256 (1974)

    Article  Google Scholar 

  20. Hesse, H., Nikiforova, V., Gakière, B., Hoefgen, R.: Molecular Analysis and Control of Cysteine Biosynthesis: Integration of Nitrogen and Sulphur Metabolism. J. Exp. Bot. 55(401), 1283–1292 (2004)

    Article  Google Scholar 

  21. Ruffet, M.L., Droux, M., Douce, R.: Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine (thiol) Lyase from Spinach Chloroplasts. Plant Physiol. 104, 597–604 (1994)

    Article  Google Scholar 

  22. Hell, R., Wirtz, M., Berkowitz, O., Droux, M.: The Cysteine Synthase Complex from Plants. Mitochondrial Serine Acetyltransferase from Arabidopsis thaliana Carries a Bifunctional Domain for Catalysis and protein-protein Interaction. Eur. J. Biochem. 268, 683–686 (2001)

    Google Scholar 

  23. Loewus, F., Loewus, M.W.: Myo-inositol: Its Biosynthesis and Metabolism. Annu. Rev. Plant Physiol. 34, 137–161 (1984)

    Article  Google Scholar 

  24. Loewus, F., Murthy, P.: Myo-inositol Metabolism in Plants. Plant Sci. 150, 1–19 (2000)

    Article  Google Scholar 

  25. Soares-Cavalcanti, N.M.: Estudo in Silico de Genes que Codificam Fatores de Transcricão Responsivos à Seca, Salinidade e Congelamento nos Genomas do Eucalipto, Cana e Arroz”. Master’s thesis. Universidade Federal de Pernambuco, Recife-PE, Brazil (2007)

    Google Scholar 

  26. Errabii, T., Gandonou, C.B., Essalmani, H., Abrini, J., Idaomar, M., Skali-Senhaji, N.: Growth, Proline and Ion Accumulation in Sugarcane Callus Cultures Under Drought-Induced Osmotic Stress and its Subsequent Relief. Afric. J. Biotech. 5, 1488–1493 (2006)

    Google Scholar 

  27. Nayyar, H., Walia, D.P.: Genotypic Variation in Wheat in Response to Water Stress and Abscisic Acid Induced Accumulation of Osmolytes in Developing Grains. J. Agron. Crop. Sci. 190, 39–45 (2004)

    Article  Google Scholar 

  28. Lee, S., Reth, A., Meletzus, D., Sevilla, M., Kennedy, C.: Characterization of a Major Cluster of nif, fix, and Associated Genes in a Sugarcane Endophyte, Acetobacter diazotrophicus. J. Bacteriol. 182, 7088–7091 (2000)

    Article  Google Scholar 

  29. Lambais, M.R.: In Silico Differential Display of Defense-Related ESTs from Sugarcane Tissues Infected with Diazothrophic endophytes. Genet. Mol. Biol. 24, 103–111 (2001)

    Article  Google Scholar 

  30. Wanderley-Nogueira, A.C., Soares-Cavalcanti, N.M., Lima-Morais, D., Silva, L.C.B., Barbosa-Silva, A., Benko-Iseppon, A.M.: Abundance and Diversity of Resistance (R) Genes in the Sugarcane Transcriptome. Genet. Mol. Res. 4, 866–889 (2007)

    Google Scholar 

  31. The Arabidopsis Genome Initiative.: Analysis of the Genome Sequence of the Flowering Plant Arabidopsis thaliana. Nature 408(6814), 796–815 (2000)

    Google Scholar 

  32. International Rice Genome Sequencing Project. The Map-Based Sequence of the Rice Genome. Nature 436, 793–800 (2005)

    Google Scholar 

  33. Benko-Iseppon, A.M., Soares-Cavalcanti, N.M., Wanderley-Nogueira, A.C., Berlarmino, L.C.S., Silva, R., Almeida, P., Brunelli, K., Kido, L., Kido, E.: Genes Associated to Biotic and Abiotic Stresses in Cowpea [Vigna unguiculata (l.) Walp.] and other angiosperms. In: Nogueira, R.J.M.C., Araujo, E.L., Willadino, L.C., Cavalcante, U.M.T. (eds.) Environmental Stresses: Damages and Benefits to Plants, pp. 350–359. UFRPE University Press, Recife-PE (2005)

    Google Scholar 

  34. Rhodes, D., Hanson, A.D.: Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. 44, 357–384 (1993)

    Article  Google Scholar 

  35. Veatch, M.E., Smith, S.E., Vandemark, G.: Shoot biomass production among accessions of Medicago truncatula exposed to NaCl. Crop Sci. Soc. Amer. 44, 1008–1013 (2004)

    Article  Google Scholar 

  36. Winter, E., Lauchli, A.: Salt Tolerance of Trifolium alexandrinum L. I. Comparison of the Salt Response of T. alexandrinum and T. pretense. Aust. J. Plant Physiol. 9(2), 221–226 (1982)

    Google Scholar 

  37. Omae, H., Kumar, A., Egawa, Y., Kashiwaba, K., Mariko, S.: Adaptation to heat and drought stress in snap bean (Phaseolus vulgaris) during the reproductive stage of development. Jpn. Agric. Res. Q. 40(3), 213–216 (2006)

    Article  Google Scholar 

  38. Fujita, T., Maggio, A., Garcia-Rios, M., Bressan, R.A., Csonka, L.N.: Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for delta-1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol. 118, 661–674 (1998)

    Article  Google Scholar 

  39. Kishor, P.B.K., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P., Sreenivasulu, N.: Regulation of Proline Biosynthesis, Degradation, Uptake and Transport in Higher Plants: its Implications in Plant Growth and Abiotic Stress Tolerance. Curr. Sci. 88(3), 424–438 (2005)

    Google Scholar 

  40. Hu, C.A., Delauney, A.J., Verma, D.P.: A bifunctional Enzyme (Delta-1-Pyrroline-5-Carboxylate Synthetase) Catalyzes the First two Steps in Proline Biosynthesis in Plants. Proc. Nat. Acad. Sci. USA 89, 9354–9358 (1992)

    Article  Google Scholar 

  41. Turchetto-Zolet, A.C., Margis-Pinheiro, M., Margis, R.: The Evolution of Pyrroline-5-Carboxylate Synthase in Plants: A Key Enzyme in Proline Synthesis. Mol. Gen. Genom. 281, 87–97 (2009)

    Article  Google Scholar 

  42. Saito, K., Kurosawa, M., Tatsuguchi, K., Takagi, Y., Murakoshi, I.: Modulation of Cysteine Biosynthesis in Chloroplasts of Transgenic Tobacco Overexpressing Cysteine Synthase [o-acetylserine(thiol)-lyase]. Plant Physiol. 106, 887–895 (1995)

    Article  Google Scholar 

  43. Kawashima, C.G., Berkowitz, O., Hell, R., Noji, M., Saito, K.: Characterization and Expression Analysis of a Serine Acetyltransferase Gene Family Involved in a Key Step of the Sulfur Assimilation Pathway in Arabidopsis. Plant Physiol. 137(1), 220–230 (2005)

    Article  Google Scholar 

  44. Saito, K., Kurosawa, M., Tatsuguchi, K., Takagi, Y., Murakoshi, I.: Modulation of Cysteine Biosynthesis in Chloroplasts of Transgenic Tobacco Overexpressing Cysteine Synthase [O-Acetylserine(thiol)-Lyase]. Plant Physiol. 106, 887–895 (1995)

    Article  Google Scholar 

  45. Noji, M., Inoue, K., Kimura, N., Gouda, A., Saito, K.: Isoform-Dependent Differences in Feedback Regulation and Subcellular Localization of Serine-Acetyltransferase Involved in Cysteine Biosynthesis from Arabidopsis thaliana. J. Biol. Chem. 273, 32739–32745 (1998)

    Article  Google Scholar 

  46. Noji, M., Takagi, Y., Kimura, N., Inoue, K., Saito, M., Horikoshi, M., Saito, F., Takahashi, H., Sai, K.: Serine Acetyltransferase Involved in Cysteine Biosynthesis from Spinach: Molecular Cloning, Characterization and Expression Analysis of cDNA Encoding a Plastidic Isoform. Plant Cell Physiol. 42, 627–634 (2001)

    Article  Google Scholar 

  47. Chronis, D., Krishnan, H.B.: Sulfur Assimilation in Soybean (Glycine max [L.] Merr.): Molecular Cloning and Characterization of a Cytosolic Isoform of Serine Acetyltransferase. Planta. 218, 417–426 (2004)

    Article  Google Scholar 

  48. Droux, M.: Plant Serine Acetyltransferase: New Insights for Regulation of Sulphur Metabolism in Plant Cells. Plant Physiol. Biochem. 41, 619–627 (2003)

    Article  Google Scholar 

  49. Lunn, J.E.: Gene Families and Evolution of Trehalose Metabolism in Plants. Funct. Plant Biol. 34, 550–563 (2007)

    Article  Google Scholar 

  50. Satoh-Nagasawa, N., Nagasawa, N., Malcomber, S., Sakai, H., Jackson, D.: A Trehalose Metabolic Enzyme Controls Inflorescence Architecture in Maize. Nature 441, 227–230 (2006)

    Article  Google Scholar 

  51. Pramanik, M.H., Imai, R.: Functional Identification of a Trehalose 6-Phosphate Phosphatase Gene that is Involved in Transient Induction of Trehalose Biosynthesis During Chilling Stress in Rice. Plant Mol. Biol. 58(6), 751–762 (2005)

    Article  Google Scholar 

  52. Brown, J.R., Douady, C.J., Italia, M.J., Marshall, W.E., Stanhope, M.J.: Universal Trees Based on Large Combined Protein Sequence Data Sets. Nature Genet. 28, 281–285 (2001)

    Article  Google Scholar 

  53. Frank, W., Ratnadewi, D., Reski, R.: Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta. 220(3), 384–394 (2005)

    Article  Google Scholar 

  54. Avonce, N., Mendoza-Vargas, A., Morett, E., Iturriaga, G.: Insights on the Evolution of Trehalose Biosynthesis. BMC Evol. Biol. 6, 109 (2006)

    Article  Google Scholar 

  55. Weretilnyk, E.A., Bednarek, S., McCue, K.F., Rhodes, D., Hanson, A.D.: Comparative Biochemical and Immunological Studies of the Glycine Betaine Synthesis Pathway in Diverse Families of Dicotyledons. Planta. 178, 342–352 (1989)

    Article  Google Scholar 

  56. Nakamura, T., Yokota, S., Muramoto, Y., Tsutsui, K., Oguri, Y., Fukui, K., Takabe, T.: Expression of a Betaine Aldehyde Dehydrogenase Gene in Rice, a Glycinebetaine Non Accumulator, and Possible Localization of its Protein in Peroxissomes. Plant J. 11(5), 1115–1120 (1997)

    Article  Google Scholar 

  57. Rontein, D., Basset, G., Hanson, A.D.: Metabolic Engineering of Osmoprotectant Accumulation in Plants. Metab. Engin. 4(1), 49–56 (2002)

    Article  Google Scholar 

  58. Niu, X., Zheng, W., Lu, B., Ren, G., Huang, W., Wang, S., Liu, J., Tang, Z., Luo, D., Wang, Y., Liu, Y.: An Unusual Posttranscriptional Processing in Two betaine aldehyde dehydrogenase Loci of Cereal Crops Directed by Short, Direct Repeats in Response to Stress Conditions. Plant Physiol. 143, 1929–1942 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barros dos Santos, P., da Mota Soares-Cavalcanti, N., Vieira-de-Melo, G.S., Benko-Iseppon, A.M. (2011). Osmoprotectants in the Sugarcane (Saccharum spp.) Transcriptome Revealed by in Silico Evaluation. In: Rizzo, R., Lisboa, P.J.G. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2010. Lecture Notes in Computer Science(), vol 6685. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21946-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21946-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21945-0

  • Online ISBN: 978-3-642-21946-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics