Skip to main content

Abstract

This paper presents alternative security methods based on DNA. From the alternative security methods available, a DNA algorithm was implemented using symmetric coding in BioJava and MatLab. As results, a comparison has been made between the performances of different standard symmetrical algorithms using dedicated applications. In addition to this, we also present an asymmetric key generation and DNA security algorithm. The asymmetric key generation algorithm starts from a password phrase. The asymmetric DNA algorithm proposes a mechanism which makes use of more encryption technologies. Therefore, it is more reliable and more powerful than the OTP DNA symmetric algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hook, D.: Beginning Cryptography with Java. Wrox Press (2005)

    Google Scholar 

  2. Kahn, D.: The codebrakers. McMillan, New York (1967)

    Google Scholar 

  3. Schena, M.: Microarray analysis. Wiley-Liss (July 2003)

    Google Scholar 

  4. Adleman, L.M.: Molecular computation of solution to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  5. Schneier, B.: Applied cryptography: protocols, algorithms, and source code in C. John Wiley & Sons Inc., Chichester (1996)

    MATH  Google Scholar 

  6. Java Cryptography Architecture. Sun Microsystems (2011), http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html

  7. Genetics Home Reference. U.S. National Library of Medicine (2011), http://ghr.nlm.nih.gov/handbook/basics/dna

  8. Hodorogea, T., Vaida, M.F.: Blood Analysis as Biometric Selection of Public Keys. In: 7 th International Carpathian Control Conference ICCC 2006, Ostrava – Beskydy, Czech Republic, May 29-31, pp. 675–678 (2006)

    Google Scholar 

  9. Gehani, A., LaBean, T., Reif, J.: DNA-Based Cryptography. DIMACS Series in Discrete Mathematics and Theoretical Computer Science (LNCS), vol. 54. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  10. Tornea, O., Borda, M., Hodorogea, T., Vaida, M.-F.: Encryption System with Indexing DNA Chromosomes Cryptographic Algorithm. In: IASTED International Conference on Biomedical Engineering (BioMed 2010), Innsbruck, Austria, paper 680-099, February 15-18, pp. 12–15 (2010)

    Google Scholar 

  11. Wilson, R. K.: The sequence of Homo sapiens FOSMID clone ABC14-50190700J6, submitted to (2009), http://www.ncbi.nlm.nih.gov

  12. DNA Alphabet. VSNS BioComputing Division (2011), http://www.techfak.uni-bielefeld.de/bcd/Curric/PrwAli/node7.html#SECTION00071000000000000000

  13. Wagner, Neal R.: The Laws of Cryptography with Java Code. [PDF] (2003)

    Google Scholar 

  14. Schneier, B.: Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish). In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  15. Amin, S.T., Saeb, M., El-Gindi, S.: A DNA-based Implementation of YAEA Encryption Algorithm. In: IASTED International Conference on Computational Intelligence, San Francisco, pp. 120–125 (2006)

    Google Scholar 

  16. BioJava (2011), http://java.sun.com/developer/technicalArticles/javaopensource/biojava/

  17. Nobelis, N., Boudaoud, K., Riveill, M.: Une architecture pour le transfert électronique sécurisé de document, PhD Thesis, Equipe Rainbow, Laboratories I3S – CNRS, Sophia-Antipolis, France (2008)

    Google Scholar 

  18. Techateerawat, P.: A Review on Quantum Cryptography Technology. International Transaction Journal of Engineering, Management & Applied Sciences & Technologies 1, 35–41 (2010)

    Google Scholar 

  19. Vaida, M.-F., Terec, R., Tornea, O., Ligia, C., Vanea, A.: DNA Alternative Security, Advances in Intelligent Systems and Technologies. In: Proceedings ECIT 2010 – 6th European Conference on Intelligent Systems and Technologies, Iasi, Romania, October 07-09, pp. 1–4 (2010)

    Google Scholar 

  20. Holland, R.C.G., Down, T., Pocock, M., Prlić, A., Huen, D., James, K., Foisy, S., Dräger, A., Yates, A., Heuer, M., Schreiber, M.J.: BioJava: an Open-Source Framework for Bioinformatics. Bioinformatics (2008)

    Google Scholar 

  21. RSA Security Inc. Public-Key Cryptography Standards (PKCS) PKCS #5 v2.0: Password-Based Cryptography Standard (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vaida, MF., Terec, R., Alboaie, L. (2011). Alternative DNA Security Using BioJava. In: Cherifi, H., Zain, J.M., El-Qawasmeh, E. (eds) Digital Information and Communication Technology and Its Applications. DICTAP 2011. Communications in Computer and Information Science, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21984-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21984-9_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21983-2

  • Online ISBN: 978-3-642-21984-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics