

Edinburgh Research Explorer

Exponential Lower Bounds for AC0-Frege Imply Superpolynomial
Frege Lower Bounds
Citation for published version:
Filmus, Y, Pitassi, T & Santhanam, R 2011, Exponential Lower Bounds for AC

0
-Frege Imply

Superpolynomial Frege Lower Bounds. in L Aceto, M Henzinger & J Sgall (eds), Automata, Languages and
Programming - 38th International Colloquium, ICALP 2011, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 6755, Springer, Zurich, Switzerland, pp. 618-629. https://doi.org/10.1007/978-3-642-22006-
7_52

Digital Object Identifier (DOI):
10.1007/978-3-642-22006-7_52

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Automata, Languages and Programming - 38th International Colloquium, ICALP 2011, Proceedings, Part I

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Mar. 2024

https://doi.org/10.1007/978-3-642-22006-7_52
https://doi.org/10.1007/978-3-642-22006-7_52
https://doi.org/10.1007/978-3-642-22006-7_52
https://www.research.ed.ac.uk/en/publications/5910841a-f483-4b6f-a411-f6aa632f9825

Exponential Lower Bounds for AC0-Frege Imply
Superpolynomial Frege Lower Bounds

Yuval Filmus1 ?, Toniann Pitassi1 ?, and Rahul Santhanam2

1 Univeristy of Toronto, yuvalf,toni@cs.toronto.edu
2 University of Edinburgh, rsanthan@inf.ed.ac.uk

Abstract. We give a general transformation which turns polynomial-
size Frege proofs to subexponential-size AC0-Frege proofs. This indicates
that proving exponential lower bounds for AC0-Frege is hard, since it is
a longstanding open problem to prove super-polynomial lower bounds
for Frege. Our construction is optimal for tree-like proofs.
As a consequence of our main result, we are able to shed some light on
the question of weak automatizability for bounded-depth Frege systems.
First, we present a simpler proof of the results of Bonet et al. [5] showing
that under cryptographic assumptions, bounded-depth Frege proofs are
not weakly automatizable. Secondly, we show that because our proof is
more general, under the right cryptographic assumptions, it could resolve
the weak automatizability question for lower depth Frege systems.

? Supported by NSERC

1 Introduction

The fundamental question in computational complexity is the P vs. NP question.
Though we are very far from resolving this question, over the past few decades
we have made substantial progress in understanding why certain approaches, for
example diagonalization and the use of combinatorial or algebraic techniques to
prove circuit lower bounds, are unlikely to work. Various barriers such as the
relativization, natural proofs and algebrization barriers have been formulated
to capture the limitations of known techniques, and in turn, this meta-level
understanding of complexity lower bound problems has led to developments in
areas such as low-level complexity and derandomization.

However, there are still approaches whose power is not well understood, such
as those used in proof complexity. Proof complexity was introduced by Cook and
Reckhow [8] as a framework within which to study the NP vs. coNP problem.
Cook and Reckhow defined propositional proof systems in a very general way by
insisting only that proofs be verifiable in polynomial time, and showed that the
existence of a propositional proof system in which all tautologies have polynomial
size proofs is equivalent to NP = coNP. They suggested a program to separate
NP and coNP (and thereby P and NP) by showing superpolynomial proof size
lower bounds for explicit tautologies in progressively stronger proof systems. The
hope was that techniques from logic and proof theory could be effective where
techniques inspired by recursion theory or combinatorics are not. The fact that
the very definition of the P vs. NP question involves the notion of “proof” in a
fundamental way makes this hope somewhat plausible.

Indeed, over the past couple of decades, lower bounds have been shown for
various natural proof systems [9, 3]. However, lower bounds for natural systems
such as Frege and Extended Frege still seem out of reach. We seem to have hit a
“wall” with proof complexity lower bounds, just as with circuit complexity lower
bounds.

To an extent, this reflects the fact that the techniques used for the currently
strongest proof complexity lower bounds are adaptations of the techniques used
in circuit complexity, and limitations of the circuit complexity techniques carry
over to the versions used in proof complexity. There is an informal “mapping”
from proof systems to complexity classes, where a proof system Q corresponds
to the smallest complexity class C such that the lines of polynomial-sized proofs
in Q are functions in C. In this way, Resolution maps to DNFs, Bounded-Depth
Frege to non-uniform AC0, Frege to non-uniform NC1, and Extended Frege to
SIZE(poly).

In the circuit complexity world, we have lower bounds for explicit functions
against DNFs and non-uniform AC0, but not against non-uniform NC1 and
SIZE(poly); correspondingly, in the proof complexity setting we have strong
lower bounds for Resolution and fairly strong lower bounds for bounded-depth
Frege, but no non-trivial lower bounds for Frege and Extended Frege.

The question arises whether this connection between circuit complexity and
proof complexity is fundamental or not. No formal connection is known either
way — we don’t have theorems to the effect that circuit complexity lower bounds

yield proof complexity lower bounds, nor any implications in the reverse direc-
tion. Moreover, barriers such as the natural proofs barrier don’t seem to apply to
proof complexity. This suggests that perhaps completely different techniques, say
from proof theory or finite model theory, might help in showing proof complexity
lower bounds. Is there a sense in which there are barriers to making progress in
proof complexity? Formulating and understanding such barriers would not only
guide us towards the “right” techniques, but might have collateral benefits as
well, as in the circuit complexity setting.

In this paper, we shed some light on these questions. We draw a connec-
tion between two fundamental lower bound questions in proof complexity. The
first question is to prove strong lower bounds for bounded-depth Frege. Super-
polynomial lower bounds are known for this proof system, but there aren’t any
lower bounds known that are purely exponential, i.e., 2Ω(nc) where the constant
c doesn’t depend on the depth of lines in the proof (the best known lower bound

is Ω(2n
5−d

) [3]). The second question, which is perhaps the major open question
in proof complexity, is to obtain superpolynomial lower bounds for Frege. This
question is believed to be very hard — it is non-trivial even to think of plausible
candidate tautologies for which superpolynomial lower bounds are believed to
hold [4]. We show that progress on the first question would lead to progress on
the second, by giving a general simulation of polynomial size Frege proofs by
subexponential size bounded-depth Frege proofs. More precisely, we show that

even a 2n
ω(1/d)

proof size lower bound for proving CNF tautologies in depth d
Frege would translate to a superpolynomial proof size lower bound for Frege.

The proof of this connection is inspired by a result in circuit complexity,
further strengthening the “mapping” between proof complexity and circuit com-
plexity. The circuit complexity result we draw inspiration from is that NC1 can
be simulated by bounded-depth circuits with sub-exponential size [1]. The stan-
dard proof of this goes via a divide-and-conquer technique. We use a similar
technique in our context, however our task is made harder in a sense by the fact
that we need to reason within bounded-depth Frege about equivalence of var-
ious alternative representations of a function. The technical heart of our proof
involves such reasoning.

Our result is also relevant to algorithmic analysis, which is another major
motivation for studying proof complexity. A propositional proof system can be
thought of as a non-deterministic algorithm for deciding if a formula is a tau-
tology or not. Proof systems such as bounded-depth Frege and Frege provide
particularly simple and natural examples of such algorithms. Indeed, many of
the algorithms and heuristics used in practice for solving SAT, such as DPLL and
Clause Learning, arise from determinizing the non-deterministic algorithm cor-
responding to some natural proof system. Thus lower bounds for proof systems
give us information on the performance of algorithms used in practice.

Algorithmic analysis would appear to be a simpler question than proving
complexity lower bounds, since a complexity lower bound is a statement about
any possible algorithm for a problem, while algorithmic analysis deals with spe-
cific algorithms. There are somewhat artificial algorithms such as Levin’s optimal

algorithm for SAT whose analysis is just as difficult as proving complexity lower
bounds. However, one might expect that for more natural algorithms, such as
those corresponding to natural propositional proof systems, this is not the case.
Our current lack of progress in proving proof complexity lower bounds indicates
that there might be barriers even in algorithmic analysis of natural algorithms.
Our main result here can be interpreted as saying that the algorithmic analysis
question for the algorithm corresponding to bounded-depth Frege is as hard as
the question for the algorithm corresponding to Frege (which in some sense is a
more sophisticated algorithm). In general, it would be useful to have a theory of
algorithmic analysis which gives us information about the relative difficulty of
analyzing various natural algorithms. We make a small step in this direction in
the setting of non-deterministic algorithms for TAUT.

There are a couple of interesting byproducts of our main result. First, we
are able to prove tight bounds for proving certain explicit tautologies in treelike
bounded-depth Frege. Lower bounds for the tautologies we consider were already
shown by Kraj́ıček [10]. We give corresponding upper bounds as a corollary of
our simulation of Frege by bounded-depth Frege.

Second, we address the question of weak automatizability for bounded-depth
Frege systems. A proof system P is weakly automatizable if there is an algorithm
that on input f and a number r in unary, can distinguish the case where f is
not a tautology from the case where f has a P-proof of size at most r. Despite
considerable effort, the question of whether low depth proof systems are weakly
automatizable is unresolved. Bonet, Domingo, Gavaldá, Maciel and Pitassi [5]
show that depth k Frege systems are not weakly automatizable under a cryp-
tographic assumption, but their result breaks down for small k (less than 6).
We use our main result to re-derive their main theorem. Our proof is cleaner
and simpler than theirs, and we show that it could potentially resolve the weak
automatizability question for lower depth Frege systems than what is currently
known.

1.1 Proof Overview

Suppose that P is a Frege proof of some formula f . We want to simulate P
by a subexponential-size depth d Frege proof of f . The high-level idea behind
the simulation is to replace every formula in the proof by its equivalent depth d
(subexponential-size) flattened formula, and then to show that if C was derived
by a rule from A and B, then the flattened version of C can be efficiently derived
from the flattened versions of A and B.

We can assume without loss of generality that all formulas f in the proof
are balanced (Reckhow’s theorem). We first review the translation of a balanced
formula f to its flattened form. We say that a formula has logical depth at most
d if the depth of the binary tree representing the formula is at most d. Suppose
that we want to replace f , of size n and logical depth log n, by a depth 3 formula.
The idea is to view f as consisting of two layers: the top layer is a formula, f1, of
height (log n)/2, and the bottom layer consists of 2(logn)/2 =

√
n subformulas,

g1, . . . , g√n, each of height (log n)/2. Since f1 has height (log n)/2, it has at most

√
n inputs, and thus can be written as either a CNF or a DNF formula (of its

inputs) of size
√
n2
√
n. Similarly, each formula in the bottom layer can be written

as either a CNF or a DNF formula of size
√
n2
√
n. Writing f1 as a CNF formula,

and writing all formulas gj in the bottom layer as DNF formulas, we obtain a

new formula for f of depth 3 and total size O(n22
√
n). (The depth is 3 because

we can merge the middle two AND layers.) In a similar manner, we can replace
any formula f , of size n and logical depth log n, by a depth d+ 2 formula: Now
we break up f into d equally-spaced layers, each of size (log n)/d. Again, we
write the formula at the top layer as a CNF formula, the formulas at the next
layer as DNF formulas, and so on. This gives a formula of depth 2(d + 1) and

total size O(n2dn
1/d

), but since we alternated CNF/DNFs, we can collapse every
other layer to obtain a new flattened formula of depth 2(d+ 1)− d = d+ 2.

Now that we have flattened translations of each formula in P , it remains
to fill in the proof, to show that the flattened versions can be derived from
one another. In order to carry this out, we define a more general procedure for
flattening a formula as follows. Let d be any depth vector – i.e., it is a sequence of
increasing numbers, where each number in the sequence is between 1 and log n.
Then from a balanced formula f of size n and logical depth log n, d defines a
new flattened formula of depth |d|+2: we break f up into |d| many levels, where
now instead of the levels being equally spaced, the breakpoints are specified by
d. For example, if d = (4, 12) and f has depth 20, then the d-flattened version of
f will have 3 levels, the top level containing levels 1 through 3, the second level
4 through 11, and the third level 12 through 20. Our main lemma shows that
for any balanced formula f and any two depth vectors d1, d2, there are efficient
low-depth Frege proofs showing that the d1-flattened version of f is equivalent
to the d2-flattened version of f . This main lemma will then allow us to prove
that for any rule of our proof system, the flattened versions of the antecedent
formulas derive the flattened version of the succedent formula.

2 Proof systems

We will work with the propositional sequent calculus, PK. In the fundamen-
tal work of Cook and Reckhow [8], many reasonable formulations of Frege sys-
tems (including all PK-like systems) were studied and shown to be polynomially
equivalent; we work with PK for convenience, but any other Frege system will
do.

Each line in a PK proof is a sequent of the form A1, . . . , Ak −→B1, . . . , Bm
where −→ is a new symbol, and Ai, Bj are formulas. The intended meaning is
that the conjunction of the Ai’s implies the disjunction of the Bj ’s.

A PK proof of −→ f is a sequence of sequents, such that each sequent is
either an instance of the axiom A−→A, or follows from previous sequents from
one of the inference rules, and such that the final sequent is −→ f .

The rules of PK are of three types: (i) the structural rules, (ii) the logical
rules, and (iii) the cut rule.

The structural rules are weakening, contraction and permutation.

The logical rules allow us to introduce each connective on both the left side
and the right side.

The final rule is the cut rule, which allows us to derive Γ −→∆ fromA,Γ −→∆
and Γ −→A,∆. We call formula A the cut formula.

A full description of PK is found in appendix A.
The size of a PK proof is the sum of the sizes of all formulas occurring in the

proof.
The logical depth of a formula ϕ, denoted by ldp(ϕ), is the depth of the

formula when considered as a binary tree. For example, (A ∧B) ∧C has logical
depth 2. A formula whose logical depth is D has size at most 2D+1− 1, and can
depend on at most 2D variables.

The depth of a formula ϕ, denoted by dp(ϕ), is the maximum number of
alternations between AND and OR connectives from root to leaf, not counting
negations, plus one. For example, (A ∧ B) ∧ C has depth 1, and the depth of a
CNF or DNF formula is two.

We have given definitions of two different notions of depth. We will use
logical depth to reason about formulas in Frege proofs, and depth to reason
about formulas in bounded depth proofs.

A cut-depth k proof, also called an AC0
k-Frege proof, is a PK proof where

every cut formula in the proof has depth at most k (other formulas are allowed
to have arbitrary depth). Note that in the literature, an AC0

k-Frege proof is
often defined to be a PK proof where all formulas have depth at most k. This
definition is equivalent to ours if the proven formula has depth at most k.

A PK proof is tree-like if the underlying dag structure of the proof forms a
tree, i.e. each sequent is used only once.

For technical reasons, we will need all the formulas in our proofs to be bal-
anced. By the following result of Reckhow, this can be assumed without loss of
generality.

Theorem 1 (Reckhow, [11, Lemma 4.4.14]). If a formula of logical depth
D has a PK proof of size s, then it has a PK proof of size sO(1) in which all
formulas have logical depth D + O(log s). If the original proof is tree-like, then
the new balanced proof is also tree-like.

Definition 1. A proof system S is automatizable if there exists an algorithm A
such that for all unsatisfiable formulas f , A(f) returns an S-proof of f , and the
runtime of A on f is polynomial in the size of the smallest S-proof of f . S is
weakly automatizable if there exists a proof system that polynomially simulates
S and that is automatizable.

3 Reducing formula depth

We reduce the depth of a formula using a divide-and-conquer technique. The
idea is to decompose the formula into relatively small subtrees, and replace each
subtree by a CNF or DNF which is equivalent to the formula computed by the
subtree.

Definition 2. Let ϕ be an arbitrary formula depending on n variables. Denote
by CNF(ϕ) (DNF(ϕ)) some canonically chosen CNF (DNF) representing ϕ of
size O(n2n). We require that CNF(p ∧ q) = DNF(p ∧ q) = p ∧ q, and similarly
for p ∨ q and ¬p, when p and q are variables.

We think of formulas as trees in which internal nodes are either binary (if
the corresponding connective is ∧ or ∨) or unary (when the connective is ¬),
and leaves are labelled by variables. Each formula has an equivalent formula
of the same size where negations only appear immediately above leaves, just
by applying De Morgan’s laws repeatedly to “move” negations down. We will
call such formulas quasi-monotone, and will work with them throughout our
simulation.

Definition 3. A quasi-monotone formula is one in which negations only appear
next to variables, and there are no double negations. Let ϕ be a quasi-monotone
formula. Its dual form M(ϕ) is obtained from ϕ by switching ∧ and ∨ and
negating all literals, that is for each variable x switching x and ¬x; M(ϕ) is
logically equivalent to ¬ϕ.

We define two canonical flattened forms in parallel.

Definition 4. Let d = d1, . . . , dk be a vector of increasing positive integers. The
conjunctive flattened form C(ϕ;d) and disjunctive flattened form D(ϕ;d) of a
formula ϕ are defined recursively as follows. If k = 0 (i.e., d is the empty vector)
or d1 ≥ ldp(ϕ) then C(ϕ;d) = CNF(ϕ) and D(ϕ;d) = DNF(ϕ). Otherwise,
let ψ be the formula obtained from ϕ by trimming the tree at depth d1. The
formula ψ depends on the variables of ϕ as well as on variables corresponding
to subformulas of ϕ at depth d1; we call these true variables and subformula
variables, respectively. Let vχ denote the subformula variable corresponding to
the subformula χ.

We explain how to calculate the conjunctive flattened form; the disjunctive
flattened form is analogous. Start with CNF(ψ). Let e = d2 − d1, . . . , dk − d1.
Replace each positive occurrence of a subformula variable vχ in CNF(ψ) with
D(χ; e), and each negative occurrence with M(C(χ; e)). The result is C(ϕ).

The flattened forms are both shallow and not too large.

Definition 5. Let ϕ be a formula and d = d1, . . . , dk be a vector of increasing
positive integers, such that d1 ≤ ldp(ϕ). Let d0 = 0 and dk+1 = ldp(ϕ). The
extent of ϕ with respect to d is

ex(ϕ;d) = max{di+1 − di : 0 ≤ i ≤ k}.

Lemma 1. Let ϕ be a formula and d a vector of length k and extent x =
ex(ϕ;d). Then C(ϕ;d) and D(ϕ;d) are formulas of depth at most k+ 2 and size
2O(k2x) equivalent to ϕ.

4 Proof of Main Theorem

In this section, we will prove the following theorem.

Theorem 2. Let ϕ be a formula provable in Frege in size s, satisfying ldp(ϕ) ≤
C log s. For every k ≥ 1 there is an AC0

k+2-Frege proof of ϕ of size 2O(ksO(C/k)).
Furthermore, if the original proof is tree-like, so is the new one.

Corollary 1. Let ϕ be a formula of size s and logical depth at most C log s. If
ϕ has a Frege proof of size O(sc) then for every k ≥ 1 there is an AC0

k+2-Frege

proof of ϕ of size 2O(cksO(C/k)).

We will first state some simple lemmas which will enable us to reason about
flattened forms. The proofs of these lemms appear in the Appendix.

Lemma 2. Let Γ −→∆ be a valid sequent of size m, in which n variables ap-
pear. The sequent is provable using a tree-like proof of size O(m2n2n) which cuts
only on variables.

Our next lemma states that we can substitute formulas for variables to get
a valid proof.

Lemma 3. Let π be a proof of Γ −→∆ of size s, and let x be a variable appear-
ing in Γ −→∆. If we substitute everywhere a formula ϕ of size m for x then we
get a valid proof of size at most sm.

The preceding lemma shows that we can lift a proof of a sequent by attaching
stuff ‘below’. The next lemma shows that we can also lift a proof by attaching
stuff ‘above’; this corresponds to deep inference.

Definition 6. The double sequent P ←→Q is the pair of sequents P −→Q and
Q−→P .

Lemma 4. Let P −→Q be a sequent of size m, and ϕ(x) be a formula of size
n in which the variable x appears only once (other variables may also appear).
The double sequent ϕ(x|P)←→ϕ(x|Q) has a cut-free, tree-like proof from the
double sequent P ←→Q of size O(n(m + n)) (this means that each of P −→Q
and Q−→P is used only once in the joint proof).

We next state two easy lemmas on dualization.

Lemma 5. Let ϕ be a quasi-monotone formula of size n. The double sequent
M(ϕ)←→¬ϕ has a cut-free, tree-like proof of size O(n2).

The second lemma allows us to lift an equivalence to its dualized version.

Lemma 6. Let ϕ,ψ be quasi-monotone formulas. Suppose that the double se-
quent ϕ←→ψ has a proof of size s cutting on formulas of depth at most D. Then
the double sequent M(ϕ)←→M(ψ) has a proof of size O(s) cutting on formulas
of depth at most D. Furthermore, if the original proof is tree-like then so is the
new proof.

We comment that the preceding lemma can be strengthened to produce cut-
free proofs.

4.1 Moving down the depth vector

In this section we show how to prove the equivalence of two flattened forms of
the same formula which correspond to two different depth vectors.

Lemma 7. Let ϕ be a formula of logical depth D, and δ a positive integer.
Consider CNF(ϕ) and C(ϕ; δ) as monotone formulas depending on literals x, x̄;
in other words, for each variable x, we replace ¬x by x̄. The double sequent

CNF(ϕ)←→C(ϕ; δ) has a tree-like proof of size 2O(2D) cutting only on literals.

Proof. Since ϕ has at most 2D leaves, it depends on at most 2D variables, and

twice as many literals. Lemma 2 provides the necessary proof of size 2O(D)22
D+1

=

2O(2D).

Lemma 8. Let ϕ be a formula, d = d1, . . . , dk a vector of increasing positive in-
tegers, and δ < d1 be a positive integer. The double sequent C(ϕ;d)←→C(ϕ; δ,d)
has a tree-like proof of size 2O(k2x) cutting only on formulas of depth at most
k + 1, where x = ex(ϕ;d).

Proof. Let ψ be ϕ trimmed at level d1, as in Definition 4. By definition, C(ϕ;d) is
obtained from CNF(ψ) by substituting for each subformula literal v, v̄ a formula
v+, v− of depth k + 1. Similarly, C(ϕ; δ,d) is obtained by the same substitution
to C(ψ; δ).

Lemma 7 shows how to prove CNF(ψ)←→C(ψ; δ) cutting only on literals;
note that ldp(ψ) ≤ x. By Lemma 3, if we substitute v+, v− for v, v̄ we obtain a
valid proof of size 2O(k2x). The cut formulas lift from literals to v+, v−, which
are of depth at most k + 1.

Lemma 9. Let ϕ be a formula, d = d1, . . . , dk a vector of increasing positive in-
tegers, and di < δ < di+1, where 1 ≤ i ≤ k. Define e = d1, . . . , di, δ, di+1, . . . , dk.
The double sequent has a tree-like proof of size 2O(k2x) cutting only on formulas
of depth at most k + 1, where x = ex(ϕ;d).

Proof. Let ψ be the portion of ϕ up to level di. Both flattened forms in consid-
eration are obtained from C(ψ; d1, . . . , di) by substituting certain formulas for
literals; these formulas are either flattened forms or dualized flattened forms.
Denote the formulas corresponding to the literals v, v̄ by v+, v−.

We can assume wlog that v+, v− are CNFs. In order to obtain C(ϕ;d), we
need to substitute v+d = CNF(v; di+1, . . . , dk). In order to obtain C(ϕ; e), we
need to substitute v+e = CNF(v; δ, di+1, . . . , dk). By Lemma 8, we can prove
v+d ←→ v+e in size 2O(k2x), cutting only on formulas of depth at most k + 1.

Next, v−d = M(DNF(v; di+1, . . . , dk)) and v−e = M(DNF(v; δ, di+1, . . . , dk)).
Combining Lemma 8 with Lemma 6, we obtain a proof of v−d ←→ v−e in size
2O(k2x). Since the depth of formulas we cut on is preserved in the proof of
Lemma 6, the new proof has cuts only on formulas of depth at most k + 1.

Define now hybrid formulas χt as follows. Start with C(ψ; d1, . . . , di), and
replace the first t occurrences of subformula literals by the corresponding v±e ;

replace the rest by the corresponding v±d . Thus χ0 = C(ϕ;d), and for some
T ≤ 2O(k2x), χT = C(ϕ; e).

Using Lemma 4, for any 0 ≤ t < T we can prove χt←→χt+1 given an
instance of the corresponding double sequent v±d ←→ v±e . By cutting on all χt
for 0 < t < T , we obtain a proof of the desired double sequent.

Lemma 10. Let ϕ be a formula, and d = d1, . . . , dk be a vector of increasing
positive integers. Define e = 1, d1 + 1, . . . , dk + 1. The double sequent
C(ϕ;d)←→C(ϕ; e) has a tree-like proof of size 2O(k2x) cutting only on formulas
of depth at most k + 3, where x = max(ex(ϕ;d), ex(ϕ; e)).

Proof. Lemma 9 shows how to prove the equivalence of two flattened forms,
where the second one has one extra level beyond the first one. In order to ‘move’
d1 to d1 + 1, we prove the following double sequents:

C(ϕ; d1, . . . , dk)←→C(ϕ; d1, d1 + 1, . . . , dk),

C(ϕ; d1, d1 + 1, . . . , dk)←→C(ϕ; d1 + 1, . . . , dk).

Continuing the same way, we can ‘migrate’ d to e, adding the extra e1 = 1 at
the end. Each flattened form in the interim has depth at most k+ 3. By cutting
all the intermediate flattened forms, we obtain the desired double sequent.

The same methods used to prove Lemma 9 enable us to prove the following
lemma.

Lemma 11. Let ϕ be a formula, and d = d1, . . . , dk be a vector of increasing
positive integers. The double sequent C(ϕ;d)←→D(ϕ;d) has a tree-like proof of
size 2O(k2x) cutting only on formulas of depth at most k+2, where x = ex(ϕ;d).

4.2 Putting it together

In this section we show how to transform a Frege proof to an AC0-Frege proof.
We begin by proving intensional comprehension.

Lemma 12. Let ϕ,ψ be formulas, and d be a vector of increasing positive in-
tegers of length k. The double sequents

C(ϕ ∧ ψ;d)←→C(ϕ;d) ∧ C(ψ;d), C(ϕ ∨ ψ;d)←→C(ϕ;d) ∨ C(ψ;d)

have tree-like proofs of size 2O(k2x) with cuts on formulas of depth at most k+3,
where x = ex(ϕ ∧ ψ;d).

Proof. We show how to prove the first double sequent; the second is proven in
the same way.

Let e = 1, d1 +1, . . . , dk+1 be the vector defined in Lemma 10. We calculate
D(ϕ ∧ ψ; e). Using the recipe of definition 4, we first calculate DNF(vϕ ∧ vψ) =
vϕ ∧ vψ. Into this DNF we substitute vϕ = C(ϕ;d) and vψ = C(ψ;d). Therefore
D(ϕ ∧ ψ; e) = C(ϕ;d) ∧ C(ψ;d). The proof now becomes obvious, along the
following lines.

Using Lemma 11, we prove C(ϕ∧ψ;d)←→D(ϕ∧ψ;d). Using Lemma 10, we
prove D(ϕ∧ψ;d)←→C(ϕ;d)∧C(ψ;d). The proof is completed by an application
of the cut rule.

Lemma 13. Let ϕ be a formula, and d be a vector of increasing positive integers
of length k. The double sequent C(¬ϕ;d)←→¬C(ϕ;d) has a tree-like proof of
size 2O(k2x) with cuts on formulas of depth at most k + 3, where x = ex(¬ϕ;d).

Proof. Let e = 1, d1 + 1, . . . , dk + 1 be the vector defined in Lemma 10. We cal-
culate C(¬ϕ; e). Using the recipe of definition 4, we first calculate CNF(¬vϕ) =
¬vϕ. Into this CNF we substitute ¬vϕ = M(C(ϕ;d)). Therefore C(¬ϕ; e) =
M(C(ϕ;d)). The proof now becomes obvious, along the following lines.

Lemma 10 shows how to prove C(¬ϕ;d)←→M(C(ϕ;d)). Lemma 5 shows
how to prove M(C(ϕ;d))←→¬C(ϕ;d). The proof is completed by applying the
cut rule.

The preceding lemmas allow us to unroll flattened forms.

Lemma 14. Let ϕ be a formula, and d be a vector of increasing positive integers
of length k. The double sequent ϕ←→C(ϕ;d) has a tree-like proof of size 2O(k2x)

with cuts on formulas of depth at most k + 3, where x = ex(ϕ;d).

Proof. The proof is by structural induction. If ϕ is a literal then there is nothing
to prove. If ϕ = ¬ψ, then use Lemma 13 to prove C(ϕ;d)←→¬C(ψ;d). The
induction hypothesis gives us a proof of ψ←→C(ψ;d); move both ψ and its
flattened form to the other side using four ¬ introduction rules, and apply cut
twice to prove the required double sequent.

If ϕ = ψ ∧ χ then start with proofs of the following sequents, obtained by
Lemma 12 and the induction hypothesis:

C(ϕ;d)←→C(ψ;d) ∧ C(χ;d), ψ←→C(ψ;d), χ←→C(χ;d).

Now prove C(ψ;d) ∧ C(χ;d)←→ψ ∧ χ as follows:

C(ψ;d)−→ψ
∧L

C(ψ;d) ∧ C(χ;d)−→ψ

C(χ;d)−→χ
∧L

C(ψ;d) ∧ C(χ;d)−→χ
∧R

C(ψ;d) ∧ C(χ;d)−→ψ ∧ χ

The other sequent is proved similarly. Complete the proof using the cut rule.
The case ϕ = ψ ∨ χ is similar.

The proof of the main theorem is now simple.

Lemma 15. Let ϕ be a formula provable in Frege in size s using a proof with
maximum logical depth D. For every k there is an AC0

k+2-Frege proof of ϕ of

size s2O(k2D/k). Furthermore, if the original proof is tree-like, so is the new one.

Proof. Let d = dD/ke, 2dD/ke, . . . , (k − 1)dD/ke. Note that the extent of each
formula with respect to d is at most x = dD/ke. Take the original proof and
replace each formula ψ by C(ψ;d). Each application of a rule is still valid, but
the proof as a whole isn’t valid since not all formulas are in flattened form. We
address this issue by tampering with the introduction rules, as in the following
example, corresponding to the right ∧ introduction rule:

Γ −→∆,C(ψ;d) Γ −→∆,C(ψ;d)
∧R

Γ −→∆,C(ψ;d) ∧ C(χ;d)
Lem. 12

C(ψ;d) ∧ C(χ;d)−→C(ψ ∧ χ;d)
Cut

Γ −→∆,C(ψ ∧ χ;d)

Applying the same transformation for all introduction rules, we are left with a
valid proof of −→C(ϕ;d), where each sequent is now replaced by sequents of
total size 2O(k2x); the total size so far is s2O(k2x). Lemma 14 proves C(ϕ;d)−→ϕ,
and the proof is complete by cutting on C(ϕ;d).

The lemmas we used employ cuts of depth at most k + 2. All cuts in the
original proof now cut flattened formulas, which are of depth at most k + 1.

Proof (of Theorem 2). Reckhow’s Theorem (Theorem 1) supplies us with an
AC0

O(log s) proof of ϕ of size sO(1). The theorem now follows by substituting
D = C log(s) in Lemma 15.

5 Applications and Consequences

5.1 Tightness of our simulation

We first address the tightness of our simulation. The analogous result for circuit
complexity shows that any function computable by a polynomial-size formula
can be computed by depth d circuits of size exp(nO(1/d)). This result is tight,
since H̊astad’s theorem proves that the parity function on n boolean variables
requires AC0

d circuits of size exp(n1/d).
Similarly we can show that our result is also tight. The following theorem

states that there are formulas that have polynomial-size Frege proofs, but that
require AC0

d proofs of size exponential in n1/d.

Theorem 3. For every d there is a sequence of balanced formulas ϕn of depth
d + 2 provable in Frege by a tree-like proof of size sn such that every tree-like

AC0
d proof of ϕn requires size 2s

Ω(1/d)
n .

Proof. The formula ϕn is PHPn, the pigeonhole principle with n+1 pigeons and
n holes, with each variable replaced by a Sipser function of depth d. Buss [7]
has shown how to prove PHPn using a Frege proof of size nO(1), which can be
made tree-like by squaring its size. Substituting the Sipser functions, we obtain
a Frege proof of size nd+O(1).

Conversely, Kraj́ıček [10] gives a lower bound of 2n
Ω(1)

for proving ϕn in
tree-like AC0

d.

Since the formulas ϕn are balanced, Theorem 2 applies, and with k = d− 2,
gives proofs essentially matching the lower bound.

The above result proves tightness for formulas of high depth. We conjecture
that our simulation is also tight with respect to CNF formulas and general, dag-
like proofs. The obvious formula for witnessing the lower bound is the pigeonhole
principle itself. However, as an artifact of the switching lemma technique used
to obtain depth d Frege lower bounds for the pigeonhole principle, the current

best lower bound is exponential in n1/2
d

. It is a well-known open problem to
improve the lower bound to exp(n1/d) for the pigeonhole principle, or for any
other CNF formula. Such a result would show that our simulation is tight even
for CNF formulas and arbitrary dag-like proofs.

5.2 Weak Automatizability

Using our theorem, we are able to show that bounded-depth Frege is not weakly
automatizable, under an assumption about the hardness of factoring. While this
result has already been known [5], we first show how to prove it as a simple
corollary of our main theorem.

Theorem 4 ([6]). Frege systems do not have feasible interpolation and are not
weakly automatizable unless the Diffie Hellman problem is computable by poly-
nomial size circuits.

The Diffie Hellman problem is based on a prime number p, |p| = n. The
input to the problem is a number g less than p, and numbers ga (mod p), gb

(mod p), for some numbers a, b ≤ p. The output should be gab (mod p). The
main lemma from [6] shows that a particular tautology, DHp, stating that the
Diffie Hellman function is well defined, has Frege proofs of size O(|p|c), where
c ≤ 4. Take DHp where |p| = (log n)q for some constant q. By our normal form

theorem, this implies that DHp has AC0
k-Frege proofs of size 2O(k(logn)cq/k). Thus

for k > cq, this is polynomial in n. Hence it follows that if AC0
k-Frege is weakly

automatizable (or has feasible interpolation), then the Diffie Hellman problem for
|p| = n′ = (log n)k/c can be solved in time nO(k) = 2O(k logn) = expO(k(n′)c/k).

Unfortunately, the quality of this negative result degrades for small k. Indeed
despite considerable effort, it is unknown whether or not very low depth Frege
systems (when k is less than 5) are weakly automatizable (the recent paper [2]
reveals a connection between AC0

k with bottom fan-in 2 and mean-payoff games).
The main reason for this is that the Diffie Hellman function is not hard enough!
Algorithms exist for computing discrete log over all finite fields, and hence for
Diffie Hellman, that run in time exponential in

√
n. Moreover, the number field

sieve is conjectured to solve discrete log (and thus Diffie Hellman) in time ex-
ponential in the cube root of n. On the other hand, it seems entirely possible to
come up with a different interpolant statement for another function that is much
harder – truly exponential in n, and that still has efficient Frege proofs. Using
our main theorem (which scales down any Frege proof), this would imply new
negative results for weak automatizability and feasible interpolation for lower
depth Frege systems than what is currently known.

References

1. Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael Saks.
Minimizing disjunctive normal form formulas and AC0 circuits given a truth table.
SIAM Journal on Computing, 38(1):63–84, 2008.

2. Albert Atserias and Elitza Maneva. Mean-payoff games and propositional proofs.
Inf. and Comp., 209(4):664–691, 2011.

3. Paul W. Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, Pavel Pudlák,
and Alan Woods. Exponential lower bounds for the pigeonhole principle. In Pro-
ceedings of the Twenty-Fourth Annual ACM Symposium on Computing, pages 200–
220, Victoria, B.C., Canada, May 1992.

4. Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there hard examples
for Frege systems? In Feasible Mathematics II, pages 30–56. Birkhäuser, 1995.

5. Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and Toni-
ann Pitassi. Non-automatizability of bounded-depth Frege proofs. Computational
Complexity, 13(1-2):47–68, 2004.

6. Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automa-
tization for Frege systems. SIAM Journal on Computing, 29(6):1939–1967, 2000.

7. Samuel R. Buss. Polynomial size proofs of the pigeonhole principle. Journal of
Symbolic Logic, 57:916–927, 1987.

8. Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional
proof systems. Journal of Symbolic Logic, 44(1):36–50, 1979.

9. Armin Haken. The intractability of resolution. Theoretical Computer Science,
39:297–305, 1985.

10. Jan Kraj́ıček. Lower bounds to the size of constant-depth propositional proofs.
Journal of Symbolic Logic, 59(1):73–86, March 1994.

11. Jan Kraj́ıček. Bounded arithmetic, propositional logic, and complexity theory. Cam-
bridge University Press, New York, NY, USA, 1995.

A The Proof System PK

The formulas in PK are formed from variables, the binary connectives ∧ and ∨
and the unary connective ¬. Each line in a PK proof is a sequent of the form
A1, . . . , Ak −→B1, . . . , Bm where −→ is a new symbol, and Ai, Bj are formulas.
The intended meaning is that the conjunction of the Ai’s implies the disjunction
of the Bj ’s. Thus, a proof of f in PK will be interpreted to be a PK proof of the
sequent −→ f .

A PK proof of −→ f is a sequence of sequents, such that each sequent is
either an instance of the axiom A−→A, or follows from previous sequents from
one of the inference rules, and such that the final sequent is −→ f .

The rules of PK are of three types: (i) the structural rules, (ii) the logical
rules, and (iii) the cut rule.

The structural rules are weakening (formulas can always be added to the left
or to the right), contraction (two copies of the same formula can be replaced by
one) and permutation (formulas in a sequent can be reordered).

The final rule is the cut rule, which allows us to derive Γ −→∆ fromA,Γ −→∆
and Γ −→A,∆. The formula A is called the cut formula.

The logical rules, shown below, allow us to introduce each connective on both
the left side and the right side.

1. (Negation Left, ¬L) From Γ −→A,∆, derive ¬A,Γ −→∆.

2. (Negation Right, ¬R) From A,Γ −→∆, derive Γ −→¬A,∆.

3. (And Left, ∧L) From A,B, Γ −→∆, derive A ∧B,Γ −→∆.

4. (And Right, ∧R) From Γ −→A,∆ and Γ −→B,∆, derive Γ −→A ∧B,∆.

5. (Or Left, ∨L) From A,Γ −→∆ and B,Γ −→∆, derive A ∨B,Γ −→∆.

6. (Or Right, ∨R) From Γ −→A,B,∆ derive Γ −→A ∨B,∆.

The size of a PK proof is the sum of the sizes of all formulas occurring in
the proof. The logical depth of a formula ϕ, denoted by ldp(ϕ), is the depth of
the formula when considered as a tree. For example, (A ∧ B) ∧ C) has logical
depth 2. A formula whose logical depth is D has size at most 2D+1− 1, and can
depend on at most 2D variables. The depth of a formula ϕ, denoted by dp(ϕ), is
the maximum number of alternations from root to leaf, not counting negations,
plus one. For example, (A∧B)∧C has depth 1, and the depth of a CNF or DNF
formula is two. We have given two different, incompatible definitions of depth.
We will use logical depth to reason about formulas in Frege proofs, and depth
to reason about formulas in bounded depth proofs.

We will think of a formula of depth k as an unbounded fan-in formula. A
formula is Σk if it has depth k, where the top (unbounded fan-in) connective is
OR; a formula is Πk if it has depth k and the top (unbounded fan-in) connective
is AND. A formula is ∆k if it can be written both as a Σk and as a Πk formula.

A depth k proof is a PK proof where every formula in the proof has depth at
most k. Such a proof is usually called an AC0

k-Frege proof, but for us this term
will have a slightly different meaning. Similarly we can define Σk, Πk, and ∆k

proofs.

In the above definition of depth k proofs, all formulas in the proof are required
to have depth at most k. A more general definition of depth can also be defined
in order to allow constant depth proofs of higher depth formulas. Let f be a
formula, of possibly high depth. A cut-depth k Frege proof of f , also known as
an AC0

k-Frege proof, is a PK proof of −→ f such that in all applications of the
cut rule, the cut formula has depth at most k. Similarly, we can define proofs of
cut-depth Σk, Πk and ∆k. This new definition generalizes our earlier definition
of depth k proofs because they can be shown to be equivalent when restricted
to formulas f of depth k.

Underlying a PK proof is a directed acyclic graph representing the implication
structure of the proof. (Each node in the graph corresponds to a sequent in
the proof, and edges (s1, s3), (s2, s3) means that the sequent s3 is derived from
sequents s1 and s2 via an application of one of the PK rules.) A PK proof is tree-
like if the underlying dag structure of the proof forms a tree. When presenting
proofs in PK, we will only mention the logical rules and the cut rule, but not
the structural rules.

B Proofs of Lemmas from Section 3

Lemma 1. Let ϕ be a formula and d a vector of length k and extent x = ex(ϕ;d).
Then C(ϕ;d) and D(ϕ;d) are formulas of depth at most k + 2 and size 2O(k2x)

equivalent to ϕ.

Proof. It is easy to see, using De Morgan’s laws, that the flattened forms are
equivalent to the original formula. The recursive definition of the flattened forms
ensures that all negations are pushed to the leaves, and that CNFs and DNFs
alternate. Therefore their depth is k + 2 (the depth of a CNF/DNF is 2).

In order to estimate the size, denote by M(k, x) the maximum size of a
flattened form of a formula with respect to a vector of length k and extent x.
By definition 2,

M(0, x) = O(2x22
x

) = 2O(2x),

since a formula of logical depth x depends on at most 2x variables. Since M(0, x)
also bounds the number of literals in a CNF/DNF, M(k + 1, x) ≤ M(0, x) +
M(0, x)M(k, x). Therefore

M(k, x) ≤
k∑
l=0

M(0, x)l+1 = 2O(k2x).ut

C Proofs of Lemmas from Section 4

In order to prove the lemmas from this section, we will need a few preliminary
lemmas.

Definition 7. A truth assignment for variables x1, . . . , xn is a function
f : {x1, . . . , xm} −→ {⊥,>} assigning to each variable a truth value (⊥ is False,
> is True).

Lemma 16. Let ϕ be a formula of size m depending upon the set of variables
X of size n, and consider a truth assignment f for X. If ϕ is satisfied by f then
the sequent

{x ∈ X : f(x) = ⊥}−→{x ∈ X : f(x) = >}, ϕ

has a cut-free, tree-like proof of size O(nm(n + m)). If ϕ is falsified by f , then
the same is true for the sequent

{x ∈ X : f(x) = ⊥}, ϕ−→{x ∈ X : f(x) = >}.

Proof. The proof is by structural induction. Denote by S(ϕ) the sequent alluded
to in the statement of the lemma. We first describe the proof, and then analyze
its size.

If ϕ = x is a variable then S(ϕ) follows from the axiom x−→x using struc-
tural rules. If ϕ = ¬ψ then S(ϕ) follows from S(ψ) by using the appropriate ¬
introduction rule.

If ϕ = ψ∧χ and ϕ is satisfied by f , then S(ϕ) follows from the sequents S(ψ)
and S(χ) by using the right ∧ introduction rule. If it is falsified by f , then either
ψ is falsified or χ is falsified. Suppose wlog that ψ is falsified. Then S(ϕ) follows
from S(ψ) by using the left ∧ introduction rule. The proofs are similar if the
main connective is ∨ instead of ∧. In total, we have eliminated each connective
by using one logical rule, and each variable using n weakening rules. The total
number of sequents needed is therefore O(nm), each of size at most n+m.

Lemma 17. Let Γ −→∆ be a sequent of size m depending upon the set of vari-
ables X of size n. Suppose that the sequent is valid under some truth assignment
f . Then the sequent

Γ, {x ∈ X : f(x) = ⊥}−→∆, {x ∈ X : f(x) = >}

has a cut-free, tree-like proof of size O(nm(n+m)).

Proof. Since the sequent is valid under f , either one of the formulas in Γ is false,
or one of the formulas in ∆ is true. Use Lemma 16 to prove the corresponding se-
quent, and conclude the sequent in the statement by using at most m weakening
rules, for an extra size of O(m(n+m)).

Lemma 2. Let Γ −→∆ be a valid sequent of size m, in which n variables appear.
The sequent is provable using a tree-like proof of size O(m2n2n) which cuts only
on variables.

Proof. Let X be the set of variables appearing in Γ −→∆; note that n = |X| ≤
m. Apply Lemma 17 for each of the 2n truth assignments. Divide all truth
assignments into pairs where only the value of the leftmost variable in x ∈ X
differs. Apply the cut rule to all pairs, eliminating the variable x. Continue this
way, eliminating all variables in order, to obtain a proof of Γ −→∆. In total, the
proof uses 2n − 1 cuts.

Lemma 3. Let π be a proof of Γ −→∆ of size s, and let x be a variable appearing
in Γ −→∆. If we substitute everywhere a formula ϕ of size m for x then we get
a valid proof of size at most sm.

Proof. All the rules of PK are closed under substitution.

Lemma 4. Let P −→Q be a sequent of size m, and ϕ(x) be a formula of size
n in which the variable x appears only once (other variables may also appear).
The double sequent

ϕ(x|P)←→ϕ(x|Q)

has a cut-free, tree-like proof from the double sequent P ←→Q of size O(n(m+
n)) (this means that each of P −→Q and Q−→P is used only once in the joint
proof).

Proof. The proof is by structural induction. If ϕ = x then there is nothing to
prove. If ϕ = ¬ψ, then ϕ(P)←→ϕ(Q) follows from ψ(P)←→ψ(Q) by four
applications of the ¬ introduction rules.

If ϕ = ψ ∧ χ, then assume wlog that x appears in χ. We use the following
proof twice:

ψ−→ψ
∧L

ψ ∧ χ(P)−→ψ

χ(P)−→χ(Q)
∧L

ψ ∧ χ(P)−→χ(Q)
∧R

ψ ∧ χ(P)−→ψ ∧ χ(Q)

Each instance of the proof uses a different assumption. A similar proof works if
the main connective is ∨ instead of ∧. In total, there are O(n) sequents of size
O(m+ n).

Lemma 5. Let ϕ be a quasi-monotone formula of size n. The double sequent

M(ϕ)←→¬ϕ

has a cut-free, tree-like proof of size O(n2).

Proof. We construct inductively proofs of the double sequent M(ϕ), ϕ←→. From
this, we conclude the double sequent M(ϕ)←→¬ϕ using two applications of the
¬ introduction rules.

If ϕ = x or ϕ = ¬x then required double sequent is proved as follows:

x−→x
¬L

¬x, x−→

x−→x
¬R

−→¬x, x
.

If ϕ = ψ ∧ χ then the proof is

M(ψ), ψ−→
∧L

M(ψ), ψ ∧ χ−→

M(χ), χ−→
∧L

M(χ), ψ ∧ χ−→
∨L

M(ψ) ∨M(χ), ψ ∧ χ−→
−→M(ψ), ψ

∨R
−→M(ψ) ∨M(χ), ψ

−→M(χ), χ
∨R

−→M(ψ) ∨M(χ), χ
∧R

−→M(ψ) ∨M(χ), ψ ∧ χ

If ϕ = ψ∨χ then the proof is similar. In all, we have O(n) sequents of size O(n).

We comment that the preceding lemma can be strengthened to produce
cut-free proofs, essentially by replacing each instance of the (negated) axiom
¬x−→¬x with ¬x, x−→¬x, x.

Lemma 6. Let ϕ,ψ be quasi-monotone formulas. Suppose that the double se-
quent ϕ←→ψ has a proof of size s cutting on formulas of depth at most D.
Then the double sequent M(ϕ)←→M(ψ) has a proof of size O(s) cutting on
formulas of depth at most D; the new proof can include cuts even if the original
one was cut-free. Furthermore, if the original proof is tree-like then so is the new
proof.

Proof. Denote by ϕ̄, ψ̄ the formulas obtained from ϕ,ψ by negating all literals. If
we negate all literals in the proof of ϕ←→ψ then the proof almost remains valid,
now proving ϕ̄←→ ψ̄; the only problematic rules are the negation introduction
rules, when applied to variables. If the original rule replaced a variable x by its
negation ¬x, then the new rule is supposed to replace ¬x with x. This is realized
by a derivation which replace ¬x with ¬¬x, which is then replaced by x through
cutting with ¬¬x−→x. Multiple negations are handled similarly.

If we take the proof of ϕ̄−→ ψ̄, switch ∧ with ∨, and switch the side of each
formula in the proof, then we get a valid proof of M(ψ)−→M(ϕ). Similarly we
can obtain a proof of the other sequent.

Lemma 7. Let ϕ be a formula of logical depth D, and δ a positive integer.
Consider CNF(ϕ) and C(ϕ; δ) as monotone formulas depending on literals x, x̄;
in other words, for each variable x, we replace ¬x by x̄. The double sequent

CNF(ϕ)←→C(ϕ; δ)

has a tree-like proof of size 2O(2D) cutting only on literals.

Proof. Since ϕ has at most 2D leaves, it depends on at most 2D variables, and

twice as many literals. Lemma 2 provides the necessary proof of size 2O(D)22
D+1

=

2O(2D).

Lemma 11. Let ϕ be a formula, and d = d1, . . . , dk be a vector of increasing
positive integers. The double sequent

C(ϕ;d)←→D(ϕ;d)

has a tree-like proof of size 2O(k2x) cutting only on formulas of depth at most
k + 2, where x = ex(ϕ;d).

Proof. The proof is by induction on k. When k = 0, we prove that the CNF and
DNF forms are equivalent using Lemma 2.

If k > 0, let ψ be the part of the ϕ up to depth d1. According to the recipe of
Definition 4, C(ϕ;d) is obtained from CNF(ψ) by substituting equivalent forms
v+C , v

−
C of subformula literals v, v̄. Similarly, D(ϕ;d) is obtained from DNF(ψ)

by substituting equivalents forms v+D, v
−
D of subformula literals v, v̄.

Note that v+C , v
+
D are disjunctive and conjunctive flattened forms of the same

subformula of ϕ. Similarly, v−C , v
−
D are obtained by dualizing conjunctive and

disjunctive normal forms of the same subformula of ϕ. Therefore, the induction
hypothesis gives us proofs of the double sequents v+C←→ v+D and v−C ←→ v−D (the
latter, using Lemma 6). Repeated applications of Lemma 4, together with cuts
on the ‘hybrids’, allow us to lift at most 2O(k2x) instances of these proofs to a
proof of C(ϕ;d)←→CNF(ψ)(v±D); see the proof of Lemma 9 for more details.

Substituting v±D in the proof of CNF(ψ)←→DNF(ψ) using Lemma 3, we
obtain a proof of the double sequent CNF(ψ)(v±D)←→D(ϕ;d). The proof is
completed by an application of the cut rule.

