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Abstract

In the context of proving lower bounds on proof space ink-DNF resolution, [Ben-Sasson and Nord-
ström 2009] introduced the concept of minimally unsatisfiable sets ofk-DNF formulas and proved that a
minimally unsatisfiablek-DNF set withm formulas can have at mostO

(

(mk)k+1
)

variables. They also
gave an example of such sets withΩ(mk2) variables.

In this paper we significantly improve the lower bound toΩ(m)k, which almost matches the upper
bound above. Furthermore, we show that this implies that theanalysis of their technique for proving
time-space separations and trade-offs fork-DNF resolution is almost tight. This means that although
it is possible, or even plausible, that stronger results than in [Ben-Sasson and Nordström 2009] should
hold, a fundamentally different approach would be needed toobtain such results.

1 Introduction

A formula in conjunctive normal form, orCNF formula, is said to beminimally unsatisfiableif it is un-
satisfiable but deleting any clause makes the formula satisfiable. A well-known result by Tarsi [AL86],
reproven several times by various authors (see, for instance, [BET01, CS88, Kul00]), states that the number
of variables in any such CNF formula is always at most(m − 1), wherem is the number of clauses.

Motivated by certain problems in proof complexity related to the space measure in the so-calledk-DNF
resolutionproof systems introduced by Kraj́ıček [Kra01], Ben-Sasson and Nordström [BSN09a] developed
a generalization of the concept of minimal unsatisfiabilityto conjunctions of formulas in disjunctive normal
form where all terms in the disjunctions have size at mostk, henceforthk-DNF formulas. We begin by
reviewing their definition.
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ON MINIMAL UNSATISFIABILITY AND TIME-SPACE TRADE-OFFS

Assume thatD = {D1, . . . ,Dm} is the set ofk-DNF formulas appearing in our conjunction, and thatD

itself is unsatisfiable. What should it mean thatD is minimallyunsatisfiable?
The first, naive, attempt at a definition would be to require, by analogy with thek = 1 case, thatD

becomes satisfiable after removing anyDi from it. However, the following simple example of two 2-DNF
formulas

{(x ∧ y1) ∨ . . . ∨ (x ∧ yn), (x̄1 ∧ y1) ∨ . . . ∨ (x̄ ∧ yn)} (1)

that is minimally unsatisfiable in this sense shows that we can not hope to get any meaningful analogue of
Tarsi’s lemma under this assumption only.

The reason for this is that the2-DNF set (1) isnot minimally unsatisfiable in the following sense: even
if we “weaken” a formula in the set (i.e., make it easier to satisfy) by removing any, or even all,y-variables,
then what remains is still an unsatisfiable set. This leads usto the stronger (and arguably more natural) notion
that the formula set should be minimally unsatisfiable not only with respect to removing DNF formulas but
also with respect to shrinking terms (i.e., conjunctions) in these formulas. Fortunately, this also turns out to
be just the right notion for the proof complexity applications given in [BSN09a] (for details, we refer either
to that paper or to Section 4 below). Therefore, following [BSN09a], we say that a setD of k-DNF formu-
las isminimally unsatisfiableif weakening any single term (i.e., removing from it any literal) appearing in
a k-DNF formula fromD will make the “weaker” set of formulas satisfiable. This leads to the following
question:

How many variables(as a function ofk and m) may appear in a minimally unsatisfiable set
{D1, . . . ,Dm} of k-DNF formulas?

Tarsi’s lemma thus states that fork = 1 the answer is(m − 1). This result has a relatively elementary
proof based on Hall’s marriage theorem, but its importance to obtaining lower bounds on resolution length
and space is hard to overemphasize. For instance, the seminal lower bound on refutation length of random
CNF formulas in [CS88] makes crucial use of it, as does the proof of the “size-width trade-off” in [BSW01].
Examples of applications of this theorem in resolution space lower bounds include [ABSRW02, BSG03,
BSN08, BSN09b, NH08, Nor09a].

To the best of our knowledge, the casek ≥ 2 had not been studied prior to [BSN09a]. That paper
established anO

(

(mk)k+1
)

upper bound and anΩ
(

mk2
)

lower bound on the number of variables. The gap
is large, and, as one of their open questions, the authors asked to narrow it.

In this paper, we give an almost complete answer to that question by proving anΩ(m)k lower bound
on the number of variables. Our construction is given in Section 3, following a little bit of preliminaries
in Section 2. Then, in Section 4, we discuss certain consequences of our result to proof complexity, the
bottom line here being that in order to improve on the space complexity bounds from [BSN09a], a different
approach would be needed. The paper is concluded with a few remarks and open problems in Section 5.

2 Preliminaries

Recall that a DNF formula is a disjunction of terms, or conjunctions, of literals, i.e., unnegated or negated
variables. If all terms have size at mostk, then the formula is referred to as ak-DNF formula (wherek
should be thought of as some arbitrary but fixed constant).

Definition 2.1 ([BSN09a]). A set of DNF formulasD is minimally unsatisfiableif it is unsatisfiable and
furthermore, replacing any single termT appearing in a single DNF formulaD ∈ D with a proper subterm
of T makes the resulting set satisfiable.
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3 AN IMPROVED LOWER BOUND FOR MINIMALLY UNSATISFIABLE SETS

Note that this indeed generalizes the well-known notion of minimally unsatisfiable CNF formulas, where
a “proper subterm” of a literal is the empty term1 that is always true and “weakening” a clause hence
corresponds to removing it from the formula.

We are interested in bounding the number of variables of a minimally unsatisfiablek-DNF set in terms
of the number of formulas in the set. For1-DNF sets (i.e., CNF formulas), Tarsi’s lemma [AL86] states
that the number of variables must be at most the number of formulas (i.e., clauses) minus one for minimal
unsatisfiability to hold. This bound is easily seen to be tight by considering the example

{x1, x2, . . . , xn, x̄1 ∨ x̄2 ∨ . . . ∨ x̄n} . (2)

No such bound holds for generalk, however, since there is an easy construction shaving off a factork2.
Namely, denoting byVars(D) the set of variables appearing somewhere inD, we have the following lemma.

Lemma 2.2 ([BSN09a]).There are arbitrarily large minimally unsatisfiable setsD of k-DNF formulas with
|Vars(D)| ≥ k2(|D| − 1).

Proof sketch.Consider any minimally unsatisfiable CNF formula consisting ofn+1 clauses overn variables
(for example, the one given in (2)). Substitute every variable xi with

(

x1
i ∧ x2

i ∧ · · · ∧ xk
i

)

∨
(

xk+1
i ∧ xk+2

i ∧ · · · ∧ x2k
i

)

∨ · · · ∨
(

xk2−k+1
i ∧ xk2−k+2

i ∧ · · · ∧ xk2

i

)

(3)

and expand every clause to ak-DNF formula. It is straightforward to verify that the result is a minimally
unsatisfiablek-DNF set, and this set hasn + 1 formulas overk2n variables.

There is a big gap between this lower bound on the number of variables (in terms of the number of
formulas) and the upper bound obtained in [BSN09a], stated next.

Theorem 2.3 ([BSN09a]).Suppose thatD is a minimally unsatisfiablek-DNF set containingm formulas.
Then|Vars(D)| ≤ (km)k+1.

A natural problem is to close, or at least narrow, the gap between Lemma 2.2 and Theorem 2.3. In this
work, we do so by substantially improving the bound in Lemma 2.2.

3 An Improved Lower Bound for Minimally Unsatisfiable Sets

In this section, we present our construction establishing that the number of variables in a minimally unsatis-
fiablek-DNF set can be at least the number of formulas raised to thekth power.

Theorem 3.1. There exist arbitrarily large minimally unsatisfiablek-DNF setsD with m formulas over
more than

(

m
4

(

1 − 1
k

))k
variables.

In particular, for anyk ≥ 2 there are minimally unsatisfiablek-DNF sets withm formulas over (more
than)(m/8)k variables.

Very loosely, we will use the power afforded by thek-terms to construct ak-DNF setD consisting
of roughlym formulas that encode roughlymk−1 “parallel” instances of the minimally unsatisfiable CNF
formula in (2). These parallel instances will be indexed by coordinate vectors

(

x1
i1

, x2
i2

, . . . , xk−1
ik−1

)

. We

will add auxiliary formulas enforcing that only one coordinate vector
(

x1
i1

, x2
i2

, . . . , xk−1
ik−1

)

can have all
coordinates true. This vector identifies which instance of the formula (2) we are focusing on, and all other
parallel instances are falsified by their coordinate vectors not having all coordinates true.

We now formalize this loose intuition. We first present the auxiliary formulas placing the constraints on
our coordinate vectors, which are the key to the whole construction.
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ON MINIMAL UNSATISFIABILITY AND TIME-SPACE TRADE-OFFS

3.1 A Weight Constraint k-DNF Formula Set

Let us write~x =
(

x1, . . . , xm(k−1)

)

to denote a vector of variables of dimensionm(k − 1). Let |~x| =
∑m(k−1)

i=1 xi denote theHamming weightof ~x, i.e., the number of ones in it. We want to construct ak-DNF
setWm(~x) with O(m) formulas overx1, . . . , xm(k−1) and some auxiliary variables minimally expressing
that|~x| ≤ 1. That is, a vector~x can be extended to a satisfying assignment forWm(~x) if and only if |~x| ≤ 1
but if we weaken any formula in the set, then there are satisfying assignments with|~x| ≥ 2.

We defineWm(~x) to be the set ofk-DNF formulas listed next. The intuition for the auxiliary variables
is thatzj can be set to true only if the firstj(k − 1) variablesx1, . . . , xj(k−1) are all false, andwj can be set
to true only if at most one of the firstj(k − 1) variablesx1, . . . , xj(k−1) is true.

z1 ∨
(

x1 ∧ · · · ∧ xk−1

)

(4a)

z2 ∨
(

z1 ∧ xk ∧ · · · ∧ x2(k−1)

)

(4b)

...

zm−1 ∨
(

zm−2 ∧ x(m−2)(k−1)+1 ∧ · · · ∧ x(m−1)(k−1)

)

(4c)

w1 ∨ z1 ∨
k

∨

i=1

k
∧

i′=1
i′ 6=i

xi′ (4d)

w2 ∨ z2 ∨
(

w1 ∧ xk ∧ · · · x2(k−1)

)

∨

2(k−1)
∨

i=k

(

z1 ∧

2(k−1)
∧

i′=k
i′ 6=i

xi′

)

(4e)

...

wm−1 ∨ zm−1 ∨
(

wm−2 ∧ x(m−2)(k−1)+1 ∧ · · · ∧ x(m−1)(k−1)

)

∨

(m−1)(k−1)
∨

i=(m−2)(k−1)+1

(

zm−2 ∧

(m−1)(k−1)
∧

i′=(m−2)(k−1)+1
i′ 6=i

xi′

)

(4f)

(

wm−1 ∧ x(m−1)(k−1)+1 ∧ · · · ∧ xm(k−1)

)

∨

m(k−1)
∨

i=(m−1)(k−1)+1

(

zm−1 ∧

m(k−1)
∧

i′=(m−1)(k−1)+1
i′ 6=i

xi′

)

. (4g)

The set ofk-DNF formulasWm contains2m − 1 formulas. Let us see thatWm minimally expresses that~x
has weight at most1. For ease of notation, we will call the group of variables{x(j−1)(k−1)+1, . . . , xj(k−1)}
thejth blockand denote it byXj .

Every ~x with |~x| ≤ 1 can be extended to a satisfying assignment forWm(~x). Since allx-variables
appear only negatively, we can assume without loss of generality that |~x| = 1, say allxi are false except for
a single variable in thej0th blockXj0 . We simply setzj to true forj < j0 and false forj ≥ j0, and we set
all wj to true.

Every satisfying assignment forWm(~x) satisfies|~x| ≤ 1. Assume on the contrary thatxi1 = xi2 = 1;
i1 ∈ Xj1, i2 ∈ Xj2 ; j1 ≤ j2. We have that the truth ofxi1 forceszj to false for allj ≥ j1, and thenxi2 = 1
forceswj to false for allj ≥ j2. But this means that there is no way to satisfy the final formula (4g). So for
all satisfying assignments it must hold that|~x| ≤ 1.

After weakening any term in Wm(~x), the resulting set can be satisfied by an assignment giving
weight at least 2 to~x. First we notice that weakening any of the unit terms (i.e., terms of size one) results
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3 AN IMPROVED LOWER BOUND FOR MINIMALLY UNSATISFIABLE SETS

in removing the formula in question altogether. This can only make it easier to satisfy the whole set than if
we just shrink ak-term. Hence, without loss of generality we can focus on shrinking thek-terms. Let us
consider the formulas inWm(~x) one by one.

If we remove some literalxi in (4a)–(4c), we can setxi = 1 but still havez1 = · · · = zm−1 = 1. This
will allows us to set alsoxm(k−1) = 1 in (4g) and still satisfy the whole set of formulas although|~x| ≥ 2.

If we instead remove somezj (j ≤ m − 2) in these formulas, then we can set allxi = 1 for xi ∈ X1 ∪
. . . ∪ Xj (that already gives us weight≥ 2) andz1 = . . . = zj = 0, and then we setzj+1 = . . . = zm = 1
andxi = 0 for xi ∈ Xj+1 . . . ∪ . . . Xm. Note thatj ≤ m − 2 implies thatzm−1 = 1 which takes care
of (4g), and then (4d)–(4f) are satisfied simply be setting all wj to 0. This completes the analysis of the
formulas (4a)–(4c).

In formula (4d), if we remove somexi′ in
∧k

i′=1, i′ 6=i xi′ , then we can setxi = xi′ = w1 = 1 and extend
this to a satisfying assignment for the rest of the formulas.

For the corresponding termszj−1 ∧
∧j(k−1)

i′=(j−1)(k−1)+1, i′ 6=i
xj in (4e)–(4g), if we remove somexi′ , we

can again setxi = xi′ = 1 and setz1 = . . . = zj−1 = 1 and thenwj = . . . = wm−1 = 1 to satisfy the
rest of the set, whereas removingzj−1 would allow us to assign to 1 allxi ∈ X1 ∪ . . . ∪Xj−1 and then still
assignwj = . . . = wm−1 = 1.

For the other kind of termswj−1 ∧ x(j−1)(k−1)+1 ∧ · · · ∧ xj(k−1) in (4e)–(4g), if somexi with xi ∈ Xj

is removed, we can set thisxi to true as well as an arbitraryxi′ ∈ X1 ∪ . . .∪Xj−1, whereas removingwj−1

would allow as again to set to 1 all variables inX1 ∪ . . . Xj−1. This proves the minimality ofWm(~x).

3.2 The Minimally Unsatisfiable k-DNF Set

Let us write~xj =
(

xj
1, x

j
2, . . . , x

j

m(k−1)

)

, and letW j
m(~xj) be thek-DNF set withO(m) formulas constructed

above (over disjoint sets of variables for distinctj) minimally expressing that|~xj | ≤ 1. With this notation,
let D

k
m be thek-DNF set consisting of the following formulas:

W j
m(~xj) 1 ≤ j < k (5a)

∨

(i1,i2,...,ik−1)∈[m(k−1)]k−1

(

x1
i1
∧ x2

i2
∧ · · · ∧ xk−1

ik−1
∧ yν

i1,i2,...,ik−1

)

1 ≤ ν ≤ m(k − 1) (5b)

ūν ∨
∨

(i1,i2,...,ik−1)∈[m(k−1)]k−1

(

x1
i1
∧ x2

i2
∧ · · · ∧ xk−1

ik−1
∧ yν

i1,i2,...,ik−1

)

1 ≤ ν ≤ m(k − 1) (5c)

u1 ∨ u2 ∨ · · · ∨ um(k−1). (5d)

It is worth noting that the range of the indexν does not have any impact on the following proof of minimal
unsatisfiability, and it was set tom(k − 1) only to get the best numerical results.

It is easy to verify thatDk
m consists of less than4mk k-DNF formulas over more than(m(k − 1))k =

(

1
4(4mk)

(

1 − 1
k

))k
variables. We claim thatDk

m is minimally unsatisfiable, from which Theorem 3.1
follows.

To prove the claim, let us first verify thatD
k
m is unsatisfiable. If the CNF formulasW j

m(~x) in (5a) are to
be satisfied for allj < k, then there exists at most one(k−1)-tuple(i∗1, i

∗
2, . . . , i

∗
k−1) ∈ [m(k − 1)]k−1 such

thatx1
i∗
1
, x2

i∗
2
, . . . , xk−1

i∗
k−1

are all true. This forcesyj

(i∗
1
,i∗

2
,...,i∗

k−1
) to true for allν to satisfy the formulas in (5b),

and then (5c) forces alluν to 0, so that (5d) is falsified. Contradiction.
Let us now argue thatDk

m is not only unsatisfiable, butminimally unsatisfiable in the sense of Defini-
tion 2.1. The proof is by case analysis over the different types of formulas inDk

m.

1. If we shrink any term in (5a)—say, inW 1
m(~x1), then by the minimality property in Section 3.1 we can

set somex1
i′
1

= x1
i′′
1

= 1 for i′1 6= i′′1 and then fix somex2
i∗
2

= . . . = xk−1
i∗
k−1

= 1 without violating the

5



ON MINIMAL UNSATISFIABILITY AND TIME-SPACE TRADE-OFFS

remaining clauses inW 1
m(~x1), . . . ,W k−1

m (~xk−1). This allows us to satisfy the formulas in (5b) and
(5c) by settingyν

(i′
1
,i∗

2
...,i∗

k−1
) = 1 andyj

(i′′
1
,i∗

2
...,i∗

k−1
) = 0 for all ν, respectively. Finally, set anyuj to

true to satisfy (5d). This satisfies the wholek-DNF set.

2. Next, suppose that we shrink some termx1
i∗
1
∧x2

i∗
2
∧· · ·∧xk−1

i∗
k−1

∧yν
(i∗

1
,...,i∗

k−1
) in theνth k-DNF formula

in (5b). There are two subcases:

(a) Somex-variable is removed, say, the variablex1
i∗
1
. Setx1

i∗
1

= 0 andx2
i∗
2

= . . . = xk−1
i∗
k−1

=

yν
(i∗

1
,i∗

2
,...,i∗

k−1
) = 1. This satisfies theνth formula in (5b). Then pick somei′1 6= i∗1 and set

x1
i′
1

= 1. All this can be done in a way that satisfies all clauses in (5a)since the weight of every

~xj is one. Setuν = 1 anduν′ = 0 for all ν ′ 6= ν to satisfy (5d) and thenyν
(i′

1
,i∗

2
,...,i∗

k−1
) = 0 to

satisfy theνth formula in (5c) (all others are satisfied by literalsūν′ , ν ′ 6= ν). Theνth formula
in (5b) was satisfied above, and for all otherν ′ 6= ν we setyν

(i′
1
,i∗

2
,...,i∗

k−1
) = 1 to satisfy the rest

of the formulas in (5b). This satisfies the wholek-DNF set.

(b) The variableyν
(i∗

1
,...,i∗

k−1
) is eliminated. If so, setx1

i∗
1

= . . . = xk−1
i∗
k−1

= 1 to satisfy theνth formula

in (5b),uν = 1 andyν
(i∗

1
,...,i∗

k−1
) = 0 to satisfy (5d) and theνth formula in (5c), anduν′ = 0 and

yν′

(i∗
1
,...,i∗

k−1
) = 1 for all ν ′ 6= ν to satisfy the rest of the formulas in (5b) and (5c). This is easily

extended to an assignment satisfying (5a) as well.

3. For theνth formula in (5c), we may assume, for the same reasons as in Section 3.1, that we shrink a
non-trivial k-term. Then we again have two subcases, treated similarly.

(a) Somex-variable is removed, sayx1
i∗
1
. Setuν = 1, x1

i∗
1

= 0, x2
i∗
2

= . . . = xk−1
i∗
k−1

= 1, and

yν
(i∗

1
,i∗

2
,...,i∗

k−1
) = 0. This satisfies (5d) and theνth formula in (5c). Settinguν′ = 0 for ν ′ 6= ν

takes care of the rest of (5c). To satisfy (5b), we pick somei′1 6= i∗1 and setx1
i′
1

= 1, and then set

yν′

(i′
1
,i∗

2
,...,i∗

k−1
) = 1 for all ν ′. All this can be done in a way that satisfies the weight constraints

in (5a).

(b) The literalyν
(i∗

1
,...,i∗

k−1
) is eliminated. If so, setx1

i∗
1

= . . . = xk−1
i∗
k−1

= 1 to satisfy theνth formula

in (5c) anduν = 1 to satisfy (5d). Settinguν′ = 0 for ν ′ 6= ν takes care of the rest of (5c). Now
we can satisfy all of (5b) by settingyν

(i∗
1
,...,i∗

k−1
) = 1 for all ν, and it is once again easy to see that

the weight constraints in (5a) are also satisfied.

4. (5d) is removed. Set alluν to 0, and set allyν
i1,...,ik

to 1, then (5a)–(5b) become easy to satisfy.

This completes the proof thatD
k
m is minimally unsatisfiable as claimed, and Theorem 3.1 hencefollows.

4 Implications for Time-Space Trade-offs for k-DNF Resolution

Let us start this section by a quick review of the relevant proof complexity context. Thek-DNF resolution
proof systems were introduced by Kraj́ıček [Kra01] as an intermediate step between resolution and depth-2
Frege. Roughly speaking, thekth member of this family, denoted henceforth byR(k), is a system for
reasoning in terms ofk-DNF formulas. Fork = 1, the lines in the proof are hence disjunctions of literals,
and the systemR(1) is standard resolution. At the other extreme,R(∞) is equivalent to depth-2 Frege.

Informally, we can think of anR(k)-proof as being presented on a blackboard. The allowed derivation
steps are to write on the board a clause of the CNF formula being refuted, to deduce a newk-DNF formula

6



4 IMPLICATIONS FOR TIME-SPACE TRADE-OFFS FORk-DNF RESOLUTION

from the formulas currently on the board, or to erase formulas from the board. Thelengthof anR(k)-proof
is the total number of formulas appearing on the board (counted with repetitions) and the(formula) spaceis
the maximal number of formulas simultaneously on the board at any time during the proof.

A number of works [AB04, ABE02, Ale05, JN02, Raz03, SBI04, Seg05] have shown superpolynomial
lower bounds on the length ofk-DNF refutations. It has also been established in [SBI04, Seg05] that the
R(k)-family forms a strict hierarchy with respect to proof length. Just as in the case for standard resolution,
however, our understanding of space complexity ink-DNF resolution has remained more limited. Esteban
et al. [EGM04] established essentially optimal space lowerbounds forR(k) and also proved that the family
of tree-likeR(k) systems form a strict hierarchy with respect to space. They showed that there are formulas
Fn of sizen that can be refuted in tree-like(k + 1)-DNF resolution in constant space but require space
Ω(n/ log2 n) to be refuted in tree-likek-DNF resolution. It should be pointed out, however, that tree-like
R(k) for any k ≥ 1 is strictly weaker than standard resolution, so the resultsin [EGM04] left open the
question of whether there is a strict space hierarchy for (non-tree-like)k-DNF resolution or not.

Recently, the first author in joint work with Ben-Sasson [BSN09a] proved that Kraj́ıček’s family ofR(k)
systems do indeed form a strict hierarchy with respect to space. However, the parameters of the separation
were much worse than for the tree-like systems in [EGM04], namely that theR(k + 1)-proofs have constant
space but anyR(k)-proof requires spaceΩ

(

k+1
√

n/ log n
)

. It is not clear that there has to be a(k + 1)st
root in this bound. No matching upper bounds are known, and indeed for the special case ofR(2) versus
R(1) the lower bound isΩ

(

n/ log n
)

by [BSN09b], i.e., without a square root. Also, combining [BSN09a]
with results in [BSN09b] one can derive strong length-spacetrade-offs fork-DNF resolution, but again a
(k + 1)st root is lost in the analysis compared to the correspondingresults for standard resolutionR(1).

Returning now to the minimally unsatisfiablek-DNF sets, the reason for studying this concept in
[BSN09a] was that is was an interesting special case of a moregeneral problem arising in their proof anal-
ysis, and that is was hoped that betterupperbounds for this special case would translate into improvements
for the general case. Although there appears to be no such obvious translation oflower bounds from the
special to the general case, by using the ideas from the previous section we can show that the analysis of
the particular proof technique employed in [BSN09a] is almost tight. Thus, any further substantial improve-
ments of the bounds in that paper would have to be obtained by other methods.

We do not go into details of the proof construction in [BSN09a] here, since it is rather elaborate. Suffice
it to say that the final step of the proof boils down to studyingk-DNF sets that imply Boolean functions
with a particular structure, and proving lower bounds on thesize of such DNF sets in terms of the number of
variables in these Boolean functions. Having come that far in the construction, all that remains is a purely
combinatorial problem, and no reference to space proof complexity or k-DNF resolution is needed.

For concreteness, below we restrict our attention to the case where the Boolean functions are exclusive
or. More general functions can be considered, and have been studied in [BSN09a, BSN09b], and everything
that will be said below applies to such Boolean functions with appropriate (and simple) modifications.
Hence, from now on let us focus on DNF sets that minimally imply a particular kind of formulas that we
will refer to as

(

∧∨⊕k
)

-block formulas. A
(

∧∨⊕k
)

-block formula is a CNF formula in which every variable

x is replaced by
⊕k

i=1 xi, wherex1, . . . , xk are new variables not appearing in the original formula. Thus,
literals turn into unnegated or negated XORs, every XOR applies to exactly one “block” ofk variables, and
no XOR mixes variables from different blocks. Let us write this down as a formal definition.

Definition 4.1. A
(

∧∨⊕k
)

-block formulaG is a conjunction of disjunctions of negated or unnegated exclu-
sive ors. The variables ofG are divided into disjoint blocksx1, . . . , xk, y1, . . . , yk, z1, . . . , zk et cetera, of
k variables each, and every XOR or negated XOR is over one full block of variables.

The key behind the lower bounds on space in [BSN09a] is the result that if a k-DNF setD implies a
(

∧∨⊕k+1
)

-block formulaG with many variables, thenD must also be large.

7
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Theorem 4.2 ([BSN09a]).Let k be some fixed but arbitrary positive integer. Suppose thatD is a k-DNF
set and thatG is a

(

∧∨⊕k+1
)

-block formula such thatD impliesG, and furthermore thatG is minimal in
the sense that if we remove a single XOR or negated XOR fromG (thus making the formula stronger), it no
longer holds thatD impliesG. Then|Vars(G)| = O

(

|D|k+1
)

.

Using this theorem, one can get thek+1
√

n/ log n space separation mentioned above betweenk-DNF
resolution and(k+1)-DNF resolution. Any improvement in the exponent in the bound in Theorem 4.2
would immediately translate into an improved space separation, and would also improve the time-space
trade-offs one can get when transferring the results in [BSN09b] from resolution tok-DNF resolution.

Prior to the current paper, the best lower bound giving limits on what one could hope to achieve in
Theorem 4.2 was linear, i.e.,|Vars(G)| = Ω(|D|). Namely, letG be a conjunction of XORs(

⊕k+1
i=1 xi) ∧

(
⊕k+1

i=1 yi)∧ (
⊕k+1

i=1 zi)∧ · · · and letD be the union of the expansions of every
⊕k+1

i=1 xi as a CNF formula.
For this particular structure ofG it is also easy to prove that|Vars(G)| = O(|D|) for anychoice ofD, but
it has been an open question what happens when we consider general formulasG.

For k = 1, [BSN09b] proved that a linear boundO(|D|) in fact holds for any set of clausesD and any
(

∧∨⊕2
)

-block formulaG, but all attempts to extend the techniques used there to the casek > 1 have failed.
And indeed, they have failed for a good reason, since building on the construction in Section 3 we can show
that this failure is due to the fact that the best one can hope for in Theorem 4.2 is|Vars(G)| = O

(

|D|k
)

.

Theorem 4.3. For anyk > 1 there are arbirarily largek-DNF setsD of size|D| = m and
(

∧∨⊕k+1
)

-block
formulasG such thatD impliesG, this implication is “precise” in the sense that if we removea single
XOR or negated XOR fromG it no longer holds thatD implies the strengthened formula, and|Vars(G)| ≥

(k + 1)
[

m
k+2

(

1 − 1
k

)]k
≥ k

(

m
4k

)k
.

Proof. We utilize all the previous notation and start with the CNF formula

∧

ν∈[m(k−1)]

∨

(i1,...,ik−1)∈[m(k−1)]k−1

yν
i1,...,ik−1

(6)

and substitute an exclusive or over variablesyν,r
i1,...,ik−1

, r = 1, . . . , k + 1, for every variableyν
i1,...,ik−1

. This
results in the formula

G =
∧

ν∈[m(k−1)]

∨

(i1,...,ik−1)∈[m(k−1)]k−1

k+1
⊕

r=1

yj,r
i1,...,ik−1

(7)

which will be our
(

∧∨⊕k+1
)

-block formula. Clearly,G contains(k + 1) · (m(k − 1))k variables. We claim
that the following easy modification of thek-DNF set from Section 3.2 “precisely” impliesG in the sense
of Theorem 4.3:

W j
m(~xj) 1 ≤ j < k (8a)

∨

(i1,...,ik−1)∈[m]k−1

(

x1
i1
∧ · · · ∧ xk−1

ik−1
∧ yν,1

i1,...,ik−1

)

1 ≤ ν ≤ m(k − 1) (8b)

∨

(i1,...,ik−1)∈[m]k−1

(

x1
i1
∧ · · · ∧ xk−1

ik−1
∧ yν,r

i1,...,ik−1

)

1 ≤ ν ≤ m(k − 1), 2 ≤ r ≤ k + 1 (8c)

It is straightforward to verify thatD consists of less thanm(k − 1)(k + 1) + 2mk ≤ mk(k + 2) k-DNF
formulas. D implies G since once we have picked which variablesx1

i∗
1
, x2

i∗
2
, . . . , xk−1

i∗
k−1

should be satisfied,

8



5 CONCLUDING REMARKS AND OPEN PROBLEMS

D will force all XOR blocks
⊕k+1

r=1 yν,r
i∗
1
,...,i∗

k−1

, j ∈ [m(k − 1)] to true by requiring the variableyν,1
i∗
1
,...,i∗

k−1

to

be true and all other variablesyν,r
i∗
1
,...,i∗

k−1

, r ≥ 2, to be false. Finally, it is also easy to verify thatD implies

G “precisely” in the sense that if a single XOR block
⊕k+1

r=1 yν,r
i∗
1
,...,i∗

k−1

is removed fromG, then we can

satisfyD but falsify the rest of the formulaG (the proof is very similar to the one given in Section 3.2).
Theorem 4.3 follows.

5 Concluding Remarks and Open Problems

We conclude this paper by discussing two remaining open problems.
Firstly, the most obvious problem still open is to close the gap betweenΩ(m)k andO

(

(mk)k+1
)

for
the number of variables that can appear in a minimally unsatisfiablek-DNF set withm formulas. There
is a strongly expressed intuition in [BSN09a] that it shouldbe possible to bring down the exponent from
k + 1 to k. Hence we have the following conjecture, where for simplicity we fix k to remove it from the
asymptotic notation.

Conjecture 1. Suppose thatD is a minimally unsatisfiablek-DNF set for some arbitrary but fixed positive
integerk. Then the number of variables inD is at mostO(|D|)k.

Proving this conjecture would establish asymptotically tight bounds for minimally unsatisfiablek-DNF
sets (ignoring factors involving the constantk).

Secondly, we again stress that the result in Theorem 4.3 doesnot per se imply any restrictions (that
we are aware of) on what space separations or time-space trade-offs are possible fork-DNF resolution.
The reason for this is that our improved lower bound only rules out a particular approachfor proving
better separations and trade-offs, but it does not say anything to the effect that thek-DNF resolution proof
systems are strong enough to match this lower bound. It wouldbe very interesting to understand better the
strength ofk-DNF resolution in this respect. Hence we have the followingopen problem (where we refer to
[BSN09b] or [Nor09b] for the relevant formal definitions).

Open Problem 2. LetPeb
k+1
G [⊕] be the XOR-pebbling contradiction over some directed acyclic graphG.

Is it possible thatk-DNF resolution can refutePeb
k+1
G [⊕] in space asymptotically better than the black-

white pebbling priceBW-Peb(G) of G?

We remark that for standard resolution, i.e.,1-DNF resolution, the answer to this question is that XOR-
pebbling contradictions over two or more variablescannotbe refuted in space less than the black-white
pebbling price, as proven in [BSN09b]. Fork-DNF resolution withk > 1, however, the best known lower
bound isΩ

(

k+1
√

BW-Peb(G)
)

, as shown in [BSN09a]. There is a wide gap here between the upper and
lower bounds since, as far as we are aware, there are no knownk-DNF resolution proofs that can do better
than space linear in the (black) pebbling price (which is achievable by standard resolution).
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[NH08] Jakob Nordström and Johan Håstad. Towards an optimal separation of space and length in
resolution (Extended abstract). InProceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC ’08), pages 701–710, May 2008.

[Nor09a] Jakob Nordström. Narrow proofs may be spacious: Separating space and width in resolution.
SIAM Journal on Computing, 39(1):59–121, May 2009. Preliminary version appeared in
STOC ’06.

[Nor09b] Jakob Nordström. New wine into old wineskins: A survey of some pebbling classics with sup-
plemental results. Manuscript in preparation. Current draft version available at the webpage
http://people.csail.mit.edu/jakobn/research/ , 2009.

[Raz03] Alexander A. Razborov. Pseudorandom generators hard for k-DNF resolu-
tion and polynomial calculus resolution. Manuscript. Available at the webpage
http://www.mi.ras.ru/˜razborov/ , July 2003.

[SBI04] Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. A switching lemma for
small restrictions and lower bounds fork-DNF resolution. SIAM Journal on Computing,
33(5):1171–1200, 2004.

[Seg05] Nathan Segerlind. Exponential separation betweenRes(k) and Res(k + 1) for k ≤ ǫ log n.
Information Processing Letters, 93(4):185–190, February 2005.

11


	Introduction
	Preliminaries
	An Improved Lower Bound for Minimally Unsatisfiable Sets
	Implications for Time-Space Trade-offs for k-DNF Resolution
	Concluding Remarks and Open Problems

