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Abstract

In the context of proving lower bounds on proof spac&4BNF resolution, [Ben-Sasson and Nord-
strom 2009] introduced the concept of minimally unsatiséasets of-DNF formulas and proved that a
minimally unsatisfiablé:-DNF set withmn formulas can have at moSt((mk)**+1) variables. They also
gave an example of such sets witimk?) variables.

In this paper we significantly improve the lower boundm)*, which almost matches the upper
bound above. Furthermore, we show that this implies thatttedysis of their technique for proving
time-space separations and trade-offsS§dDNF resolution is almost tight. This means that although
it is possible, or even plausible, that stronger resulta thgBen-Sasson and Nordstrom 2009] should
hold, a fundamentally different approach would be needexdbtain such results.

1 Introduction

A formula in conjunctive normal form, o€NF formulg is said to beminimally unsatisfiablef it is un-
satisfiable but deleting any clause makes the formula sdiisfi A well-known result by Tars[ [AL86],
reproven several times by various authors (see, for inetdB&ET01 | CS88, Kuld0]), states that the number
of variables in any such CNF formula is always at mest— 1), wherem is the number of clauses.

Motivated by certain problems in proof complexity relatedhiie space measure in the so-calkeDNF
resolutionproof systems introduced by Krajicek [Kra01], Ben-Sasand Nordstrom [BSN09a] developed
a generalization of the concept of minimal unsatisfiabtiitonjunctions of formulas in disjunctive normal
form where all terms in the disjunctions have size at migstenceforthk-DNF formulas We begin by
reviewing their definition.
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Foundation, the Foundation Olle Engkvist Byggmastard,the Foundation Blanceflor Boncompagni-Ludovisi, néelBil

TPart of this work was done while with Steklov Mathematicaititute, supported by the Russian Foundation for Basic&ebe
and with Toyota Technological Institute at Chicago.
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ON MINIMAL UNSATISFIABILITY AND TIME-SPACE TRADE-OFFS

Assume thaD = {Dy, ..., D,,} is the set of-DNF formulas appearing in our conjunction, and tBat
itself is unsatisfiable. What should it mean tliais minimally unsatisfiable?

The first, naive, attempt at a definition would be to requing ahalogy with thek = 1 case, thaiD
becomes satisfiable after removing abyfrom it. However, the following simple example of two 2-DNF
formulas

{(x/\yl)v"'\/(x/\yn)v (jl/\yl)\/"'v(j/\yn)} (l)

that is minimally unsatisfiable in this sense shows that werga hope to get any meaningful analogue of
Tarsi’'s lemma under this assumption only.

The reason for this is that ttieDNF set [1) isnot minimally unsatisfiable in the following sense: even
if we “weaken” a formula in the set (i.e., make it easier tasfgt by removing any, or even all,-variables,
then what remains is still an unsatisfiable set. This leadis e stronger (and arguably more natural) notion
that the formula set should be minimally unsatisfiable ndy arith respect to removing DNF formulas but
also with respect to shrinking terms (i.e., conjunctiomsfhiese formulas. Fortunately, this also turns out to
be just the right notion for the proof complexity applicaigogiven in [BSNO9a] (for details, we refer either
to that paper or to Sectidi 4 below). Therefore, followin&N94], we say that a sBtof k-DNF formu-
las isminimally unsatisfiabléf weakening any single term (i.e., removing from it any @B appearing in
a k-DNF formula fromDD will make the “weaker” set of formulas satisfiable. This Iledd the following
question:

How many variablegas a function o and m) may appear in a minimally unsatisfiable set
{D1,..., Dy} of k-DNF formulas?

Tarsi’'s lemma thus states that for= 1 the answer igm — 1). This result has a relatively elementary
proof based on Hall's marriage theorem, but its importancebtaining lower bounds on resolution length
and space is hard to overemphasize. For instance, the ddawea bound on refutation length of random
CNF formulas in[[CS88] makes crucial use of it, as does thefbthe “size-width trade-off” in[[BSWJ1].
Examples of applications of this theorem in resolution spaever bounds include JABSRWDP, BSGO03,
BSNO8,/BSNO9K, NHO8, Nor09a].

To the best of our knowledge, the case> 2 had not been studied prior to_ [BSN09a]. That paper
established a0 ((mk)**!) upper bound and & (mk?) lower bound on the number of variables. The gap
is large, and, as one of their open questions, the authoesl dskharrow it.

In this paper, we give an almost complete answer to that igueby proving anQ(m)* lower bound
on the number of variables. Our construction is given in iBa8, following a little bit of preliminaries
in Section(R. Then, in Sectidd 4, we discuss certain consegseof our result to proof complexity, the
bottom line here being that in order to improve on the spaceptexity bounds from IBSN0%a], a different
approach would be needed. The paper is concluded with a fearks and open problems in Sectidn 5.

2 Preliminaries

Recall that a DNF formula is a disjunction of terms, or conjions, of literals, i.e., unnegated or negated
variables. If all terms have size at mdstthen the formula is referred to askaDNF formula (where k
should be thought of as some arbitrary but fixed constant).

Definition 2.1 (JBSN094]). A set of DNF formulasD is minimally unsatisfiablef it is unsatisfiable and
furthermore, replacing any single teffhappearing in a single DNF formul € D with a proper subterm
of T makes the resulting set satisfiable.
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Note that this indeed generalizes the well-known notion iofimmally unsatisfiable CNF formulas, where
a “proper subterm” of a literal is the empty terimthat is always true and “weakening” a clause hence
corresponds to removing it from the formula.

We are interested in bounding the number of variables of anmailly unsatisfiablet-DNF set in terms
of the number of formulas in the set. FOIDNF sets (i.e., CNF formulas), Tarsi’'s lemma_[AL.86] states
that the number of variables must be at most the number ofuilas(i.e., clauses) minus one for minimal
unsatisfiability to hold. This bound is easily seen to bettilghconsidering the example

{1’1,1’2,...,$n, i’1Vi’2V...Vi’n} . (2)

No such bound holds for gener) however, since there is an easy construction shaving aitifi?.
Namely, denoting byVars(D) the set of variables appearing somewher®,iwe have the following lemma.

Lemma 2.2 ((BSN09a]). There are arbitrarily large minimally unsatisfiable sésf k-DNF formulas with
| Vars(D)| > k2(|D| — 1).

Proof sketch.Consider any minimally unsatisfiable CNF formula consgstifin+1 clauses oven variables
(for example, the one given ifl(2)). Substitute every vdeiab with

(@h A A Aak) v (@A IR A A2 vy (@ TR A R R AL AR (3)

and expand every clause tdkeDNF formula. It is straightforward to verify that the resid a minimally
unsatisfiable:-DNF set, and this set has+ 1 formulas over:%n variables. O

There is a big gap between this lower bound on the number @hlas (in terms of the number of
formulas) and the upper bound obtained in [BSN09a], stagatl n

Theorem 2.3 (IBSNO9A]).Suppose thdd is a minimally unsatisfiablé-DNF set containingn formulas.
Then| Vars(D)| < (km)**".

A natural problem is to close, or at least narrow, the gap eeti.emm&Z2]2 and Theordml2.3. In this
work, we do so by substantially improving the bound in Lenhnkh 2

3 An Improved Lower Bound for Minimally Unsatisfiable Sets

In this section, we present our construction establisHiadthe number of variables in a minimally unsatis-
fiable k-DNF set can be at least the number of formulas raised tatthpower.

Theorem 3.1. There exist arbitrarily large minimally unsatisfiable DNF setsD with m formulas over
more than(2 (1 — 1))" variables.

In particular, for anyk > 2 there are minimally unsatisfiable DNF sets withm formulas over (more
than) (m/8)* variables.

Very loosely, we will use the power afforded by tketerms to construct &-DNF setD consisting
of roughly m formulas that encode roughty*—! “parallel” instances of the minimally unsatisfiable CNF
formula in [2). These parallel instances will be indexed byrdinate vectorgz; ,z? zt1). We

2177127 T T g
will add auxiliary formulas enforcing that only one coorafa vector(z! 22 ,... ,xf:l) can have all
coordinates true. This vector identifies which instancehefformula [2) we are focusing on, and all other
parallel instances are falsified by their coordinate vecimt having all coordinates true.
We now formalize this loose intuition. We first present thgikary formulas placing the constraints on

our coordinate vectors, which are the key to the whole coostm.
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ON MINIMAL UNSATISFIABILITY AND TIME-SPACE TRADE-OFFS

3.1 A Weight Constraint k-DNF Formula Set

Let us writeZ = (z1,...,%,,_1)) to denote a vector of variables of dimensior(k — 1). Let|Z| =

Z;’l(f_l) x; denote thdHamming weightf Z, i.e., the number of ones in it. We want to construétBNF
setW,,, (%) with O(m) formulas overr, ..., z,,—1) and some auxiliary variables minimally expressing
that|Z| < 1. That is, a vectof’ can be extended to a satisfying assignmentifgr (%) if and only if |Z] < 1
but if we weaken any formula in the set, then there are satigfgssignments withz| > 2.

We definelV/,,, (%) to be the set ok-DNF formulas listed next. The intuition for the auxiliargnables

is thatz; can be set to true only if the firgtk — 1) variableszy, . .., z;,—1) are all false, ana; can be set
to true only if at most one of the firg(k — 1) variableszy, . .., ;41 is true.
zZ1V (Tl VAR /\Tk_l) (4a)
Zo V (Zl ANTp N+ A EZ(k—l)) (4b)
Zm—1V (Zm-2 AT (m—-2)(h=1)41 N A T(m—1)(k=1)) (4c)
kook
wmVvav\ Nz (4d)
i=14¢=
i
2(k—1) 2(k—1)
Wa V 22 V (w1 AT A -+ Ty_y)) V \/ <z1 A /\ f,) (4e)
i=k i'=k
i

Win—1V 2Zm—-1V (Wm—-2 A T(m—2)(k—1)11 N AT (1) (k1))
(m—1)(k—1) (m—1)(k—1)

V \/ <Zm_2 A\ /\ Ti/> (4f)

i=(m—2)(k—1)+1 i =(m—2)(k—1)+1
i #i
(wim—1 NZ(m—1)(k—1)+1 N\ - /\fm(k—l))
m(k—1) m(k—1)

V \/ (Zm—l VAN /\ Ty) . (49)

i=(m—1)(k—1)+1 i =(m—1)(k—1)+1

i
The set ofk-DNF formulasi¥,,, contains2m — 1 formulas. Let us see th@l,,, minimally expresses that
has weight at mosit. For ease of notation, we will call the group of variab{@s; _1)x—1)41, - - - » Tjk—1)}

the jth blockand denote it byX;.

Every Z with |Z| < 1 can be extended to a satisfying assignment fdi,,,(Z). Since allz-variables
appear only negatively, we can assume without loss of gktyetteat | 7| = 1, say allz; are false except for
a single variable in thgyth block X ;. We simply set; to true forj < jo and false forj > jy, and we set
all w; to true.

Every satisfying assignment forlv,,, (Z) satisfies|Z| < 1. Assume on the contrary thaf, = x;, = 1;
i1 € Xj,, 12 € Xjy; j1 < jo. We have that the truth of;, forcesz; to false for allj > j;, and thenz;, =1
forcesw; to false for allj > j,. But this means that there is no way to satisfy the final foen{dfj). So for
all satisfying assignments it must hold that < 1.

After weakening any term in W,, (&), the resulting set can be satisfied by an assignment giving
weight at least 2 toX. First we notice that weakening any of the unit terms (i.em&eof size one) results
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in removing the formula in question altogether. This caryonéke it easier to satisfy the whole set than if
we just shrink a-term. Hence, without loss of generality we can focus onnglimg thek-terms. Let us
consider the formulas ii¥/,,, () one by one.

If we remove some literat; in (@d)-{4t), we can set; = 1 but still havez; = --- = 2,,,_1 = 1. This
will allows us to set alsa,,,,—1) = 1 in (@) and still satisfy the whole set of formulas although> 2.

If we instead remove somg (j < m — 2) in these formulas, then we can setagll= 1 for z; € X; U
... UXj (that already gives us weight 2) andz; = ... = z; = 0, and thenwe set; ;| = ... = 2, = 1
andz; = Oforz; € X;41...U...X,,. Note thatj < m — 2 implies thatz,,_; = 1 which takes care
of @d), and then[{4d)E}f) are satisfied simply be settingualto 0. This completes the analysis of the
formulas [4h)-f{4c).

In formula [4d), if we remove soni@y in /\f,:L - Tiv, then we can set; = zy = w; = 1and extend
this to a satisfying assignment for the rest of the formulas.

For the corresponding terms_; A /\Z’(i(_jl—)l)(k—l)—i—l, i1 Tj in @8)-{49), if we remove sonte;,, we
can again set; = zy = land setz; = ... = z;_; = 1 and thenw; = ... = w,,—; = 1 to satisfy the
rest of the set, whereas removing ; would allow us to assignto 1 al; € X; U...U X;_; and then still
assignw; = ... = wy—1 = 1.

For the other kind of term&; 1 AT (j_1)(k—1)+1 A - - - ATjg—1) In @8)-{49), if somer; with z; € X
is removed, we can set this to true as well as an arbitrany € X; U...U X;_1, whereas removing;_;
would allow as again to set to 1 all variablesXn U ... X;_;. This proves the minimality ofl/,, (Z).

3.2 The Minimally Unsatisfiable k-DNF Set

Letus write#’ = (1, },...,2) ), and letV, (&) be thek-DNF set withO (m) formulas constructed
above (over disjoint sets of variables for distinigtminimally expressing thatz’| < 1. With this notation,
let D, be thek-DNF set consisting of the following formulas:

Wi () 1<j<k (5a)
\/ (ah Adtn Ah A, ) 1SvSmE-D 6D
(41,82, ik —1)E[m(k—1)]F~1
Uy V \/ <w111 A w?z AR wfl;ll A y?17i27---,7:k1> I1<v<m(k-1) (5¢)
(11,82, i —1) €[m(k—1)]F 1
up Voug VooVl (g—1)- (5d)

It is worth noting that the range of the indexdoes not have any impact on the following proof of minimal
unsatisfiability, and it was set ta(k — 1) only to get the best numerical results.

It is easy to verify thaiD¥, consists of less thatvnk k-DNF formulas over more thafm(k — 1))* =
(L(amk)(1 - %))k variables. We claim thaD’, is minimally unsatisfiable, from which Theordm13.1
follows.

To prove the claim, let us first verify th@t*, is unsatisfiable. If the CNF formuld&/ﬂ}b(f) in (54) are to
be satisfied for alf < k, then there exists at most ofle—1)-tuple (i}, 43, ..., i; ;) € [m(k — 1)]*~! such
thatx}T,x%, .. ,azfz‘ll are all true. This forceg{m;wiz , totrue for allv to satisfy the formulas i (5b),
and then[(™c) forces all, to 0, so that[{3d) is falsified. Contradiction.

Let us now argue thdd”, is not only unsatisfiable, buhinimally unsatisfiable in the sense of Defini-
tion[Z71. The proof is by case analysis over the differenesypf formulas irfD~, .

1. If we shrink any term infl(Ba)—say, ¥} (1), then by the minimality property in SectionB.1 we can

set somer;, = ), = 1for i} # ¢{ and then fix some:?S = ... = z¥"! =1 without violating the
1 1 k—1
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remaining clauses i}, (z'),..., W1 (z#*=1). This allows us to satisfy the formulas f]5b) and
&d) by settingy(”i,1 i5oit ) = =1 andy( s ) = = 0 for all v, respectively. Finally, set any; to
2l

515005 _q

true to satisfy[(Bd). This satisfies the whétNF set.

2. Next, suppose that we shrink some terj%% x% A- A:): - /\y(l iy inthevth k-DNF formula
in &H). There are two subcases:

1ok —1

k—1

(a) Somez-variable is removed, say, the variabl¢.. Setz). = 0 andz? = ... = 27" =
1 31 Lo

(b)

o1
y(”Z it ) = 1. This satisfies theith formula in [Bb). Then pick somé& # i} and set
109201
xl, = 1. All this can be done in a way that satisfies all clausef1h $6&e the weight of every
a:J is one. Set, = 1 andu,, = 0 for all v/ # v to satisfy [&ll) and theg(l, T 0to
-1

satisfy thevth formula in [5¢) (all others are satisfied by literals, v/ # v). Theuth formula

in (&) was satisfied above, and for all othér£ v we Ssety(y ;s o =110 satisfy the rest
12729k —1

of the formulas in[(8b). This satisfies the wh@aDNF set.

The variable;;z’i* " )IS eliminated. If so, setl* =...= x’i 1 — 1 to satisfy the/th formula

1o tk—1

in@8),u, =1 andy(21 it ) = = 0 to satisfy [5]1) and theth formula in [&¢t), and.,, = 0 and

y(l )= = 1 for all v/ # v to satisfy the rest of the formulas in{5b) afdl(5c). This isilga
1ol
extended to an assignment satisfyihg (5a) as well.

3. For thevth formula in [Gt), we may assume, for the same reasons astio®&.1, that we shrink a
non-trivial k-term. Then we again have two subcases, treated similarly.

k-1

(a) Somez-variable is removed, say;.. Setu, = 1, z;; = 0,2 = ... = 2;- =1, and

(b)

4. (&4d) is removed. Set all, to 0, and set al|¥

i

k—1
y(l1 o = 0. This satisfies[{3d) and theh formula in [&E). Settinng, =0forv # v
IS RARRS] 1
takes care of the rest df{5c). To satidfyl(5b), we pick semg 7 and setzcil,1 =1, and then set

y(ww i) T = 1 for all /. All this can be done in a way that satisfies the weight comgta
in &3).

The Ilteraly( it ) is eliminated. If so, setl* =...= x’i = 1 to satisfy thevth formula
in (&d) andu,, = 1 to satisfy [&#l). Setting,, = 0 for v/ ;é v takes care of the rest dffj5c). Now

we can satisfy all of (3b) by settm{ . =1 for all v, and it is once again easy to see that

el _q

the weight constraints ifi{ba) are also satisfied.

to 1, then[(Ba)£(3b) become easy to satisfy.

Ulyeslp

This completes the proof th&t’, is minimally unsatisfiable as claimed, and Theofemh 3.1 hésitmavs.

Implications for Time-Space Trade-offs for  k-DNF Resolution

Let us start this section by a quick review of the relevanbpommplexity context. Thé&-DNF resolution
proof systems were introduced by KrajicEk [Kra01] as daermediate step between resolution and d&pth-
Frege. Roughly speaking, thigh member of this family, denoted henceforth #%), is a system for
reasoning in terms df-DNF formulas. Fork = 1, the lines in the proof are hence disjunctions of literals,
and the systerfR(1) is standard resolution. At the other extrerffépo) is equivalent to depth-Frege.

Informally, we can think of af(k)-proof as being presented on a blackboard. The allowedat&niv

steps are to write on the board a clause of the CNF formulaglreiinted, to deduce a neivDNF formula
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from the formulas currently on the board, or to erase formétam the board. Thiengthof anR(k)-proof
is the total number of formulas appearing on the board (@Lmith repetitions) and thgormula) spaces
the maximal number of formulas simultaneously on the boaeshg time during the proof.

A number of works[[ABO4, ABEQZ, Ale0%, JND2, Raz(03, SEID4g8%] have shown superpolynomial
lower bounds on the length @&DNF refutations. It has also been established In [SBI040Sthat the
R(k)-family forms a strict hierarchy with respect to proof lemgfust as in the case for standard resolution,
however, our understanding of space complexitgdDNF resolution has remained more limited. Esteban
et al. [EGMO04] established essentially optimal space Idveemds fofR (k) and also proved that the family
of tree-like? (k) systems form a strict hierarchy with respect to space. Thewed that there are formulas
F,, of sizen that can be refuted in tree-likg: + 1)-DNF resolution in constant space but require space
Q(n/log?n) to be refuted in tree-liké-DNF resolution. It should be pointed out, however, thag-ike
R(k) for any k > 1 is strictly weaker than standard resolution, so the resnlfEGMO04] left open the
guestion of whether there is a strict space hierarchy fon-tnee-like) k-DNF resolution or not.

Recently, the first author in joint work with Ben-Sassion [BXSEl] proved that Krajicek’s family oR(k)
systems do indeed form a strict hierarchy with respect toespeElowever, the parameters of the separation
were much worse than for the tree-like system§1n [EGMO4hels that ther (k + 1)-proofs have constant
space but an§R(k)-proof requires spac( **{/n/logn). Itis not clear that there has to be/a+ 1)st
root in this bound. No matching upper bounds are known, added for the special case 9f(2) versus
(1) the lower bound i@(n/log n) by [BSNO9b], i.e., without a square root. Also, combinihdSIB094a]
with results in [BSNO9b] one can derive strong length-spaade-offs fork-DNF resolution, but again a
(k + 1)stroot is lost in the analysis compared to the corresponaiaglts for standard resolutiof(1).

Returning now to the minimally unsatisfiableDNF sets, the reason for studying this concept in
[BSNO9a] was that is was an interesting special case of a gareral problem arising in their proof anal-
ysis, and that is was hoped that betipperbounds for this special case would translate into improvdme
for the general case. Although there appears to be no sudbusbiranslation ofower bounds from the
special to the general case, by using the ideas from thequ®dection we can show that the analysis of
the particular proof technique employedin [BSN09a] is atrimht. Thus, any further substantial improve-
ments of the bounds in that paper would have to be obtainedhey methods.

We do not go into details of the proof construction[in [BSN[X®ere, since it is rather elaborate. Suffice
it to say that the final step of the proof boils down to studyirPNF sets that imply Boolean functions
with a particular structure, and proving lower bounds orsize of such DNF sets in terms of the number of
variables in these Boolean functions. Having come thatrfdhé construction, all that remains is a purely
combinatorial problem, and no reference to space proof @ty or k-DNF resolution is needed.

For concreteness, below we restrict our attention to the wadere the Boolean functions are exclusive
or. More general functions can be considered, and have hedied in [BSNO94, BSNO9b], and everything
that will be said below applies to such Boolean functionshvéppropriate (and simple) modifications.
Hence, from now on let us focus on DNF sets that minimally yrgobarticular kind of formulas that we
will refer to as(AvF)-block formulas A (AvaF)-block formula is a CNF formula in which every variable
x is replaced b)@le x;, Wherezxq, ...,z are new variables not appearing in the original formula. sThu
literals turn into unnegated or negated XORs, every XORiappb exactly one “block” ok variables, and
no XOR mixes variables from different blocks. Let us writesttlown as a formal definition.

Definition 4.1. A (/\V@’f)-block formulaG is a conjunction of disjunctions of negated or unnegatetliexc
sive ors. The variables @F are divided into disjoint blocks1, ..., xk, v1,---, Y%, 21,- - -, 2% €t cetera, of
k variables each, and every XOR or negated XOR is over one lhdklof variables.

The key behind the lower bounds on space_in [BSN09a] is thdtrémat if a k-DNF setD implies a
(Ave**1)-block formulaG with many variables, the® must also be large.
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ON MINIMAL UNSATISFIABILITY AND TIME-SPACE TRADE-OFFS

Theorem 4.2 (IBSNQO9h]).Let & be some fixed but arbitrary positive integer. Suppose thet a k-DNF
set and thats is a (Ava&**1)-block formula such thab implies &, and furthermore that is minimal in
the sense that if we remove a single XOR or negated XORdfdtinus making the formula stronger), it no
longer holds tha> impliesG. Then| Vars(G)| = O(|D[*+1).

Using this theorem, one can get they/n/logn space separation mentioned above betwe®NF
resolution andk+1)-DNF resolution. Any improvement in the exponent in the tbim Theoren{Z12
would immediately translate into an improved space sejgaatind would also improve the time-space
trade-offs one can get when transferring the results in [8&N from resolution td:-DNF resolution.

Prior to the current paper, the best lower bound giving Bnaih what one could hope to achieve in
TheorenT4P was linear, i.e.Vars(G)| = Q(|D]). Namely, letG be a conjunction of XORSEijl1 x;) A
(B yi) A (@] z) A- - - and letD be the union of the expansions of evéR/ ™ z; as a CNF formula.
For this particular structure @ it is also easy to prove thaVars(G)| = O(|D|) for any choice ofD, but
it has been an open question what happens when we considgabEmmulasG.

Fork = 1, [BSNO9b] proved that a linear bourtd(|D|) in fact holds for any set of claus@&and any
(Ave?)-block formulaG, but all attempts to extend the techniques used there taaiekc> 1 have failed.
And indeed, they have failed for a good reason, since bygjldmthe construction in Secti@h 3 we can show
that this failure is due to the fact that the best one can hopia fTheorenZR2 i$Vars(G)| = O(|D[¥).

Theorem 4.3. For anyk > 1 there are arbirarily largek-DNF setsD of size|D| = m and (Av&*1)-block
formulas G such thatD implies G, this implication is “precise” in the sense that if we remoaesingle
XOR or negated XOR froid it no longer holds thal implies the strengthened formula, apidars(G)| >

k k
(k+ D[ (- 2)]" = k(%)
Proof. We utilize all the previous notation and start with the CNFriala

/\ \/ y;jlzk,l (6)

velm(k=1)] (i1,...ik—1)€[m(k—1)]F~1

and substitute an exclusive or over variajgs ; ,r=1,...,k+ 1, forevery variable}, ;
results in the formula

. This
-1

k

k+1

G= A \/ B (7)

ve[m(k—1)] (i1,...,if—1)E[m(k—1)]k~1 =1

which will be our (Ava&**1)-block formula. Clearly( contains(k + 1) - (m(k — 1))* variables. We claim
that the following easy modification of tHeDNF set from Sectiofi=312 “precisely” impligs in the sense
of Theoren4B:

Wi (& 1<j<k (8a)

)
\/ <x}1A---/\az’“‘1/\y”’1 ; > 1<v<m(k—1) (8b)

Tg—1 115yl —1
(i1,ensip—1)€E[m]E 1
1 k—1 —u,r
<$i1 A Nafh A yi17___72.k1> 1<v<mk—-1),2<r<k+1 (8¢c)
k—1

(il,...,ik,l)e[m}

It is straightforward to verify thab consists of less tham(k — 1)(k + 1) + 2mk < mk(k + 2) k-DNF

formulas. D implies G since once we have picked which variabh#, x%, . ,x%‘l should be satisfied,

1
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5 CONCLUDING REMARKS AND OPEN PROBLEMS

1

D will force all XOR blocksd)" "} y;l;" i € [m(k — 1)] to true by requiring the variablgfi: i 10
[ARRERY S | 7 Vk—1
be true and all other variabl@%”" i T 2210 be false. Finally, it is also easy to verify tHatimplies
PARAS 71
k+1 v,r

G “precisely” in the sense that if a single XOR bloé€R;, ", Yis i is removed fromG, then we can
EARRE A "oy |

satisfy D but falsify the rest of the formulé' (the proof is very similar to the one given in Sect[onl 3.2).
Theoren41 follows. O

5 Concluding Remarks and Open Problems

We conclude this paper by discussing two remaining openlgmud

Firstly, the most obvious problem still open is to close tia@ petweerf2(m)* and O ((mk)**1) for
the number of variables that can appear in a minimally usfalile k-DNF set withm formulas. There
is a strongly expressed intuition in_ [BSN09a] that it shob&dpossible to bring down the exponent from
k + 1 to k. Hence we have the following conjecture, where for simpligie fix k£ to remove it from the
asymptotic notation.

Conjecture 1. Suppose thab is a minimally unsatisfiablé-DNF set for some arbitrary but fixed positive
integerk. Then the number of variables his at mostO(|D|)*.

Proving this conjecture would establish asymptoticaliytibounds for minimally unsatisfiable DNF
sets (ignoring factors involving the constant

Secondly, we again stress that the result in Thedrein 4.3 moieper se imply any restrictions (that
we are aware of) on what space separations or time-space-dffsdare possible fok-DNF resolution.
The reason for this is that our improved lower bound only suweta particular approachfor proving
better separations and trade-offs, but it does not say imgyth the effect that thé-DNF resolution proof
systems are strong enough to match this lower bound. It woeilery interesting to understand better the
strength ofk-DNF resolution in this respect. Hence we have the followopgn problem (where we refer to
[BSNO9W] or [Nor09b] for the relevant formal definitions).

Open Problem 2. Let Peb’é*l[@] be the XOR-pebbling contradiction over some directed &cgrhphG.
Is it possible thatt-DNF resolution can refutePeb’é“[@] in space asymptotically better than the black-
white pebbling pricdW-Peb(G) of G?

We remark that for standard resolution, i2DNF resolution, the answer to this question is that XOR-
pebbling contradictions over two or more variabtEsnotbe refuted in space less than the black-white
pebbling price, as proven i IBSNCO9b]. F#DNF resolution withk > 1, however, the best known lower
bound isQ( M/ BW—Peb(G)), as shown in[IBSNO%a]. There is a wide gap here between ther wppl
lower bounds since, as far as we are aware, there are no kix@N resolution proofs that can do better
than space linear in the (black) pebbling price (which isedble by standard resolution).
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