
HAL Id: hal-00570017
https://hal.science/hal-00570017v2

Submitted on 1 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Krivine machines and higher-order schemes
Sylvain Salvati, Igor Walukiewicz

To cite this version:
Sylvain Salvati, Igor Walukiewicz. Krivine machines and higher-order schemes. ICALP, 2011, Switzer-
land. pp.162-173. �hal-00570017v2�

https://hal.science/hal-00570017v2
https://hal.archives-ouvertes.fr

Krivine machines and higher-order schemes

S. Salvati and I. Walukiewicz

Université de Bordeaux, INRIA, CNRS, LaBRI UMR5800

LaBRI Bât A30, 351 crs Libération, 33405 Talence, France

Abstract

We propose a new approach to analysing higher-order recursive
schemes. Many results in the literature use automata models gener-
alising pushdown automata, most notably higher-order pushdown au-
tomata with collapse (CPDA). Instead, we propose to use the Krivine
machine model. Compared to CPDA, this model is closer to lambda-
calculus, and incorporates nicely many invariants of computations, as
for example the typing information. The usefulness of the proposed
approach is demonstrated with new proofs of two central results in the
field: the decidability of the local and global model checking problems
for higher-order schemes with respect to the mu-calculus.

1 Introduction

Higher-order recursive schemes were introduced by Damm in [Dam82] as a
respelling of λY -calculus. Since they were investigated mainly in formal lan-
guage community, the tools developed were by large inspired by treatment
of pushdown-automata and context-free grammars. Subsequent research
has shown that it is very useful to have an automata model characterising
schemes. For the class of all schemes, we know only one such model, that is
higher order pushdown automata with collapse [HMOS08]. In this paper we
propose another model based on Krivine machines [Kri07], [Wan07]. The
notion of Krivine machine is actually a standard concept in lambda-calculus
community, and it needs almost no adaptation to treat higher-order schemes.
We claim that the proposed model offers a fresh tool to analyse schemes.
To substantiate we give new proofs of two central results in the field: decid-
ability of local and global model-checking problems for higher-order schemes
with respect to the mu-calculus.

In the last decade the interest in higher-order schemes has been renewed
by the discovery by Knapik et al.[KNU02] of the equivalence of higher-order
pushdown automata of order n with schemes of order n satisfying a syntactic
constraint called safety. Subsequently, higher order pushdowns have been
extended with panic operation to handle all level 2 schemes [KNUW05], and

1

with collapse operation for schemes of all levels [HMOS08]. Higher order
pushdown automata with collapse are at present the main tool to analyse
schemes [HMOS08], [BO09], [BCOS10].

The model checking problem for schemes with respect to the mu-calculus
is to decide if a given formula holds in the root of the tree generated by a
given scheme. The problem has proved to be very stimulating, and gener-
ated many advances in our understanding of schemes. Its decidability has
been shown by Ong [Ong06], but even afterwards the problem continued to
drive interesting work. Several different proofs of Ong’s result have been
proposed [HMOS08, KO09]. In a series of recent papers [CHM+08, BO09,
BCOS10] the global version of the problem is considered. In the last citation
it is shown that the set of nodes satisfying a given mu-calculus formula is
definable in a finitary way.

In this paper, we go several steps back with respect to the usual ways of
working with higher-order recursion schemes. First, instead of using Damm’s
definition of higher-order schemes, we turn to the λY -calculus as the mean of
generating infinite trees. The Y combinator, or the fixpoint combinator, has
first been considered in [CR58] and is at the core of Plotkin’s PCF [Plo77].
Second, instead of using higher-order collapsible automata as an abstract
machine, we use Krivine abstract machine [Kri07]. This machine is much
closer to λ-calculus, it performs standard reductions and comes with typing.
These features are hard to overestimate as they allow to use standard tech-
niques to express powerful invariants on the computation. For example, in
the main proof presented here, we use standard models of the λY -calculus
to express such invariants.

Using these tools, we reprove in a rather succinct way Ong’s result.
Similarly to a recent proof of Kobayashi and Ong [KO09], our proof gives a
reduction to a finite parity game. It seems though that our game is simpler,
at least at the level of presentation. For example, the paper [BCOS10]
on global model checking continues to use collapsible pushdown automata
and gives an involved proof by induction on the rank of the stack. On
the other hand, we can reuse our game to give a short proof of this result.
In particular unlike op cit. we use finite trees to represent positions, and
standard automata on finite trees to represent sets of winning positions.

Related work We have already mentioned a body of related work, we
will comment more no the proof of Kobayashi and Ong [KO09] in the con-
cluding section. Concerning the global model-checking result, Carayol et
al. [CHM+08] showed regularity of winning regions in parity games over
higher-order pushdown automata without collapse. More recently, Broad-
bent and Ong [BO09] showed that winning positions of a parity game gener-
ated by an order n recursive scheme are recognizable by a non-deterministic
collapsible pushdown automaton. The proof uses game semantics instead

2

of automata. Finally, Broadbent et al. [BCOS10] show that the winning
positions can be also recognized by a deterministic collapsible pushdown
automaton. Here we show that in a different representation they are rec-
ognizable by a tree automaton. In this context we would like to mention
a result of Kartzow [Kar10] showing that order-2 collapsible stacks can be
encoded as trees in such a way that the set of stacks reachable from the
initial configuration is a regular set of trees.

Organization of the paper In the next section we introduce λY calculus
and Krivine machines. We also define formally the local model checking
problem. In the following section we reduce the problem to determining a
winner in a game over configurations of the Krivine machine, K(A,M). In
the next section we define a finite game G(A,M). We then show that the
same player is winning in the two games. This gives decidability of the local
model checking problem. In the following section we reuse this result to
obtain the proof for the global model checking problem. All missing proofs
can be found in the appendix.

2 Basic notions

The set of types T is constructed from a unique basic type 0 using a binary
operation →. Thus 0 is a type and if α, β are types, so is (α → β).
The order of a type is defined by: order(0) = 0, and order(α → β) =
max(1 + order(α), order(β)).

A signature, denoted Σ, is a set of typed constants, that is symbols
with associated types from T . We will assume that for every type α ∈ T we
have ωα and Y (α→α)→α standing for the fixpoint operator and the undefined
value. For simplicity of notation we assume that all other constants are of
type 0 → 0 → 0. In general, in recursion schemes all constants of order 0
and 1 are allowed; it is straightforward to extend our arguments to all such
constants.

The set of simply typed λ-terms is defined inductively as follows. A
constant of type α is a term of type α. For each type α there is a countable
set of variables xα, yα, . . . that are also terms of type α. If M is a term of
type β and xα a variable of type α then λxα.M is a term of type α → β.
Finally, if M is of type α → β and N is of type α then MN is a term
of type β. Together with the usual operational semantics of λ-calculus,
that is β-reduction, we use δ-reduction (→δ) giving the semantics to the
fixpoint operator: YM →δ M(YM). Thus, the operational semantics of
the λY -calculus is the βδ-reduction, it is well-known that this semantics is
confluent and enjoys subject reduction (i.e. the type of terms is invariant
under computation). In this paper, we only consider terms in η-long form [?].
This makes the presentation easier as the structure of types is reflected

3

syntactically in terms. Later we will point out the place where we use this
assumption. We will also often omit type annotations.

A Böhm tree is an unranked ordered, and potentially infinite tree with
nodes labelled by ωα, or terms of the form λx1. . . . xn.N ; where N is a
variable or a constant, and the sequence of lambda abstractions is optional.
So for example x0, λx.ω0 are labels, but λy0.x0→0y0 is not. A Böhm tree
of a term M is obtained as follows. If M →∗βδ λ~x.N0N1 . . . Nk with N0 a
variable or a constant then the root of BT (M) is labelled by λ~x.N0 and has
BT (N1), . . . , BT (Nk) as a sequence of its children. If M is not solvable then
BT (M) = ωα, where α is the type of M . If M is of type 0 then given our
assumption on the type of constants we get that BT (M) is a binary tree
with finite branches ending in ω0.

From recursive schemes to λY -calculus A recursive scheme is a set
of equations defining a λY -term by mutual recursion. Formally, a recursion
scheme is a function R assigning to every variable Fα from a finite set N , a
term of type α and with free variables only from N . Fixing F 0 in N as the
starting symbol, the semantics of a scheme is the infinite tree computed by
unfolding the definitions of the variables starting from F 0. This tree, can
also be seen as the Böhm tree generated from F 0 by recursively applying
the substitution defined by R.

Krivine machine A Krivine machine [Kri07], is an abstract machine that
computes the weak head normal form of a λ-term, using explicit substitu-
tions, called environments. Environments are functions assigning closures
to variables, and closures themselves are pairs consisting of a term and an
environment. This mutually recursive definition is schematically represented
by the grammar:

C ::= (M,ρ) ρ ::= ∅ | ρ[x 7→ C]

As in this grammar, we will use ∅ for the empty environment. We require
that in a closure (M,ρ), the environment is defined for every free variable
of M . Intuitively such a closure denotes closed λ-term: it is obtained by
substituting for every free variable x of M the lambda term denoted by the
closure ρ(x).

A configuration of the Krivine machine is a triple (M,ρ, S), where M is
a term, ρ is an environment, and S is a stack (a sequence of closures with
the topmost element on the left). The rules of the Krivine machine are as

4

follows:

(λx.M, ρ, (N, ρ′)S)→(M,ρ[x 7→ (N, ρ′)], S)

(YM, ρ, S)→(M(YM), ρ, S)

(MN, ρ, S)→(M,ρ, (N, ρ)S)

(x, ρ, S)→(M,ρ′, S) where (M,ρ′) = ρ(x)

Note that the machine is deterministic. We will be only interested in con-
figurations accessible from (M0, ∅, ε) for some term M0 of type 0 in η-long
normal form. Every such configuration (M,ρ, S) enjoys very strong typing
invariants. Environment ρ associates to a variable xα a closure (N, ρ′) so
that N has type α; we will say that the closure is of type α too. If M has
type α1 → · · · → αn → 0, then S is a stack of n closures, with i-th closure
from the top being of type αi.

For aestetic reasons we prefer to stop the Krivine machine in configu-
rations of the form (bM0,M1, ρ, ε), where b is a constant; since b is of type
0 → 0 → 0, the stack must be empty. We shall write this configuration as
(b(M0,M1), ρ, ε) to make a link with a Bohm tree being constructed. (No-
tice that formally from such a configuration the machine should perform two
more reductions to put the arguments on the stack.) Thus, if we start with a
closed term M of type 0 we get a sequence of reductions from (M, ∅, ε) that
is either infinite or terminates in a configuration of a form (b(M0,M1), ρ, ε),
as the initial term was supposed to be in η-long form. At that point we
create a node labelled b and start reducing both (M0, ρ, ε) and (M1, ρ, ε).
This process gives at the end a tree labelled with constants that is precisely
BT (M); that is the object of our study. Notice that if (N, ρ, S) is reachable
from (M, ∅, ε) then N , and the terms that occur in ρ and in S are all sub-
terms of M . One should be careful with a definition of a subterm though.
Since we have a fixpoint operator we consider that N(Y N) is a subterm
of Y N . Of course even with this twist, the number of subterms of a term
remains finite.

We present an execution of a Krivine machine on an example taken from
[KO09]. For clarity, in this example we suspend our convention on types
of the constants and take constants a : 0 → 0 → 0, b : 0 → 0 and c : 0.
The scheme is defined by S 7→ F c and F 7→ λx.a x (F (b x)) which can be
represented by the following term in the λY -calculus:

YM c where M = λfx.a x (f(b x)).

Starting form a configuration (YMc, ∅, ε), the Krivine machine produces the
following sequence of reductions

(YMc, ∅, ε)→(YM, ∅, (c, ∅))→ (M(YM), ∅, (c, ∅))→ (M, ∅, (YM, ∅)(c, ∅))→
(λx.a x (f(b x)), [f 7→ (YM, ∅)], (c, ∅))→
(a x (f(b x)), [f 7→ (YM, ∅)][x 7→ (c, ∅)], ε)

5

At this point we have reached a final configuration and we get the constant a
that is the symbol of the root ofBT (YMc). We can start reducing separately
the two arguments of a, that is reducing the configurations:

(x, [f 7→ (YM, ∅)][x 7→ (c, ∅)], ε) and (f(b x), [f 7→ (YM, ∅)][x 7→ (c, ∅)], ε).

Parity automata and the definition of the problem Recall that Σ is
a fixed set of constants of type 0 → 0 → 0. These constants label nodes in
BT (M). Since BT (M) is an infinite binary tree we can use standard non-
deterministic parity automata to describe its properties. Such an automaton
has the form

A = 〈Q,Σ, q0 ∈ Q, δ : Q× Σ→ P(Q2),Ω : Q→ {1, . . . , d}〉 (1)

where Q is a finite set of states, q0 is the initial state, δ is the transition
function, and Ω is a function assigning a rank (a number between 1 and d)
to every state.

In general, an infinite binary tree is a function t : {0, 1}∗ → Σ. A run
of A on t is a function r : {0, 1}∗ → Q such that r(ε) = q0 and for every
sequence w ∈ {0, 1}∗: (r(w0), r(w1)) ∈ δ(q, t(w)). The run is accepting if for
every infinite path in the tree, the sequence of states assigned to this path
satisfies the parity condition determined by Ω; this means that the maximal
rank of a state seen infinitely often should be even.

Formally, it may be the case that BT (M) contains also nodes labelled
with ω0. We will simply assume that every tree containing ω0 is rejected
by the automaton. This assumption is frequently made in this context.
Handling ω0 would not be difficult but would reqiure to add one more case
in all the constructions. The other, more difficult, solution is to convert a
term to a term not generating ω0.

Definition 1 The (local) model checking problem is to decide if A accepts
BT (M) for given A and M .

3 Game over configurations of Krivine machine

In this section we will reduce the model checking problem to the problem of
determining a winner in a specially constructed parity game.

Given an automaton A as in (1) we construct the tree of all its possi-
ble runs on BT (M). We define the tree of runs formally as we will make
one twist to the rules of the Krivine machine. The twist is that in the
environment the value of the variable will not be a closure, that is a pair
(term,environment), but a triple containing additionally the node of the tree
where the closure has been created. For a given M and A we define the tree
of runs RT (A,M) of A on BT (M):

6

• The root of the tree is labelled with q0 : (M, ∅, ε).

• A node labelled q : (a(N0, N1), ρ, ε) has a successor (q0, q1) : (a(N0, N1), ρ, ε)
for every (q0, q1) ∈ δ(q, a).

• A node labelled (q0, q1) : (a(N0, N1), ρ, ε) has two successors q0 :
(N0, ρ, ε) and q1 : (N1, ρ, ε).

• A node labelled q : (λx.N, ρ, (v′, N ′, ρ′)S) has a unique successor la-
belled q : (N, ρ[x 7→ (v′, N ′, ρ′)], S).

• A node q : (Y N, ρ, S) has a unique successor q : (N(Y N), ρ, S).

• A node v labelled q : (NK, ρ, S) has a unique successor q : (N, ρ, (v,K, ρ)S).
(Here v closure is created.)

• A node v labelled q : (x, ρ, S) with ρ(x) = (v′, N, ρ′) has a unique
successor labelled q : (N, ρ′, S). (We say that the node v uses v′

closure.)

The definition is as expected but for the fact that in the rule for application
we store the current node in the closure. When we use the closure in the
variable rule, the stored node does not influence the result, but allows us to
detect what is exactly the closure that we are using. This will be important
in the proof.

Definition 2 We use tree RT (A,M) to define a game between two players:
Eve chooses a successor in nodes of the form q : (a(N0, N1), ρ, ε), and Adam
in nodes (q0, q1) : (a(N0, N1), ρ, ε). We set the rank of nodes labelled q :
(a(N0, N1), ρ, ε) to Ω(q) and the ranks of all the other nodes to 1. We can
use max parity condition to decide who wins an infinite play. Let us call the
resulting game K(A,M).

The following is a direct consequence of the definitions.

Proposition 1 Eve has a strategy from the root position in K(A,M) iff A
accepts Tree(M).

The only intresting point to observe is that it is important to disallow rank
0 in the definition of parity automton since we assign rank 1 to all “inter-
mediate” positions. This is linked to our handling of infinite sequences of
reductions of Krivine machine without reaching a head normal form. Such a
seqeunce results in a node labelled ω0 in a Bohm tree, hence the tree should
not be accepted by the automaton. Indeed, in the game K(A,M) this will
give an infinite sequence of states of rank 1.

Summarizing, the model checking problem is equivalent to deciding who
has a winning strategy from the root of K(A,M). We will show decidablity
of the later problem by reducing the game to a finite game.

7

4 Finite game G(A,M)

The game K(A,M) may have infinitely many positions as there may be
infinitely many closures that are created. In order to obtain a finite game
we abstract these closures to some finite set. Closures are created by the
application rule, so this is where we will concentrate our efforts. As in
the construction for a pushdown game [Wal01] we will use alternation to
“disarm” the application rule. Instead of putting a closure on the stack,
Eve will make an assumption on the context in which the closure will be
used. Adam will be then given a chance to either contest this assumption
or to check what happens when with the closure when it used under the
assumptions Eve has made. Since the closure can be of higher type, the
assumptions are a bit more complicated than in pushdown game.

Definition 3 (Residuals) Recall that Q is the set of states of A and d
is the maximal value of the rank function of A. Let [d] stand for the set
{0, . . . , d}. For every type τ = τ1 → · · · → τk → 0 the set of residuals Dτ is
the set of functions Dτ1 → · · · → Dτk → P(Q× [d]).

For example, we have that D0 is P(Q × [d]) and D0→0 is P(Q × [d]) →
P(Q × [d]). The meaning of residuals will become clearer when we will
define the game.

A position of the game G(A,M) will be of one of the forms:

q : (N, ρ, S), (q0, q1) : (N, ρ, S) (q,R) : (N, ρ, S)

where q, q0, q1 are states of A, N is a term (more precisely a subterm of M),
ρ is an environment assigning a residual to every variable that has a free oc-
currence in N , and S is a stack of residuals. Of course the types of residuals
will agree with the types of variables/arguments they are assigned too. As
there are only finitely many residuals of each type, the game G(A,M) has
finitely many positions.

We need one more operation before defining the game. Take a rank r
and a residual R : Dτ1 → · · · → Dτk → D0. Recall that D0 = P(Q × N).
We define R�r to be the function such that for every sequence of arguments
S:

R�r (S) = {(q1, r1) ∈ R(S) : r1 > r}∪{(q1, r2) : (q1, r1) ∈ R(S), r2 ≤ r1 = r}

Intuitively, (q1, r1) ∈ R(S) means that Eve is allowed to reach a leaf labelled
with a state q1 if r1 is the maximal rank between the creation and the use
of the closure. Now suppose that with this residual at hand we see rank r.
If (q1, r1) ∈ R(S) and r1 > r then we are still waiting for r1 so we just keep
the pair. If r1 < r then such a pair is impossible and is removed. If r1 = r
then in the future we can see any rank not bigger than r. This explains the
second component of the sum. We state a simple but useful property of the
operation.

8

Lemma 4 For every residual R and ranks r1, r2: (R�r1)�r2= R�max(r1,r2).

Proof
Suppose r1 ≥ r2. We show (R �r1) �r2= R �r1 . Fix a state q and look at all
the pairs with this state. The pairs (q, r) with r > r1 are the same in R and
(R �r1) �r2 . If (q, r1) 6∈ R then there is no pair (q, r) in R �r1 with r ≤ r1,
and �r2 does nothing for pairs with state q. If (q, r1) ∈ R then all the pairs
(q, r) for r ≤ r1 are in R �r1 . The operation �r2 does not add or remove any
pairs with the state q.

When r1 < r2 we show that (R�r1)�r2= R�r2 . The proof is similar. �

If ρ is an environment then ρ�r is an environment such that for every x:
(ρ�r)(x) = ρ(x)�r.

We have all ingredients to define transitions of the game G(A,M). Most
of the rules are just reformulation of the rules in K(A,M):

q : (λx.N, ρ,R · S)→ q : (N, ρ[x 7→ R], S)

q : (a(N0, N1), ρ, ε)→ (q0, q1) : (a(N0, N1), ρ, ε) for (q0, q1) ∈ δ(q, a)

(q0, q1) : (a(N0, N1), ρ, ε)→ qi : (Ni, ρ�Ω(qi), ε) for i = 0, 1

q : (Y N, ρ, S)→ q : (N(Y N), ρ, S)

We now proceed to the rule for application. Consider q : (NK, ρ, S) with
K of type τ = τ1 → · · · → τl → 0. We have a transition

q : (NK, ρ, S)→ (q,R) : (NK, ρ, S)

for every residual R : Dτ1 → . . . Dτl → D0. From this position we have
transitions

(q,R) : (NK, ρ, S)→ q : (N, ρ,R�Ω(q) ·S)

(q,R) : (NK, ρ, S)→ q′ : (K, ρ�r′ , R1 · · ·Rl) for every R1 ∈ Dτ1 ,. . . ,Rl ∈ Dτl

and (q′, r′) ∈ R�Ω(q) (R1, . . . , Rl).

Here R �Ω(q) is needed to “normalise” the residual, so that it satisfies the
invariant described below.

Since we are defining a game we need to say who makes a choice in which
vertices. Eve chooses a successor from vertices of the form q : (NK, ρ, S)
and q : (a(N0, N1), ρ, S). It means that she can choose a residual, and a
transition of the automaton. This leaves for Adam the choices in nodes of
the form (q0, q1) : (a(N0, N1), ρ, S) and (q,R) : (NK, ρ, S). So he chooses a
direction, or decides whether to accept (by choosing a transition of the first
type) or contest the residual proposed by Eve.

Observe that we do not have a rule for nodes with a term being a variable.
This means that such a node has no successors, so we need to say who is
the winner when the node is reached. Consider a node

q : (x, ρ, S) with ρ(x) = Rx and S = R1 · · ·Rk.

9

Eve wins in this position if (q,Ω(q)) ∈ Rx(R1, . . . , Rk).
Finally, we need to define ranks. It will be much simpler to define ranks

on transitions instead of nodes. All the transitions will have rank 1 but for
two cases:

• a transition (q,R) : (NK, ρ, S)→ q′ : (K, ρ�r′ , R1 · · ·Rk) has rank r′;

• (q0, q1) : (a(N0, N1), ρ, S)→ qi : (Ni, ρ�Ω(qi), S �Ω(qi)) has rank Ω(qi).

A play is winning for Eve iff the sequence of ranks on transitions satisfies
the parity condition: the maximal rank appearing infinitely often is even.

5 Equivalence of K(A,M) and G(A,M)

In this section we present the main result of the paper

Theorem 5 Eve wins in G(A,M) iff Eve wins in K(A,M).

Since G(A,M) is finite, this gives the decidability of the winner in K(A,M)
and hence also of the model-checking problem. We will first show how to
construct the winning strategy for Eve inG(A,M) from her winning strategy
in K(A,M). Afterwards, we show how to construct a winning strategy for
Adam in G(A,M) from his winning strategy in K(A,M).

5.1 From Eve’s winning strategy in K(A,M) to her winning
strategy in G(A,M)

Let us fix a winning strategy σ of Eve in K(A,M), and consider the tree
Kσ of plays respecting this strategy. This is a subtree of K(A,M). We will
define the strategy for Eve in G(A,M) that will use σ to guess residual in
the application rule. The first step before constructing the strategy is to
calculate residuals R(v) and res(v, v′) for all nodes in the tree Kσ.

Residuals R(v) and res(v, v′) The crucial step in the proof is assignment
of residuals to positions of K(A,M). Thanks to typing, this can be done
by induction on the order of type. We will assign a residual R(v) to every
closure v. We also define a variation of this notion: a residual R(v) seen
from a node v′, denoted res(v, v′). Before proceeding we will need one simple
abbreviation. If v is an ancestor of v′ in Kσ then we write max(v, v′) for the
maximal rank appearing on the path between v and v′, including both ends.

Consider an application node v in K(A,M). It means that v has a
label of the form q : (NK, ρ, S), and its unique successor has the label
q : (N, ρ, (v,K, ρ)S). That is the closure (v,K, ρ) is created in v. We
will look at all the places where this closure is used and summarize the
information about them in R(v).

10

First, suppose that the closure, or equivalently the term K, is of type 0.
The residual R(v) should be also of type 0 which means that R(v) ⊆ Q× [d].
We put

(q′,max(v, v′)) ∈ R(v)

for every node v′ in Kσ labelled q′ : (x, ρ′, ε) such that ρ′(x) = (v,K, ρ).
Concerning res(v, v1) for a descendant v1 of v in Kσ we define res(v, v1) =
R(v)�max(v,v1).

For the induction step, suppose that K is of type τ1 → · · · → τk → 0 and
that we have already calculated residuals for all closures of types τ1, . . . , τk.
Suppose that we have a closure (v,K, ρ) created at a node v. This time
R(v) : Dτ1 → . . . Dτk → P(Q × [d]). Take a node v′ using the closure. Its
label has the form q′ : (x, ρ′, S′) for some x, ρ′ and S′ such that ρ′(x) =
(v,K, ρ). The stack S′ has the form (v1, N1, ρ1) . . . (vk, Nk, ρk) with Ni of
type τi. We put

(q′,max(v, v′)) ∈ R(res(v1, v
′), . . . , res(vk, v

′)) . (2)

As above, for every descendant v1 of v we define res(v, v1) = R(v)�max(v,v1).
For a closure (v,K, ρ) we define res((v,K, ρ), v′) = res(v, v′). For an

environment ρ, the environment ρ′ = res(ρ, v′) is obtained by setting ρ′(x) =
res(ρ(x), v′) for every variable x. Similarly, res(S, v′) is S where res(·, v′) is
applied to every element of the stack. With this notation the condition (2)
can be rewritten as (q′,max(v, v′)) ∈ R(res(S′, v′)).

The strategy in G(A,M) Now we are ready to define the strategy for
Eve in G(A,M). It will use positions in the game K(A,M) and the strategy
σ as hints. The new strategy will take a pair of positions (v1, v2) with v1

in G(A,M) and a v2 in K(A,M). It will then give a new pair of positions
(v′1, v

′
2) such that v′1 is a successor v1, and v′2 is reachable from v2 using

the strategy σ. Moreover, all visited pairs (v1, v2) will satisfy the following
invariant:

v1 labelled by q : (N, ρ1, S1) and v2 labelled by q : (N, ρ2, S2);
where ρ1 = res(ρ2, v2) and S1 = res(S2, v2).

The initial positions in both games have the same label q0 : (M, ε, ∅), so the
invariant is satisfied. In order to define the strategy we will consider one by
one the rules defining the transitions in G(A,M).

In most of the cases it is evident what the strategy should do. In partic-
ular when choosing a transition in a position v1 labelled q : (a(N0, N1), ρ, ∅)
Eve should take the same transition as in the corresponding node v2. The
only complicated case is the application rule.

Suppose that the term in the label of v1 is an application, say q :
(NK, ρ1, S1). By our invariant we have a position v2 labelled by q : (NK, ρ2, S2),

11

where ρ1 = res(ρ2, v2) and S1 = res(S2, v2). The strategy in G(A,M) is to
choose R(v2), that is to go from v1 to the node v′1 labelled (q,R(v2)) :
(NK, ρ1, S1). From this node Adam can choose either

q :(N, ρ1, (R(v2)�Ω(q)) · S1), or (3)

q′ :(K, ρ1 �r′ , R1 . . . Rl) where (q′, r′) ∈ R(v2)�Ω(q) (R1, . . . , Rl). (4)

Suppose Adam chooses (3). By definition R(v2) �Ω(q)= res(v2, v2). Hence
the stack (R(v2)�Ω(q)) ·S1 is just res((v2,K, ρ2)S2, v2). The unique successor
v′2 of v2 is labelled by q : (N, ρ2, (v2,K, ρ2)S2). So the pair (v′1, v

′
2) satisfies

the invariant.
Let us now examine that case when Adam chooses a node of the form (4).

By definition of R(v2) this means that in Kσ there is a node v′2 labelled
q′ : (x, ρ′2, S

′
2) with ρ′2(x) = (v2,K, ρ2) and res(S′2, v

′
2) = R1 . . . Rk. Moreover

r′ = max(v2, v
′
2). The successor v′′2 of v′2 is labelled by q′ : (K, ρ2, S

′
2). We can

take it as a companion for v′1 since ρ1 �r′= res(ρ2, v2)�max(v2,v′′2)= res(ρ2, v
′′
2)

by Lemma 4. Hence the strategy is able to preserve the invariant.
We need to show that the strategy defined above is winning. Consider a

sequence of nodes (v1
1, v

1
2), (v2

1, v
2
2), . . . consistent with the strategy. Suppose

that this sequence is infinite. By construction we have that v1
2, v

2
2, . . . is a

path in Kσ, hence a play winning for Eve. We have defined the strategy in
such a way that a rank of a transition from vi1 to vi+1

1 is the same as the
maximal rank of a node on the path between vi2 and vi+1

2 . Hence v1
1, v

2
1, . . .

is winning for Eve too.
It remains to check what happens when a maximal play is finite. This

means that the path ends in a pair (v1, v2) where v1 is a variable node. Such
a node is labelled by q : (x, ρ1, S1). To show that Eve wins here we need to
prove that

(q,Ω(q)) ∈ Rx(S1) where Rx = ρ1(x).

By the invariant we have that the companion node v2 is labelled by q :
(x, ρ2, S2) and ρ1 = res(ρ2, v2), S1 = res(S2, v2). Suppose that ρ2(x) =
(v,N, ρ). We have Rx = R(v)�max(v,v2), since ρ1 = res(ρ2, v2). By definition
of R(v) we get (q,max(v, v2)) ∈ R(v)(res(S2, v2)). Then from the definition
of �max(v,v2) operation: (q,max(v, v2)) ∈ R(v)(res(S2, v2)) �max(v,v2). Which
implies (q,Ω(q)) ∈ R(v)(res(S2, v2))�max(v,v2) since Ω(q) ≤ max(v, v2). This
is the required statement (q,Ω(q)) ∈ Rx(S1).

5.2 From Adam’s winning strategy in K(A,M) to his winning
strategy in G(A,M)

Let us fix a winning strategy θ of Adam in K(A,M), and consider the tree
Kθ of plays respecting this strategy. This is a subtree of K(A,M). We assign
a residual to every closure appearing in Kθ in exactly the same way as we
have done in the previous section.

12

5.2.1 The invariant

In order to formulate the invariant for the strategy we introduce comple-
mentarity predicate Comp(R1, R2) between a pair of residuals:

• For R1, R2 ∈ D0 we put Comp(R1, R2) if R1 ∩R2 = ∅.

• ForR1, R2 ∈ Dτ where τ = τ1 → · · · → τk → 0 we put Comp(R1, R2) if
for all sequences (R1,1, . . . , R1,k), (R2,1, . . . , R2,k) ∈ Dτ1×· · ·×Dτk such
that Comp(R1,i, R2,i) for all i = 1, . . . , k we get R1(R1,1, . . . , R1,k) ∩
R2(R2,1, . . . , R2,k) = ∅.

For two closures (v,N, ρ) and (v′, N, ρ′) we will say that the predicate
Comp((v,N, ρ), (v′, N, ρ′)) holds if Comp(R(v), R(v′)) is true. For two envi-
ronments ρ, ρ′ we write Comp(ρ, ρ′) if the two environments have the same
domain and for every x, the predicate Comp(ρ(x), ρ′(x)) holds. Finally,
Comp(S, S′) holds if the two sequences are of the same length and the pred-
icate holds for every coordinate.

It is important to observe that Comp behaves well with respect to �r
operation

Lemma 6 If Comp(R1, R2) then also Comp(R1 �r, R2 �r) for every rank r.

Proof
Given two sequences S1 and S2 of the correct type with respect to R1 and
R2 and such that Comp(S1, S2), since Comp(R1, R2), we have R1(S1) ∩
R2(S2) = ∅. Let’s suppose that (q1, r1) is in R1 �r (S1), then either r1 > r
and (q1, r1) is in R1(S1) so that (q1, r1) is neither in R2(S2) nor in R2 �r (S2);
or r1 ≤ r and (q1, r) is in R1(S1) so that (q1, r) is not in R2(S2) and (q1, r1) is
not in R2 �r (S2). Similarly we get that whenever (q2, r2) is in R2 �r (S2) it is
not in R1 �r (S1). Therefore, we finally have that R1 �r (S1)∩R2 �r (S2) = ∅.
Since S1, S2 were arbitrary, we get Comp(R1 �r, R2 �r). �

As in the case for Eve, the strategy for Adam will take a pair of vertices
(v1, v2) from G(A,M) and K(A,M), respectively. It will then consult the
strategy θ for Adam in K(A,M) and calculate a new pair (v′1, v

′
2). All the

pairs will satisfy the invariant:

v1 labelled by q : (N, ρ1, S1) and v2 labelled by q : (N, ρ2, S2);
where Comp(ρ1, res(ρ2, v2)) and Comp(S1, res(S2, v2));

5.2.2 The strategy

We define the strategy by considering one by one the rules for constructing
the tree K(A,M). Apart from the immediate cases we have the following.

13

Transition rule If a label of v1 is of the form q : (a(N0, N1), ρ1, ε) then
in Kθ this node has a son (q0, q1) : (a(N0, N1), ρ1, ε) for every (q0, q1) ∈
δ(q, a). The same happens from v2, namely, it has successors (q0, q1) :
(a(N0, N1), ρ2, ε). Now each such successor is a node of Adam so it has
itself a unique successor in Kθ. Let us suppose that Adam chooses q0 :
(N0, ρ2, ε). We make the strategy to choose from (q0, q1) : (a(N0, N1), ρ1, ε)
the node v′1 labelled q0 : (N0, ρ1 �Ω(q0), ε). By definition and Lemma 4 we
have that res(ρ2, v

′
2) = res(ρ2, v2) � Ω(q0). It follows from Lemma 6 that

Comp(ρ1 �Ω(q0), res(ρ2, v
′
2)) holds.

Application rule Eve can choose a transition

q : (MN, ρ1, S1)→ (q,R) : (MN, ρ1, S1)

for some residual R and then Adam has a choice between the transitions:

(q,R) : (MN, ρ1, S1)→ q : (M,ρ1, R�Ω(q) ·S1)

(q,R) : (MN, ρ1, S1)→ q′ : (N, ρ1 �r′ , R1 · · ·Rk)
for (q′, r′) ∈ R�Ω(q) (R1, . . . , Rk)

At the same time in node v2 of K(A,M) a new closure for N is created,
hence we have a new residual R(v2). We have two cases

Suppose Comp(R �Ω(q), R(v2)) holds. In this case Adam chooses for v′1
the node labelled q : (M,ρ1, R�Ω(q) ·S1). For v′2 he can choose the successor
of v2. Since it is labeled by q : (M,ρ2, (v2, N, ρ)S2), the invariant holds.

The other case is when Comp(R�Ω(q), R(v2)) does not hold. This means
that there are (R1,1, . . . , R1,k) and (R2,1, . . . , R2,k) such that Comp(R1,i, R2,i)
for all i = 1, . . . , k and R �Ω(q) (R1,1, . . . , R1,k) ∩ R(v2)(R2,1, . . . , R2,k) 6= ∅.
Let (q′, r′) be the element from the intersection. As we have (q′, r′) ∈
R(v2)(R2,1, . . . , R2,k), there is a node v′2 labelled by q′ : (x, ρ′2, S

′
2) such

that ρ′2(x) = (v2, N, ρ2) and res(S′2, v
′
2) = (R2,1, . . . , R2,k). We choose for

v′1 the node labelled q′ : (N, ρ1 �r′ , R1,1 · · ·R1,k). We need to show that
Comp(ρ1 �r′ , res(ρ2, v

′
2)) holds. Take a variable y,by hypothesis we have

Comp(ρ1(y), res(ρ2(y), v2)), since max(v2, v
′
2) = r′ we have by Lemma 6

that as required Comp(ρ1(y)�r′ , res(r2(y), v2)�r′).

The strategy is winning As in the case of the strategy for Eve, it is
easy to show that every infinite play is winning. It remains to check what
happens if v1 is a variable node. Such a node is labelled by q : (x, ρ1, S1).
To show that Adam wins here we need to prove that

(q,Ω(q)) 6∈ Rx(S1) where Rx = ρ1(x).

By the invariant, the companion node v2 is labelled by q : (x, ρ2, S2) and
Comp(Rx, res(ρ2, v2)(x)), Comp(S1, res(S2, v2)) hold. Suppose ρ2(v2) =

14

(v,N, ρ). Then (q,max(v, v2)) ∈ R(v)(res(S2, v2)) by the definition of R(v).
Hence also (q,max(v, v2)) ∈ R(v)(res(S2, v2))�max(v,v2), and in consequence
(q,Ω(q)) ∈ R(v)(res(S2, v2)) �max(v,v2). Since R(v) �max(v,v2)= res(ρ2, v2)(x)
we get by the invariant that Comp(Rx, res(r2, v2)(x)). As Comp(S1, res(S2, v2))
we conclude by the definition of Comp.

6 Global model checking

In this section we will show how to compute a finite representation of the
set of winning positions of Eve in the game K(A,M). For this we will first
define a, rather straightforward, representation of positions of the game as
trees. We will then show that the set of winning positions for Eve is regular:
the tree representations of winning positions are recognizable by a finite tree
automaton.

Recall that positions of K(A,M) are of the form q : (N, ρ, S) where N
is a subterm of M , ρ is an environment assigning a closure to every free
variable of N , and S is a stack of closures. Recall also that terms from all
the closures of ρ and S are subterms of M .

We start by defining a representation of closures as trees. We take the
set of all subterms of M as the alphabet: the arity of a letter N being the
number of free variables in N . So, for example, if N does not have free
variables then a node labelled by N is a leaf in a tree. When N has free
variables x1, . . . , xl; a closure (N, ρ) is represented by a tree whose root is
labelled by N and the subtree ti rooted in i-th child representing ρ(xi); for
i = 1, . . . , l. For t of this form, we write term(t) to denote the lambda term
obtained by substituting term(xi) for xi in N , for i = 1, . . . , l. Observe that
term(t) is closed: it has no free variables.

A position q : (N, ρ, S) of K(A,M) is represented as a tree whose root
labelled q : τN has the sequence of children: the tree rooted in the first child
representing (N, ρ), and the others representing the closures from S in the
same order as in S. Hence the number of children of the root depends on
the size of S that in turn is determined by the type τN of N .

Since representations of configurations are finite trees over a finite ranked
alphabet, we can use standard finite automata to recognize sets of such trees.
This gives a notion of a regular set of positions of K(A,M).

Theorem 7 For every A and M : the set of representations of positions of
K(A,M) that are winning for Eve is regular.

In order to prove the theorem we define an alternating tree automaton
B̂, and show that it accepts the desired set of configurations.

Of course we would like to use our reduction from infinite to finite games.
Let term(N, ρ, S) be the term denoted by the closure (N, ρ) applied to terms
denoted by the closures in S. It is a closed term of type 0. Of course the

15

behaviours of the Krivine machine from (N, ρ, S) and (term(N, ρ, S), ∅, ε)
are the same, that is they give the same Böhm trees. This implies that Eve
wins from q : (N, ρ, S) in K(A,M) iff she wins from q : (term(N, ρ, S), ∅, ε)
in K(A, term(N, ρ, S)). By the reduction theorem (Theorem 5) the later is
equivalent to Eve winning from q : (term(N, ρ, S), ∅, ε) in the finite game
G(A, term(N, ρ, S)). This is this last condition that our automaton will
check.

At the core of the construction we will have an automaton B recognizing
closures. Its states will be pairs (q,R), where q is a state and R a sequence
of residuals. In a state (q,R) when reading a symbol N the automaton will
do the following:

1. It will check if the type of N corresponds to the type of R, namely
that R is a sequence of closures of the same length and types as the
arguments of N . The automaton will reject if it is not the case.

2. Next, it will guess an assignment ρN of residuals to free variables of N ,
such that the position q : (N, ρN , R) is winning for Eve in G(A,M).
If there is no such assignment then the automaton rejects.

3. For every free variable xi of N , every stack Ri of residuals of appro-
priate type and every qi such that (qi, ri) ∈ ρN (xi)(Ri) the automaton
will send a copy of itself with the state (qi, Ri) to the i-th child of
the root. If there are no copies to be send then the automaton just
accepts.

Before we describe in the next lemma the language accepted by so defined
automaton B, we need to define a slight variant of finite games introduced in
Section 4. Given a closed term N , possibly of higher order, and a sequence
of residuals R corresponding to the type of N , we denote by G(A, N,R) the
game as in Section 4 but contiaing all the positions of the form q : (N, ∅, R)
for q a state of R.

Lemma 8 For every tree t representing a closure (N, ρ) every sequence R
of residuals of a type determined by the type of N , and every state q:

B accepts t from (q,R) iff

q : (term(t), ∅, R) is winning for Eve in G(A, term(t), R)

Proof
The proof is by induction on the size of t.

When t has only the root, the statement is immediate.
For the induction step let us start with the left to right direction. Sup-

pose t has a root labelled by N and let t1, . . . , tk be its children. The
existence of a run on t gives us an environment ρN such that the position

16

q : (N, ρN , R) is winning for Eve in G(A,M). Moreover, this run gives an
accepting run on term(ti) from the state (qi, Ri); for every Ri and qi such
that (qi, ri) ∈ ρN (xi)(Ri), for some ri. By induction assumption Eve has
a winning strategy from qi : (term(ti), ∅, Ri) in G(A, term(ti), R). Observe
that term(ti) is a closed term so the environment is empty.

Our goal is to show how Eve can win from the position q : (term(t), ∅, R).
She should start by playing exactly the same way as from q : (N, ρN , R) as
long as it is possible. It stops being possible when the play she reaches
a leaf qi : (xi, ρi, Ri). It means that Eve reaches at this point a position
labelled q : (term(ti), ∅, Ri). Since qi : (xi, ρi, Ri) is winning we get that
(qi,Ω(qi)) ∈ ρi(xi)(Ri). Moreover, as xi is a variable free in N , we have
ρi(xi) = ρN (xi)�r for some r. So, there is ri such that (qi, ri) ∈ ρN (xi)(Ri).
But then, as we have noted above, Eve has a winning strategy from q :
(term(ti), ∅, Ri) in G(A, term(ti), Ri). The same strategy is winning from
this position in G(A, term(ti)).

For the induction step for the right to left direction let us take a winning
strategy for Eve from the position q : (term(t), ∅, R). Let us write term(t) as
N [ρ] where N is the label of the root of t. Now rewrite the winning strategy
from q : (term(t), ∅, R) using N [ρ] notation. For every free variable xi of N
look at all the positions qi : (xi[ρ], ρi, Ri). Such a position corresponds to
qi : (term(ti), ρi, Ri). It is winning for Eve as it is reached by following a
winning strategy. Since term(ti) does not have free variables, the position
qi : (term(ti), ∅, Ri) is also winning. By induction assumption, we have
an accepting run on ti from the state (qi, Ri). We add all such (qi, ri)
to ρN (xi)(Ri). By definition we get that q : (N, ρN , R) is winning for Eve.
Hence in order to accept t from the state (q,R) the automaton should choose
ρN . �

The lemma allows us to construct an automaton B̂ recognizing winning
positions. Recall that a position q : (N, ρ, S) is encoded as a tree with
q : τN in the root, one son for (N, ρ) and a son for every element of S. In
the initial state when reading q : τN the automaton guesses a sequence of
residuals R of types determined by τN . It then starts the above automaton
B in the state (q,R) on the son representing (N, ρ). On the son representing
the i-th element of the stack it starts automaton B in (qi, Ri) for every Ri
of appropriate type and qi such that (qi, r) ∈ R(Ri) for some R. In short,
the automaton simulates several instances of the application rule. From the
above lemma it follows immedaitely, that B̂ is the automaton as required in
Theorem 7.

7 Conclusions

In this paper we have proposed to use Krivine machines to analyse higher-
order recursive schemes. Using two prominent results in the area we have

17

demonstrated that rich structure of this formalism allows to write compact
and powerful invariants on computation. The proof of decidability of local
model checking gives a good example of this. The proof for global model
checking shows that the structure of configurations of the Krivine machine,
although rich, is quite easy to work with. This said Krivine machine is a
very sophisticated model despite its simple presentation. As it happens, its
relatively rigid structure appears to be a good frame that helps formulat-
ing strong invariants of the Böhm tree it computes with rather elementary
definitions.

Let us give some more comments on the relations with the proof of
Kobayashi and Ong [KO09]. The later has been a remarkable achievement
showing that one can prove the result with the assumption method (in the
spirit of [Wal01]) on the level of terms instead of CPDA. Our residuals are
very similar to the additional indices in types introduced in that paper. Also
handling of ranks via �Ω(q) operation is similar in both proofs. The typing
rule for application gives naturally essentially the same rule as we use here.
The finite game in that paper is rather different though, as the typing system
of Kobayashi and Ong has not been designed to handle fixpoints or lambda-
abstraction. The proof of the correctness of the reduction is just different
since without configurations of Krivine machine it is very difficult to state
the correspondence between nodes in the tree generated by the scheme and
nodes in the finite game.

In our opinion, the presented proof of decidability of global model check-
ing is an important argument in favor of the use of Krivine machines. With
CPDA, the only induction parameter available is the rank of the stack. The
result in [BCOS10] is proved by reducing the stack level one by one. This
is technically quite difficult.

In the present paper we have kept models of λY - calculus in the back-
ground. Yet, the two proofs strongly suggest that there is a finitary model
where we can calculate the behaviour of a fixed automaton on a given term.
It would be very interesting to find a useful representation of this model.
The main obstacle is to understand the meaning of the fixpoint operator.

References

[BCOS10] C. Broadbent, A. Carayol, L. Ong, and O. Serre. Recursion schemes
and logical reflection. In LICS, pages 120–129, 2010.

[BO09] C. Broadbent and C.-H. Luke Ong. On global model checking trees
generated by higher-order recursion schemes. In FOSSACS, volume
5504 of LNCS, pages 107–121, 2009.

[CHM+08] Arnaud Carayol, Matthew Hague, Antoine Meyer, Luke Ong, and
Olivier Serre. Winning regions of higher-order pushdown games. In
LICS, pages 193–204, Pittsburgh United States, 2008.

18

[CR58] H.B. Curry and R.Feys. Combinatory Logic, volume 1. North-Holland
Publishing Co., Amsterdam, 1958.

[Dam82] Werner Damm. The IO- and OI-hierarchies. Theoretical Computer
Science, 20:95–207, 1982.

[HMOS08] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier
Serre. Collapsible pushdown automata and recursion schemes. In LICS,
pages 452–461. IEEE Computer Society, 2008.

[Kar10] Alexander Kartzow. Collapsible pushdown graphs of level 2 are tree-
automatic. In STACS, volume 5 of LIPIcs, pages 501–512, 2010.

[KNU02] Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order
pushdown trees are easy. In FoSSaCS, volume 2303, pages 205–222,
2002.

[KNUW05] Teodor Knapik, Damian Niwinski, Pawel Urzycyzn, and Igor
Walukiewicz. Unsafe grammars and pannic automata. In ICALP,
number 3580 in LNCS, pages 1450–1461, 2005.

[KO09] Naoki Kobayashi and Luke Ong. A type system equivalent to modal
mu-calculus model checking of recursion schemes. In LICS, pages 179–
188, 2009.

[Kri07] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-
Order and Symbolic Computation, 20(3):199–207, 2007.

[Ong06] C.-H. Luke Ong. On model-checking trees generated by higher-order
recursion schemes. In LICS, pages 81–90, 2006.

[Plo77] Gordon D. Plotkin. LCF considered as a programming language.
Theor. Comput. Sci., 5(3):223–255, 1977.

[Wal01] Igor Walukiewicz. Pushdown processes: Games and model checking.
Information and Computation, 164(2):234–263, 2001.

[Wan07] Mitchell Wand. On the correctness of the Krivine machine. Higher-
Order and Symbolic Computation, 20:231–235, 2007. 10.1007/s10990-
007-9019-8.

19

	Introduction
	Basic notions
	Game over configurations of Krivine machine
	Finite game G(A,M)
	Equivalence of K(A,M) and G(A,M)
	From Eve's winning strategy in K(A,M) to her winning strategy in G(A,M)
	From Adam's winning strategy in K(A,M) to his winning strategy in G(A,M)
	The invariant
	The strategy

	Global model checking
	Conclusions

