arXiv:1102.2782v1 [cs.FL] 14 Feb 2011

Isomorphism of regular trees and words

Markus Lohrey and Christian Mathissen

Institut fir Informatik, Universitat Leipzig, Germany
{lohrey, mathissen}@informatik.uni-leipzig.de

Abstract. The computational complexity of the isomorphism problemriy-
ular trees, regular linear orders, and regular words isyaedl A tree is regular
if it is isomorphic to the prefix order on a regular languagecase regular lan-
guages are represented by NFAs (DFASs), the isomorphisnigmofor regular
trees turns out to EXPTIME-complete (res@?-complete). In case the input au-
tomata are acyclic NFAs (acyclic DFAS), the correspondiegs are (succinctly
represented) finite trees, and the isomorphism problens nuhto bePSPACE-
complete (respP-complete). A linear order is regular if it is isomorphic teet
lexicographic order on a regular language. A polynomiaktagorithm for the
isomorphism problem for regular linear orders (and evemlsggvords, which
generalize the latter) given by DFAs is presented. Thisesobn open problem
by Esik and Bloom.

1 Introduction

Isomorphism problems for infinite but finitely presentedustures are an active re-
search topic in algorithmic model theory [1]. It is a folkéoresult in computable model
theory that the isomorphism problem for computable stmgstii.e., structures, where
the domain is a computable set of natural numbers and afior$aare computable too)
is highly undecidable — more precisely, it 1s{-complete, i.e., complete for the first
existential level of the analytical hierarchy. Khoussaiebal. proved in [17] that even
for automatic structures (i.e., structures, where the diorisaa regular set of words
and all relations can be recognized by synchronous mudtiagomata), the isomor-
phism problem is¥'{-complete. In [19], this result was further improved to anétic
order trees and automatic linear orders. On the decidabitie, Courcelle proved that
the isomorphism problem for equational graphs is decidgtldrecall that a graph is
equational if it is the least solution of a system of equatiower the HR graph opera-
tions. We remark that Courcelle’s algorithm for the isormaspn problem for equational
graphs has very high complexity (it is not elementary), sihazises the decidability of
monadic second-order logic on equational graphs.

In this paper, we continue the investigation of isomorphmwblems for infinite
but finitely presented structures at the lower end of thetsped/e focus on two very
simple classes of infinite structuresgular treesandregular words Both are particular
automatic structures. Recall that a countable tree is agdfuit has only finitely many
subtrees up to isomorphism. This definition works for orderees (where the children
of a node are linearly ordered) and unordered trees. An alguit’characterization in
the unordered case uses regular languages: An unorderaudbte) tre€l” is regular

http://arxiv.org/abs/1102.2782v1

if and only if there is a regular languadeC 3’* which contains the empty word and
such thafl" is isomorphic to the tree obtained by taking the prefix oraek ¢the empty
word word is the root of the tree). Hence, a regular tree carepeesented by a finite
deterministic or nondeterministic automaton (DFA or NF&)d the isomorphism prob-
lem for regular trees becomes the following computatiomabfem: Given two DFAs
(resp., NFAs) accepting both the empty word, are the coomdipg regular trees iso-
morphic? It is is not difficult to prove that this problem ca@ $olved in polynomial
time if the two input automata are assumed to be DFAs; therigthgo is very simi-
lar to the well-known partition refinement algorithm for chéng bisimilarity of finite
state systems [15], see Section 3.1. Hence, the isomorgdrisbbem for regular trees
that are represented by NFAs can be solved in exponential far first main result
states that this problem is in faEKPTIME-complete, see Section 3.2. The proof of the
EXPTIME lower bound uses three main ingredientsEQP TIME coincides with alter-
nating polynomial space [5], (ii) a construction from [1¥hich reduces the evaluation
problem for Boolean expressions to the isomorphism proliterfinite) trees, and (iii)

a small NFA accepting all words that ¢hmt represent an accepting computation of a
polynomial space machine [28].0ur proof technique yields another result too: It is
PSPACE-complete to check for two giveacyclic NFAs A;, A, (both accepting the
empty word), whether the trees that result from the prefies@nZ(A;) and L(As),
respectively, are isomorphic. Note that these two treeslaaly finite (since the au-
tomata are acyclic), but the size b{.4;) can be exponential in the number of states of
A;. In this sense, acyclic NFAs can be seen as a succinct repadisa of finite trees.
The PSPACE-upper bound for acyclic NFAs follows easily from Lindelfgsult [21]
that isomorphism of explicitly given trees can be checkeddgarithmic space.

The second part of this paper studies the isomorphism profderegular words
which were introduced in [6]. Ayeneralized wordver an alphabek’ is a countable
linear order together with &'-coloring of the elements. A generalized word is regu-
lar if it can be obtained as the least solution (in a certaimseemade precise in [6])
of a systemX; = t¢4,...,X,, = t,. Here, everyt, is a finite word over the alphabet
YU{Xy,...,X,}. Forinstance, the systei = abX defines the regular wor@b)~.
Courcelle [6] gave an alternative characterization of fagwords: A generalized word
is regular if and only if it is equal to the frontier word of aifely-branching ordered
regular tree, where the leaves are colored by symbols foidere, the frontier word
is obtained by ordering the leaves in the usual left-to{riider (note that the tree is
ordered). Alternatively, a regular word can be represebyeaiDFA A, where the set of
final states is partitioned into set§ (a € X); we call such a DFA gartitioned DFA
The corresponding regular word is obtained by orderingahguliage of4 lexicograph-
ical and coloring a wordv € L(.A) with « if w leads from the initial state to a state
from F,. A third characterization of regular words was provided kilbtunner [13]:

A generalized word is regular if it can be obtained from sitgh words (i.e., symbols
from X) using the operations of concatenatianpower,w-power and dense shuffle.
For a generalized word, its w-power (respi-power) is the generalized wordiu - - -
(resp.- - - uuu). Moreover, the shuffle of generalized words . . . , u,, is obtained by

! This construction is used in [28] to prove that the univétggroblem for NFAs isPSPACE-
complete.

choosing a dense coloring of the rationals with colfrs. .., n} (up to isomorphism,
there is only a single such coloring [26]) and then repla@ugry i-colored rational
by u;. In fact, Heilbrunner presents an algorithm which compéras a given system
of equations (or, alternatively, a partitioned DFA) an egsion over the above set of
operations (called gegular expressiorin the following) which defines the least solu-
tion of the system of equations. A simple analysis of Heiflorer’s algorithm shows
that the computed regular expression in general has exfiahsize with respect to
the input system of equations and it is easy to see that tiisatébe avoided.The
next step was taken by Thomas in [29], where he proved thasdimeorphism problem
for regular words is decidable. For his proof, he uses thédbédity of the monadic
second-order theory of linear orders; hence his proof doegield an elementary upper
bound for the isomorphism problem for regular words. Sucalgarithm was presented
later by Bloom andEsik in [2], where the authors present a polynomial time algm
for checking whether two given regular expressions defiom@phic regular words.
Together with Heilbrunner’s algorithm, this yields an erpatial time algorithm for
checking whether the least solutions of two given systemsqofations (or, alterna-
tively, the regular words defined by two partitioned DFA®) omorphic. It was asked
in [2], whether a polynomial time algorithm for this problemists. Our second main
result answers this question affirmatively. In fact, we grtivat the problem, whether
two given partitioned DFAs define isomorphic regular wordsy-complete. A large
part of this paper deals with the polynomial time upper bodru first step is simple.
By reanalyzing Heilbrunner’s algorithm, it is easily sebattfrom a given partitioned
DFA (defining a regular word) one can compute ipolynomial timea succinct repre-
sentationof a regular expression far. This succinct representation consists of a DAG
(directed acyclic graph), whose unfolding is a regular egpion for:.. The second and
main step of the proof shows that the polynomial time algomitof Bloom andEsik
for regular expressions can be refined in such a way that ksv@n polynomial time)
for succinct regular expressions too. The main tool in oapprs (besides the machin-
ery from [2]) algorithmics on compressed strings (see [BT]d survey), in particular
Plandowski’s result that equality of strings that are reprged bystraight-line pro-
grams(i.e., context free grammars that only generate a singleaan be checked in
polynomial time [24]. It is a simple observation thatayclicpartitioned DFA is basi-
cally a straight-line program. Hence, we show how to extdaddwski’s polynomial
time algorithm from acyclic partitioned DFAs to generaltiaoned DFAs.

An immediate corollary of our result is that it can be checkegolynomial time
whether the lexicographic orderings on the languages dkbgewo given DFAs (so
called regular linear orderings) are isomorphic. For thecsd case that the two input
DFAs accept well-ordered languages, this was shown in [8].us mention that it is
highly undecidable X'} -complete) to check, whether the lexicographic orderings o
the languages defined by two given deterministic pushdowonaata (these are the
algebraic linear orderings [3]) are isomorphic [19].

2 Take for instance the syste; = X;1Xs41 (1 < i < n), X, = a, which defines the finite
word a2" .

2 Preliminaries

For an equivalence relatidf on a setd anda € A we denote witha| s the equivalence
class containing?. Moreover|Alr = {[a]r | a € A}. Let us take a finite alphabét.
The length of a finite words € X* is denoted byu|. Let ¥+ = {u € X* | |u| > 0},
Yh={ue X*||jul =k}, XF ={ue X*| |u| <k}, andX=F = {u € X* | |u| >
k}. Foru,v € X*, we writeu <. v if there existsw € X* with v = uw, i.e.,u is
aprefixof v. We writeu <prer v if u <pef v @andu # v. For a languagé, C X* let
pref(L) = {u € Z* | v € L : u <,ef v}. For a fixed linear ordex on the alphabet
X we define thdexicographic order<i, on * as follows:u <jex v if u <prer v OF
there exist words, z, y anda, b € X' such thats < b, u = wax, andv = wby.

2.1 Complexity theory

We assume that the reader has some basic background in catyngieory, in partic-
ular concerning the complexity clasddk, P, PSPACE, andEXPTIME, see e.g. [23].
All completeness results in this paper refer to logspaceatohs.

A PSPACE-transducer is a deterministic Turing machine with a realy-anput
tape, a write-only output tape and a work tape, whose lergtiouinded by©("),
wheren is the input length. The output is written from left to right the output tape,
i.e., in each step the transducer either outputs a new syonitbk output tape, in which
case the output head moves one cell to the right, or the tt@esdoes not output a new
symbol in which case the output head does not move. Moreaxsegssume that the
transducer terminates for every input. This implies thRSBACE-transducer computes
amappingf : £* — ©*, where| f(w)| is bounded b!“|”"” . We need the following
simple lemma:

Lemma 2.1. Assume that the mappirfg: 2* — ©* can be computed byRSPACE-
transducer and lef. C ©* be a language irNSPACE(log’“(n)) for some constant.
Thenf~*(L) belongs taPSPACE.

Proof. The proof uses the same idea that shows that the composftierodogspace
computable mappings is again logspace computablevlet’.* be an input. Basically,
we run theNSPACE (log" (n))-algorithm for L on the inputf(w). But sincef can be
computed by #SPACE-transducer (which can generate an exponentially longututp
the length off (w) can be only bounded m)“”O(U. Hence, we cannot construffw)
explicitly. But this is not necessary. We only store a paitdesome positiorf (w) (this
pointer needs spadev|°")) while running theNSPACE(logk(n))—algorithm for L.
Each time, this algorithm needs t#& letter of f(w), we run the PSPACE-transducer
for L until the:*" output symbol is generated. The fiist 1 symbols off(w) are not
written on the output tape. Note that tN6PACE (log” (n))-algorithm forL needs space
log" (2117 = |w]|©™ while running onf (w). Hence, the total space requirement is
bounded byw|°™), 0

An alternating Turing machine an ordinary nondeterministic Turing machine, where
in addition the set of stateg is partitioned into existential state®4) and universal

states @v). A configuration, where the current state is existentiair, universal) is
called an existential (resp., universal) configuratiort. ueassume tha¥/ is an alter-
nating Turing machine without infinite computation pathkefi, we define inductively
the notion of araccepting configuratioas follows: Ifc is an existential configuration,
thenc is accepting if and only it has an accepting successor configuratior.iff a
universal configuration, thanis accepting if and only if all successor configurations of
c are accepting. Note that a universal configuration withaatsssor configurations is
accepting, whereas an existential configuration withootessor configurations is not
accepting. An input: is accepted by (briefly, z € L(M)) if and only if the initial
configuration with input: is accepting.

The complexity clas€_P consists of all languages C X* such that there exist
nondeterministic polynomial time Turing machings, and M, with input alphabet
X such that for every inpuy € X*: w € L if and only if the number of accepting
computations of\/; on inputw equals the number of accepting computationdbf
on inputw. If we replace in this definition nondeterministic polyn@iniime Turing
machines by nondeterministic logspace Turing machinesbtain the clas€_L.

2.2 Finite automata and transducer

LetA = (Q, X, 4, qo, F) be a nondeterministic finite automaton, briéfliZA, where@

is the set of stateg, is the input alphabet, C Q x X' x @ is the transition relation,
qo € Qistheinitial state, and” C (Q is the set of final states. A stajec () isaccessible
(resp.coaccessiblg if ¢ can be reached from the initial stajg (resp., if a final state
from F' can be reached fronj). We say that4 is accessible (resp., coaccessible), if
every state of4 is accessible (resp, coaccessible). An NBAs calledprefix-closed
if every state ofA is a final state. In that case, the langudged) is prefix-closed.
Moreover, if A is coaccessible and the prefix-closed NBAesults fromA by making
every state final, then clearlf(B) = pref(L(.A)). For a DFA (deterministic finite
automaton)y is a partial map from@ x X to Q. Sometimes, we will also deal with
NFAs (DFAs) without an initial state. If4 is an NFA without an initial state anglis
a state of4, thenL (A4, q) is the language accepted By wheng is declared to be the
initial state. We will need the following simple lemma, whiis probably folklore:

Lemma 2.2. For a given a DFAA = (Q, X, 6, qo, F'), we can compute the cardinality
|L(A)|] € NU {00} in polynomial time.

Proof. W.l.0.g we can assume thdtis accessible and coaccessible. Th¢l) is finite

if and only if A is acyclic. So assume that is acyclic. SinceA is deterministic, the

size of L(.A) equals the number of paths framto F'. Now, in a directed acyclic graph,
the number of paths from a source node to all other nodes caadily computed by
dynamic programming in polynomial time. a0

A partitioned DFAis a tupled = (Q, X, J, qo, (Fu)acr), Wherel is a finite alphabet,
B = (Q,%,0,q0,U,cr Fa) is an ordinary DFA and, N F, = {) for a # b. Since

B is a DFA, it follows that the languagk(B) is partitioned by the languagédg.A,),
where A, = (Q, X,0,q0,F,) (a € I'). We use partitioned DFAs to label elements
of a structure with symbols frorfi. The languagé.(.A,) will be the set ofu-labelled

elements. We do not introduce partitioned NFAs, since foA$\the languages(A,)
(a € I') would not partitionZ(B) (thus, a point could get several labels).

A (e-free)rational transduceiis a tupleT = (Q, X, I, J, qo, F'), whereQ (the set
of states),) (the input alphabet), anfi (the output alphabet) are finite seig, € @
is the initial state ' C @ is the set of final states, addC Q x ¥ x I't x Q is the

transition relation. A transitiofy, a, w, p) € § is also written ag a‘—w> p. The rational
transducefl defines a binary relatiof7 | C X* x I'* in the usual way. For a language
LCX*letT(L)={vel*|3uelL: (uv)ec[T]}

2.3 Trees

A treeis a partial ordefl” = (A4; <), where< has a smallest element (the root of the
tree; in particulard # () and for everya € A, the set{b € A | b < a} is finite
and linearly ordered by. We writea < b if a < b and there does not existe A
with a < ¢ < b. Fora € A, letchild(a,T') (the set of children of) be the set of all
b € A such that: < b. The set of leaves of isleaf (T') = {a € A | child(a,T) = 0}.
Fora € A let T, be the subtree df’ rooted ata, i.e., the set of nodes df |, is
{b € A|a <b}. The treeT is finitely branchingf child(a,T') is finite for alla € A.
An infinite pathof T is an infinite chaimgy < a; < as < ---; finite pathsare defined
analogously. IfT" is finite anda € A, then theheightof ¢ in T' is the maximal length
of a path that starts in. For treesl; and7, we write7; = T, in cas€l; andT; are
isomorphic.

A tree over the finite alphabeY is a pairT = (L; <p.f), WhereL C X* is a
language witle € L. Note thatT is indeed a tree in the above sense. Most of the time,
we will identify the languagé with the tree(L; <,.f). Moreover, ifL = pref(L) (i.e.,

L is prefix-closed), theff is a finitely branching tree.

A countable tre€l" is calledregular if T" has only finitely many subtrees up to
isomorphism. Equivalently, a countable tree is regulariff isomorphic to a tree of the
form (L; <pref), WhereL is a regular language with € L. We require that the empty
word ¢ belongs toL in order to ensure the existence of a root (otherwidse<)
would be only a forest). If. is accepted by the accessible DFAthen the subtrees of
(L; <pref) correspond to the final states.df Note that by our definition, a regular tree
need not be finitely branching.

Our definition of a regular tree (having only finitely many seles up to isomor-
phism) makes sense for other types of trees as well, e.g.oe-fabeled trees or or-
dered trees (where the children of a node are linearly od)ef&ese variants of regular
trees can be generated by finite automata as well. For irstancode-labeled regu-
lar tree(L; <pref, (La)acr), WhereI is the finite labeling alphabet anf, is the set
of a-labeled nodes can be specified by a partitioned DRAY, §, qo, (Fy)acr) With
L, = L(Q,%,d,q0, F,) andL = |J,. L,. We do not consider node labels in this
paper, since it makes no difference for the isomorphismlprol{node labels can be
eliminated by adding additional children to nodes). Ordesgular trees will be briefly
considered in Section 4.8.

2.4 Linear orders

See [26] for a thorough introduction into linear orders. hdie the order type of the
rational numbersy the order type of the natural number, ande the order type of
the negative integers. With we denote a finite linear order withelements. Letl =

(L; <) be a linear orderd is denseif L consists of at least two elements, and for alll
x < y there exists: with z < z < y. By Cantor’s theorem, every countable dense
linear order, which neither has a smallest nor largest edéimésomorphic to;. Hence,

if we take symboldg) and1 with 0 < 1, then({0,1}*1; <ix) = 5. The linear orderi

is scatteredif there does not exist an injective order morphigm n — A. Clearly,

w, w, as well as every finite linear order are scattered. A linedeoisregularif it is
isomorphic to a linear ord€i; <i.) for a regular languagg. Hence, for instancey,

w, w, and every finite linear order are regular linear orders.

For two linear ordersl; = (L1;<;) andA; = (Lg; <s) with Ly N Ly = () we
define the suml; + Ay = (L7 U Lo; <), wherex < y if and only if eitherz,y € L
andz < y,orz,y € Ly andx <, y, orx € Ly andy € L,. We define the product
Ay - Ay = (L1 x Lo; <) where(z1,22) < (y1,y2) if and only if eitherzs <5 yo Or
(x2 = y2 @andz; <q 11).

Aninterval of Ais a subsef C L suchthatr < z < y andz,y € I impliesz € 1.

An interval isright-closed(resp.left-closed if it has a greatest (resp. smallest) element
and it isclosedif it is both right-closed and left-closed. An intervAlis dense(resp.,
scatteredl if the linear order< restricted tal is dense (respscattered. A predecessor
(resp., successor) of € L is a largest (resp., smallest) elemenf{ofe L | y < x}
(resp.,{y € L | = < y}). Of course, gredecessofresp.,successgrof = need not
exist, but if it exists then it is unique.

2.5 Generalized words

Generalized words are countable colored linear orders3Lbe a (possibly infinite)
alphabet. Ageneralized wordor simply word)u over X' is a triple(L; <,) such that
L is a finite or countably infinite sek is a linear order orl andr : L — XY is a
coloring of L. The alphabealph(u) equals the image of. If L is finite, we obtain a
finite word in the usual sense. As for trees, we wiite v for generalized words and
v in caseu andv are isomorphic.

Letu = (L;<,7) be a generalized word over with I" = alph(u). Letv, =
(Lq; <4, 7o) be a generalized word for eache I'. We define the generalized word
u[(a/va)aer] = (L'; <, 7') as follows:

- L' ={(z,y) |y L,xc Ly}
- (z,y) < («/,y') if and only if eithery < ¢’ or (y = ¢’ andx <., =’), and
- T/(I,y) = T(y)(x)

Thus,u[(a/v,)qcr] is obtained fromu by replacing every-labelled point by, (for all

a € X). Now we can define the regular operations on words. In oldotso we need
the following words. The wordsb anda® for a,b € X are as usual. The generalized
word ¢¥ hasw as underlying order and every element is colored witlFinally, we
let a1, ..., a,]" be the generalized word with underlying ordewhere the coloring

is such that any point is labeled by some(1 < i < n) and, moreover, for any two
pointsz < y and anyl < i < n we find a point: with x < z < y colored bya;. It can
be shown that this describes a unique word up to isomorptiéin [

Definition 2.3 (Regular Operations).Letu, v, uq, ..., u, be words ovet.. We let:
uv = (ab)[a/u,b/v] u® = a“[a/u]
[ut,. . sun]? = [a1, ... an)"ar/u1, ..., an/uy] v = a”[a/ul.

Thus, the underlying linear order afv is the sum of the underlying linear orders
of uw andwv. Intuitively, we haveu* = wuu--- andu® = ---uuu. Note that since
[u1,...,u,]"is invariant under permutations of the we also sometimes use the nota-
tion X" for a finite setX. The least set of words which is closed under the regular op-
erations and contains the singleton wosider a € X is called the set aegular words
over X, denotedReg(X). Note that this implies that every regular word is non-empty
i.e., its domain is a non-empty set. Moreover, although waal’ to be infinite (this

will be useful later), the alphabetph(w) of a regular wordw must be finite. Clearly,
every regular word can be described bregular expressioover the above operations,
but this regular expression is in general not unique.

Example 2.4 Here are some typical identities between regular wordsrevieis a
finite set of regular wordsy > 0, m > 1, u,uq,...,u, € X, everyy; (1 < i < m)
has one of the formX ", y X", X"z, yX"z with y, z € X, andv, w are regular words:

XXM XMy X2 (XY 2 (X Ty)? =2 (X7 2 (uX") =2 X",
[ul,...,un,vl,...,vm” %Xnv

(vw)¥ = v(wv)?, (vw)® = (wv)“w.
See [2] for a complete axiomatization of the equational thedregular words.

By a result of Heilbrunner [13], regular words can be chamaréd by partitioned
DFAs as follows: Letd = (Q, I, 9, g0, (F.)awecx) be a partitioned DFA, and lé8 =

(Q, 16,90, U,cx Fu). Let us fix a linear order on the alphaliét so that the lexico-
graphic ordeK . is defined on™*. Then we denote witly(.A) the generalized word

U)(A) = (L(B)7 Slexa T)’

wheret(u) = a (e € X, u € L(B))ifand only ifu € L(Q, I, qo, Fy). It is easy to
construct from a given regular expression (describing égellar wordu) a partitioned
DFA A with u = w(A), see e.g. [29, proof of Proposition 2] for a simple constourct
The other direction is more difficult. Heilbrunner has shawii13] how to compute
from a given partitioned DFAA4 (such thatw(.A) is non-empty) a regular expression
for the wordw(.A), which is therefore reguldrlUnfortunately, the size of the regular
expression produced by Heilbrunner’s algorithm is exptiaéin the size ofA. In

3 In fact, Heilbrunner speaks about systems of equations lagid least solutions instead of
partitioned DFAs. But these two formalisms can be easilyl (efficiently) transformed into
each other.

Section 4.4, we will see that a succinct representation efalar expression fav(A)
can be produced in polynomial time.

One can show that the isomorphism problem for regular wayige by partitioned
DFAs) can be reduced (in logspace) to the isomorphism prolde regular linear or-
ders (given by DFASs). In other words, node labels can be slited as for regular trees
(as remarked at the end of Section 2.3). So, the reader msghtvay we consider the
isomorphism problem for regular words and do not restricetpular linear orders. The
point is that even if we start with regular linear orders,fia tourse of our polynomial
isomorphism check regular words will naturally arise.

3 Isomorphism problem for regular trees

In this section, we investigate the isomorphism problem(émordered) regular trees.
We consider two input representations for regular treea<Ddnd NFAs. It turns out
that while the isomorphism problem for DFA-representedifagtrees i-complete,
the same problem becom&XPTIME-complete for NFA-represented regular trees.
Moreover, we show that fdinite trees that are succinctly representedibyclicNFAs,
isomorphism iPSPACE-complete.

3.1 Upper bounds

Theorem 3.1. The following problem can be solved in polynomial time:

INPUT: Two DFAsA; and.A; such that € L(A;) N L(As).
QUESTlON(L(A1)7 Spref) = (L(-A2)7 Spref)?

Proof. By taking the disjoint union of4; and As, it suffices to solve the following
problem in polynomial time:

INPUT: A DFA A without initial state and two final statesq of A.
QUEST'ON(L(.A,])), Spref) = (L(Av Q)a Spref)?

Note thate € L(A,p) N L(A, q) sincep andq are final. Letd = (Q, X, 4, F). In fact,
we will compute in polynomial time the equivalence relation

iso = {(p,q) € F x F'| (L(A,p); <pref) = (L(A, q); <pref) }-

This will be done similarly to the classical partition refinent algorithm for checking
bisimilarity of finite state systems [15].

Forp € FandC C F' let L(A, p, C) be the set of all words accepted by the DFA
(@, X,6,p,C). Hence, the sets(A, p, {q}) (¢ € F) partition L(A, p). Let us say that
anodeu € L(A,p) is of typeq if u € L(A,p,{q}). Forp € FandC C F letus
define the subsek' (A, p,C) C L(A,p,C) as the set of all words oveX labeling a
path fromp to a state fronC' without intermediate final states; this is clearly a regular
language and a DFA faK (A, p, C') can be easily computed in polynomial time from
A, p, andC': We take the DFAA and remove every transition leaving a final state from
F. Moreover, we introduce a copy of p, which will be the new initial state and there

is ana-labeled transition fromp’ to ¢ if and only if there is am-labeled transition from
ptogqin A. Finally, C is the set of final states.

Note that ifu € L(A, p) is of typeq, then the nodesv with v € K (A, ¢, F') are
exactly the children of; in the tree(L(A, p); <pref). Letn(p,q) € NU {oo} be the
cardinality of the languag& (p, {¢}). By Lemma 2.2, each of these numbex, ¢)
can be computed in polynomial time. F6rC F'letn(p,C) = quF n(p,q). Thus
n(p, C) is the cardinality of the languad€(p, C).

Let us now compute the equivalence relatign As already remarked, this will be
done by a partition refinement algorithm. Assume tRas an equivalence relation on
F. We define the new equivalence relatiBron F' as follows:

R={(p,q) € R | n(p,C) = n(q, C) for every equivalence clags of R}.

Thus,R is a refinement of? which can be computed in polynomial time fra®a Let us
define a sequence of equivalence relati®sR;, ... on F' as follows:Ry = F x F,
R;+1 = R;. Then, there exist8 < |F| such thatR;, = Ry1. We claim thatR;, = iso.
A simple argument shows that for every equivalence relaiam F” with iso C R, one
hasiso C R as well. Hence, by induction oveér> 0, one getsso C R; forall i > 0.

For the other direction, we show thatfifis an equivalence relation dh such that
R = R (this holds forRy), thenR C iso. So, assume thdp,,p2) € R = R. We
will define an isomorphisnf : (L(A, p1); <pref) = (L(A, p2); <pref) as the limit of
isomorphismsf,,, n > 1. Here, f,, is an isomorphism between the trees that result
from (L(A, p1); <pref) and (L(A, p2); <pref) by cutting off all nodes below leve}
(the roots are one level 1). Let us call these tréBEA, p;); <pref)[n (¢ € {1,2}).
Moreover,f,, has the additional property thatff, maps a node; of typeq; to a node
ug Of type ¢o, then we will have(qq, ¢2) € R. Assume thaff,, is already constructed
and letu, of typeq; be a leaf of(L(A, p1); <pref) [n. Letua = f(u1) be of typegq;
it is a leaf of (L(A, p2); <pref) [n. Then we haveqi,q2) € R = R and hence for
every equivalence clags of R we haven(qi1,C') = n(gz, C). We can therefore find a
bijectiong between the languagés(q:, F') and K (g2, F') such tha{u, g(uv)) € R for
all w € K(q1, F). Note that the nodes;v with v € K(g;, F') are the children of; in
the tree(L(A, p1); <prer). We now extend the isomorphisyfi by g and do this for all
leavesu; of (L(A,p1); <pref) In- This gives us the isomorphisyi;1. a

Corollary 3.2. The following problem belongs ©XPTIME:

INPUT: Two NFAsA; and.A; such that € L(A;) N L(Az).
QUEST|ONZ(L(A1); Sp,—ef) = (L(.AQ); Sp,—ef)?

Proof. In exponential time, we can transfory and.A; into DFAS using the powerset
construction. Then we can apply Theorem 3.1. a

Theorem 3.3. The following problem belongs #SPACE:

INPUT: Two acyclic NFAs4; and.A; such that € L(A4;) N L(As).
QUESTION:(L(A1); <pref) = (L(A2); <pref)?

10

Proof. By [21], isomorphism for finite trees, given explicitly by jadency lists, can
be decided in deterministic logspace. Hence, by Lemma 3liffices to show that for
a given acyclic NFA, the adjacency list representation fer tree(L(A); <pf) can
be computed by S PACE-transducer. This is straightforward. Assume thais the
alphabet of4 and thatn is the number of states of. Let us fix an arbitrary order oft
and letz be the largest symbol ixv'.

The languagd.(.A) only contains words of length at most— 1. In an outer loop
we generate the languagé.A). For this, we enumerate all words (e.g. in lexicographic
order) of length at most — 1 and test whether the current word is acceptedbyror
each enumerated worde L(.A), we have to output a list of all children afin the tree
(L(A); <pref)- In @an inner loop, we enumerate (again in lexicographic graéwords
uwv (v € XT) of length at most: — 1 and check whetherv € L(A). In case, we find
such a worduv € L(A), we outputuv and do the following: Ifv € {z}*, then the
inner loop terminates. On the other handy i v'az*, wherea # z, then we jump in
the inner loop to the wordv’b, whereb is the symbol following: in our order. a

3.2 Lower bounds

The main result of this section states that the isomorphissblpm for regular trees
that are represented by NFASEXPTIME-hard, which matches the upper bound from
the previous section. Itis straightforward to prdd&PACE-hardness. I is the under-
lying alphabet of a given NFA4, then(L(A); <g.f) is a full | X|-ary tree if and only

if L(A) = X*. But universality for NFAs isSPSPACE-complete [28]. The proof for
the EXPTIME lower bound is more involved. Here is a rough outliB&PTIME coin-
cides with alternating polynomial space [5]. Checking vileeta given input is accepted
by a polynomial space bounded alternating Turing machihamounts to evaluate a
Boolean expression whose gates correspond to configusaifarl. Using a construc-
tion from [14], the evaluation problem for (finite) Booleaxpeessions can be reduced
to the isomorphism problem for (finite) trees. In our case,Bloolean expression will
be infinite. Nevertheless, the infinite Boolean expressiafiave to deal with can be
evaluated because on every infinite path that starts in titétiee output gate) there will
be either arand-gate, where one of the inputs igdse-gate, or aror-gate, where one
of the inputs is arue-gate. Applying the construction from [14] to an infinite Bean
expression (that arises from our construction) will yiehbtinfinite trees, which are
isomorphic if and only if our Boolean expression evaluatesde. Luckily, these two
trees turn out to be regular, and they can be representedddy/SRAS.

Infinite Boolean formulas. Let us fix the alphabet
Q:{aa‘g/\a‘gl/\ar/\a‘g\/a‘a/ar\/}- (1)

In the following, we will only consideprefix-closedrees over the alphabéx (we will
not mention this explicitly all the time). Moreover, we widlentify the tree(L; <p.f)
with the languagd.. Now, consider such a tréle C 2*. Then,T is well-formed if the
following conditions hold:

11

(@) Ifu = e oru € T ends withéy, {a, ry, OF ra, thenchild(u, T) is one of the
following sets, where € {V,A}: {ulo, urs}, {ull,urs}, {ua, ull, urs}.

(b) If u € T ends witha, ¢, or ¢, thenu is a leaf ofT".

(c) For every infinite pathP in T', there exists, € P with ua € T.

Note that a well-formed tre€ is always infinite; it contains an infinite path of the form
rirers - -+, Wherer; € {rn,ry} foralli > 1. Let us define the set

cut(T) ={ueT |ua €T, Vv <pref u:va & T}. (2)

Hence, on every infinite path ifi there is a unique node froout(7").
With a well-formed tre€l” we associate an infinite Boolean expresdionl(T") as
follows: The gates obool(T") are the nodes df' that do not end witha.

The set of input gates far € T'is child(u, T') \ {ua}.

If ury € T (respura € T), thenu is anor-gate (respand-gate).
— If wl), € T andua ¢ T, thenul/, is atrue-gate.

If ul), € T andua € T, thenul/, is afalse-gate.

If ull, € T andua ¢ T', thenu!,, is afalse-gate.

— If wl{, € T andua € T, thenuf!, is atrue-gate.

Althoughbool(T) is an infinite Boolean formula, the fact tHAtis well-formed ensures
that the root ofbool(T") can be evaluated: We simply remove frdmall nodes that
have a proper prefix froraut(T"). The resulting tree has no infinite path and since it is
finitely branching it is finite by Konig's lemma. I € cut(T) is such thaw¢), € T
(resp.,uf{, € T), thenu can be transformed intofalse-gate (resp.true-gate). Then,
one has to evaluate the resulting finite Boolean expression.

We next transform a treé€ C 2* into treeq[T'],, [T]2 C {¢,r}* using two rational
transducers. These two transducers only differ in thefiainstate. Fori € {1,2}, let
7; be the transducer from Figure 1, where the initial statg snd all states are final.
Then, for atred” C 2* andi € {1,2} let [T]; = pref(7;(T")). We will show that for
every well-formed tred” C 2*: bool(T') evaluates to true if and only |[f]; = [T)..
(Lemma 3.9) For this, we first have to show a few lemmas.

Lemma3.4. LetT = {¢,¢,} Ur,Uor T = {e, ¢, } Ur, U for atreeU (hence, also
T is atree). ThenT]; = [T]2 if and only if[U]; = [U]s.

Proof. We only prove the lemma fof’ = {¢,#,} U r,U; the statement fofl" =
{e,¢,,} Ur U can be shown analogously. Let us compute comfuté&’) and 7> (7).
We have

Ti(l,) = Ta(€y) = {€%, 0%} ®3)

Next, we have to computg (r,U). There are two transitions startingqmn, wherer,,
can be read, namely

Ty |erel rv\r2€
g ———>Qq2 and Qg ——(q1-

Hence, we get
Ti(ryU) =L Ti(U) U Lre To(U). (4)

12

enll by|re enll

ralré | lrt ra|ré
é\/|£2 C‘ /\ é\/|7’é
7‘\/|7‘2€ ql_/qz 7‘\/|7‘2€
0y 02

o rv|oré szwz

Z/VM 2 £,v|7“€2

0y re T

AL a

: . al £

al £

al fr

Fig. 1. The transducer

Fig. 2. [T]: (left) and[T]2 (right) from Lemma 3.4

Similarly, we get
Tao(rU) = r To(U) U Lrt Ti(U). (5)

From (3), (4), and (5) it follows that the tre¢s]; = pref(7;({¢,¢,} UryU)) (i €
{1,2}) are the ones shown in Figure 2. The equivalend&f = [T, and[U]; = [U]2
is obvious from these diagrams. a

The following three lemmas can be shown with the same kindergdiments as for
Lemma 3.4. We therefore only sketch the proofs.

Lemma3.5. LetT = {¢,4,,a} Ur,U for atreeU (hence, alsdl’ is a tree). Then
(T = [T

Proof. We haveT; (a) = {£3} andTz(a) = {¢3,¢r}. It follows, that the tree§l’]; and
[T, are as shown in Figure 3. Clearly, we hd¥&, = [T],. O

13

Fig. 4. [T]: (left) and[T]2 (right) from Lemma 3.6

Lemma3.6. LetT = {e,¢,,a} Ur U for atreeU (hence, alsdl’ is a tree). Then

[Th % [T]2.

Proof. The treeqgT]; and[T]» are shown in Figure 4. Clearly, we halE]; 2 [T]s.
O

Lemma3.7. LetT = {e} U ¢,U U r,V for well-formed treed/, V' (hence, alsd’ is
well-formed). Theffil']; = [T]s if and only if ([U]; = [U]s or [V]1 & [V]2).

Proof. The treedT]; and[T']2 are shown in Figure 5. Sindé andV are well-formed,
in each of the treefl/],, U]z, [V]1, and[V]s, the root has two children. It follows
easily thafT|; = [T]. if and only if (U], = [U]s or [V]; = [V]2). O

Lemma 3.8. LetT = {e} U, U Ur,V for well-formed treed/, V' (hence, alsd’ is
well-formed). Theril']; = [T, ifand only if ([U]; = [U]2 and[V]; 2 [V]2).

Proof. The tree§T|; and[T], are as shown in Figure 6. Sinéé and V" are well-
formed, in each of the tred®];, [U]z2, [V]1, and[V]z, the root has two children. It
follows easily tha{T']; 2 [T)» if and only if (U]; = [U]2 and[V]; = [V]2). O
Lemma 3.9. For every well-formed tre& C 2*, we havebool(T') evaluates to true

if and only if[T]; = [T]s.

14

Fig.5.[T]: (left) and[T]2 (right) from Lemma 3.7

Fig. 6.[T]: (left) and[T]2 (right) from Lemma 3.8

Proof. Recall the definition of the seut(T') from (2). From the definition it follows
thatpref(cut(T)) is a finitely branching tree without infinite paths. Hence Kiynig’s
lemma it is finite. Moreover, for every < pref(cut(T)), the subtreel'[,, is well-
formed as well (sinceref(cut(T")) C {e} U 2*{¢y,Lr, v, 7A}). Inductively over the
height ofu € pref(cut(T)) in the finite treepref(cut(T)), we will prove for every
u € pref(cut(T)): [T1u)1 = [T']4)2 if and only if bool(T'[,,) evaluates tarue.

For the induction base, let € cut(T") be a leaf ofpref(cut(T)). Hence, we have
ua € T.If ull, € T, then inbool(T'[,), the root is arand-gate for which one of
the inputs (namely.?),) is afalse-gate. Hencehool(7'[,,) evaluates tdalse. Moreover,
Lemma 3.6 implies thall'[,]1 % [Tl.]2- On the other hand, i.¢{, € T, then in
bool(T'[,,), the root is aror-gate for which one of the inputs (namely.,)) is atrue-
gate. Hencehool(T|,,) evaluates tarue. Moreover, Lemma 3.5 implies th&f'[,,]; =
[T'[.]2. This concludes the induction base.

Next, letu € pref(cut(T")) be a proper prefix of a node froout(7"). In particular
u ¢ cut(T). We can distinguish 4 different cases:

15

Case 1child(u, T) = {uln, urs}. We must haveul,, ur,} C pref(cut(7')). Hence,
the induction hypothesis (IH) holds fa¥ , andur,. We get:

bool(T'T,) evaluates tarue <= bool(T'[,¢,) evaluates tarue and

)

bool(T'[...,) evaluates tarue
= (1 1 71
[T [T

Lemma 3. 8[T ru]

HZ

wtn]2 and

ural2

IIZ

1 & [T fu]2
Case 2child(u, T) = {ufy,ury }. This case is analogous to Case 1, using Lemma 3.7.

Case 3.child(u,T) = {uwl),urp}. Sinceu ¢ cut(T), we haveua ¢ T. We must
haveur, € pref(cut(T")). Moreover, inbool(7'[,,), the root is arand-gate, where one
of the inputs is arue-gate and the other input is the root for the Boolean expoassi
bool(T'[.-,). Hence, we get:

bool(T'[,,) evaluates tarue <= bool(7T'[,,) evaluates tarue
IH
g} [TrurA]l = [TrurA]Q
R = (T

Case 4child(u, T') = {uf,,ury }. This case is analogous to Case 3. O

Our last auxiliary lemma states that an NFA for the tfBg can be easily computed
from an NFA forL.

Lemma 3.10. There is a logspace machine that computes from a given priefeed
NFA A with terminal alphaber? a prefix-closed NFA3 such that(B) = [L(A)]; for
ic{1,2}.

Proof. Let A = (Q, 2, 4, po, Q). Recall that all states of; and.A are final. The prefix-
closed NFAB is obtained from the direct product gf and7; by adding further states
so that every transition is labeled with a single symbol. Shhe set of states d#
containg® x {q¢1, g2, s} and the initial state aB is (po, ¢;). If ¢ LN ¢ in Aandt Dl g
in 7; forw € {¢,r}*, then we addw| — 1 many new states t, which built up a
w-labeled path from fronfg, t) to (¢, ¢'). O

EXPTIME-hardness. We are now in the position to prove the main result of this
section.

Theorem 3.11. The following problem i€ XPTIME-hard (and henc&XPTIME-com-
plete):

INPUT: Two prefix-closed NFA4; and As.
QUEST|ONZ(L(A1); Sp.—ef) = (L(.AQ); Sp.—ef)?

16

Proof. The upper bound is stated in Corollary 3.2. For the lower lbdoue use the fact
thatEXPTIME equals the class of all sets that can be accepted in polyhspsiae on
an alternating Turing machine [5]. Hence, It be a polynomial space bounded alter-
nating Turing machine such that the accepted languiagé) C {0,1}* is EXPTIME-
complete. We can assume thit has no infinite computation paths. By padding in-
puts, we can moreover assume thatworks in space: for an input of lengthn. Let

Q = Q3UQy be the set of states f and letI” O {0, 1} be the tape alphabet. W.l.0.g.
we can assume that in every computation sfeépmoves from an existential state to a
universal state or vice versa, and that the initial sigtis universal.

Let us now fix aninputv € {0, 1}* of lengthn. We will construct two prefix-closed
NFAs 4, and.A; such thaty € L(M) ifand only if (L(A1); <prer) = (L(A2); <pref)-
Let©® = I' U Q. As usual, a configuration o¥/ can be represented by a string from
the languag®™*! (more precisely, fronhj?;o1 riQrr»-7). Awordu € ©* is avalid
computation ofAMf on inputw if « is of the forme;y - - - ¢,,, for somem > 0 such that
the following holds:

—c € U}:Ol riQrr-iforalll <i<m

— ¢; by ocign (i-€.,¢541 1S @ successor configuration@) forall 1 <i <m —1

- qow kM
Note thate is a valid computation in this sense. It is well known thainfre one can
construct in logspace a coaccessible NBA such that4,, accepts all words oved
that arenota valid computation o/ onw [28].

Next, we will define a regular well-formed trée, C 2* (depending only onw)
such thatbool(7,) evaluates tarue if and only if w € L(M). In the following, we
identify the symbols ir© with the integer9), ..., |©| — 1 in an arbitrary way. We can
assume tha®| > 2. We define two morphisms

(p/\ . @* — {g/\,"’/\}*
Pv ¢ @* — {g\/,"’\/}*

as follows ¢ € {A, V}):

(@) rél, f0<a<|O]-1
ola) = .
4 re ifa=10|-1

Fori > 1, let p; be the mapping , (resp.py) if i is odd (resp., even). Similarly, for
x € {L,0 r}, letx; bexn (resp.xy) if i is odd (resp., even). Then, the trég C 2*
is pref(T7,), where

T, = {(Hri%(ci))ﬂnﬂ |m>0,c1,...,¢m € 8"“} U
i=1

{(Hn%(cz'))a |m>0,c1,...,cm €O c1 o € L(Aw)}
=1

Clearly, T, is regular, and a prefix-closed NFA f@t, can be computed in logspace
from w (using the logspace computable coaccessible MEA.

17

Claim 1: T, is well-formed.

Proof of Claim 1:The first three conditions for well-formed trees are easyeck. For
the last condition, we have to consider an arbitrary infipaéh P of T}, and show that
there exists: € T, such thatua € T'. But this means that is of the form

m

U= H ripi(c;)

i=1

withm > 0, ¢1,...,¢n € O™ ande; - - - ¢, € L(A,). The latter condition means
thate; - - - ¢, is not a valid computation af/ on inputw. Claim 1 now follows from
the fact that for every infinite sequenegscs - - - with ¢; € @™+ for i > 1 there exists
m > 1 such that; - - - ¢,, is not a valid computation af/ on inputw (sinceM does
not have infinite computation paths).

Claim 2:w € L(M) if and only if bool(T,) evaluates tarue.

Proof of Claim 2:Let us consider thénite treepref (cut(73,)). For every node

g =rapalcr)rvov(ca)ra - Pm—1(cm—1)rmpm(cm) € pref(cut(Ty))

with m > 0 andcy, ..., ¢,, € @™ we will prove (by induction on the height gf the
following: If ¢; - - - ¢, is @ valid computation oM on inputw, thenc,, is an accepting
configuration if and only iy evaluates to true ihool(T.,). Here, form = 0, we define
o as the initial configurationyw.

So, assume that € pref(cut(T,,)) is of the above form and that - - - ¢,,, is a valid
computation ofM on inputw. W.l.0.g. assume that is odd (the case that is even
can be dealt analogously). Thus,

g =rapalcr)rvov(ca)ra - ov(em—1)raea(cm)-

Then, inbool(T,,), the input gates for ther-gateg areg¢{, andgry. Sincec; - - - ¢y,
is a valid computation of\/ on inputw, ga does not belong to the trég,. Hence,
in bool(T),), g¢,, is afalse-gate. Thusg evaluates tarue if and only if gr, eval-
uates totrue. From the structure of’, we see that the latter holds if and only if
there existsc,,11 € ©"*! such thatgry ¢y (c,11) evaluates tarue. First assume
thatc,, 11 is such that; - - - ¢, ¢41 IS NOt @ valid computation. The inputs for thed-
gategry oy (cm+1) aregryey (cmi1)l andgry oy (Cmy1)ra. SinCecy « - - ¢y em41 1S
not a valid computationgry v (¢;n+1)a belongs to the tre&,,. Thus, inbool(T,),
grvev(em+1)l), is afalse-gate andyry ¢y (¢ +1) evaluates tdalse. This holds for all
Cm+1 Such that; - - - cemp1 IS NOt @ valid computation. Hencer, evaluates tarue
if and only if there exists a configuratian,,; € ™! such thatc; - - - ¢cmy IS
a valid computation (which means tha} ., is a successor configuration af,) and
grvpv(em+1) evaluates tdrue in bool(Ty,). Now, if ¢1 - - - ¢pemyr IS @ valid com-
putation, then by inductioryry ¢y (¢mt1) (Which belongs toref(cut(Ty,)) as well)
evaluates tarue in bool(T,,) if and only if ¢, 1 is an accepting configuration 8f .

We have shown that evaluates tarue if and only if ¢,,, has an accepting successor
configuration. Finally, since: is odd,c,, is an existential configuration (recall that the

18

initial configurationcy = ¢ow is universal). Thus, indeed, evaluates tarue if and
only if ¢,, is accepting. This proves Claim 2.

Let 7; and7; be the rational transducers from Section 3.2. Using Lemh@ ®e can
compute in logspace from a prefix-closed NFA gr two prefix-closed NFAs4; and
As such thatl(A;) = [Ti,]; for i € {1,2}. By Lemma 3.9 and Claim 2, we have

w € L(M) <= bool(T,,) evaluates tarue <= (L(A1); <pref) = (L(A2); <pref)-

This concludes the proof of tHeXPTIME lower bound. a

PSPACE-hardness

Theorem 3.12. The following problem i®SPACE-hard (and thereforé SPACE-com-
plete):

INPUT: Two prefix-closed acyclic NFA4; and As.
QUESTION:(L(A1); <pref) = (L(A2); <pref)?

Proof. The upper bound is stated in Theorem 3.3. For the lower bavedse the same
idea as in the proof of Theorem 3.11. In fact, we will use mé#he notations from that
proof; some of them will be slightly modified. This time, weaube fact thaPSPACE
equals the class of all sets that can be accepted in polyhim@on an alternating
Turing machine. Hence, Ié/ be a polynomial time bounded alternating Turing ma-
chine such that the accepted languagé/) C {0,1}* is PSPACE-complete. Lep(n)

(a polynomial) be the time bound and {gt) = p(n) + 1. We can assume thatn) is
odd for alln > 0. W.l.o.g. we can assume again thlidtworks in space: for an input

of lengthn. Letw € {0,1}* be an input forM of lengthn.

Let us add to the alphabétin (1) an additional symbel|,. The notions from Sec-
tion 3.2 have to be extended to this new alphabein condition (a) for the definition of
a well-formed tre€l”, we also allow the sefua, uf!,, ur!,} for child(u,T). Moreover,
every nodeur{, € T is a leaf ofT". The new definition for the seut(T") can be over-
taken from (2). Also the Boolean expressiasol(7) can be defined as in Section 3.2;
the truth value of a leaf ending witt}, is set arbitrarily (sayrue). Finally, let us extend
the two transducerg; and7; such that, fromy; andg- they can read the new symbol
r{, and outpu? and then terminate in a sink state

We now define the well-formed trdé, C 2* asU,, = pref(U,,), where:

U1/u = {(HH%(@))%H |0 <m <gq(n),ci,....cm € 9n+1} U
i=1

{(Hmcpi(ci))a |0<m < q(n),cry...,c;m €O vy € L(Aw)} U

i=1
q(n)

{(H rigoi(ci))r(/ | c1, - -3 Cqn) € @"H}.
i=1

Note thatl/,, is finite. An acyclic prefix-closed NFA fdv,, can be produced in logspace
from w. Moreover, since every word fro@(+1)4(") is not a valid computation (since

19

M terminates afteK p(n) = ¢(n) — 1 steps), the Boolean expressibeool(U,,) and
bool(Ty,) (whereT,, was defined in the proof of Theorem 3.11) evaluate to the same
truth value. Hence, using Claim 2 from the proof of Theorefr 3it follows thatw €
L(M) if and only if bool(U,,) evaluates tarue. Using an analogon of Lemma 3.9,
this holds if and only if{U,]1 = [Uy]2. Acyclic NFAs for [U,]1 and [U,]2 can be
easily constructed in logspace fram(using an acyclic NFA fof/,,). This concludes

the proof of the theorem. a

P-hardness

Theorem 3.13. The following problem i®-hard (and henc®-complete):

INPUT: Two prefix-closed acyclic DFA4; andA,.
QUESTlON(L(Al)y Spref) = (L(A2)7 Spref)?

Proof. The upper bound is stated in Theorem 3.1. For the lower bowedreduce
the P-complete monotone circuit value problem [12] to the prabfeom the theorem.
Note that the tre€L(A); <,.f), WhereA is a prefix-closed acyclic DFA, is just the
unfolding of the underlying dag (directed acyclic graphjhie initial of A. Vice versa,
from a dagD with a root node- one can construct a prefix-closed acyclic DBfsuch
that(L(A); <urf) is isomorphic to the unfolding ab in r (let us denote the latter tree
by unfold(D, r)). One only has to associate labels to the edgd3.dfience, it suffices
to construct from a given monotone circdita dagD which contains for every gate
g of C two nodesy;, g» such thaty evaluates tarue if and only if unfold(D, g;) =
unfold(D, g2). This is straightforward for the input gates@f Forand- andor-gates of
C, we can use again the construction of [14]. Take the constnsfrom Figure 5 and
6, where in Figure 5 each of the subtré€$,, [U]2, [V]1, and[V]; is represented only
once. The construction fer-gates is shown in Figure 7. Assume that the dalgelow
the nodesiy, us, v1, andvs is already constructed. Hetg andus correspond to a gate
u andv; andvy correspond to a gate Henceyu (resp.v) evaluates tarue if and only

if unfold(D,u1) 2 unfold(D, uz) (resp.,unfold(D,u;) = unfold(D, u3)). Lett be an
or-gate with inputs: andv. We add the nodes and edges as shown in Figure 7. Then the
arguments from the proof of Lemma 3.7 show thair v evaluates tarue if and only

if unfold(D,t;) = unfold(D, t3). O

4 Isomorphism problem for regular words

In this section we study the isomorphism problem for regwiaids that are represented
by partitioned DFAs. We prove that this problem as well asisbenorphism problem

for regular linear orders that are represented by DFAsPacemplete. It follows that

the isomorphism problem for regular linear orders that epeesented by NFAs can be
solved in exponential time. We show that this probler®$*ACE-hard. For the case
of acyclic DFAs and NFAs, respectively, we obtain complessresults for counting
classesC_L-completeness for acyclic DFAs aQd P-completeness for acyclic NFAS).

20

Fig. 7. Theor-construction in the proof of Theorem 3.13

4.1 Upper bounds

The main result of this section is:

Theorem 4.1. The following problem can be solved in polynomial time:

INPUT: Two partitioned DFAs4; and A,.
QUESTION:w(A;) = w(Ag)?

In Section 4.2—4.6 we prove Theorem 4.15. Section 4.2 wilbotuce some of the ma-
chinery from [2] concerning blocks. Blocks allow to condatesa generalized word to
a coarser word (whose elements are the blocks of the origioial). In Section 4.3 we
will formally introduce succinct regular expressions (eegsions in form of dags) and
in Section 4.4 we will argue that Heilbrunner’s algorithrorfr [13] allows to trans-
form a given partitioned DFA in polynomial time into an ecalient succinct (regular)
expression. Hence, the remaining goal is to develop a paladime algorithm for
checking whether two given succinct expressions reprasemtorphic regular words.
For the special case that these regular words consist ofoor@ylock (so called primi-
tive regular words), this will be accomplished in Sectios.4n this step, we will make
use of algorithms for straight-line programs (succincépnesented finite words) [27].
Finally, in Section 4.6 we will present a polynomial timealighm or checking whether
two given succinct expressions represent isomorphic aegubrds.

4.2 Blocks and their combinatorics

In this section, we will introduce the crucial notion of a the and we recall some of
the results from [2] that we are using later.

Letu = (L; <, 7) be a generalized word. Anterval of u is an interval of the under-
lying linear order(L; <). A subwordof « is an intervall of u together with the coloring
7 restricted tol. Let I" C X be finite. AI'-uniformsubword ofu is a subword that is
isomorphic tol™. A subword isuniformif itis I"-uniform for somel” C X'. A uniform
subword is anaximal uniform subword it is not properly contained in another uni-
form subword. Now lev be a subword such that no pointwofs contained in a uniform

21

subword ofu. Thenwv is successor-closeififor each pointp of v, whenever the succes-
sor and the predecessorpéxist, they are contained imas well. A successor-closed
subword isminimal if it does not strictly contain another successor-closdasud.
Following [2] we define:

Definition 4.2 (blocks).Let v be a regular word. Ablock of « is either a maximal
uniform subword of: or a minimal successor-closed subword.of

A regular word which consists of a single block is calfgimitive* By [2] a wordu is
primitive if and only if it is of one of the following forms (Wrez,z € ¥+, y € X*):
A finite non-empty word, a scattered word of the farfty, a scattered word of the form
yz*, a scattered word of the foraf’yz*, or a uniform word {” for somel” C X).
Let D(X) be the set of all primitive words over.

Let u be a regular word. Each poiptof u belongs to some unique blodX(p),
which induces a regular (and hence primitive) word. Moreewe can order the blocks
of u linearly by settingBl(p) < Bl(g) if and only if p < ¢. The order obtained that
way is denotedBl(u); <). Then we extend the ordéBl(u); <) to a generalized word
uoverD(X) (here it is useful to allow infinite alphabets, sinbéX’) is infinite), called
the skeletonof u, by labeling each block with the corresponding isomorphicaun
D(X). Implicitly, it is shown in [2] that for every regular word there exists dinite
subset ofD(X) such that every block af is isomorphic to a primitive word from that
finite subset. Moreovef; is again a regular word. Later it will be convenient to have
the following renaming notion available. LEtbe a finite alphabet, let : V' — D(X)
be an injective mapping and suppose that all blocks of a aegubrd« belong to the
image ofp. The wordv that has(Bl(u); <) as underlying order and each blogkof
u labeled withy~!(B) is called thep-skeleton ofu. We will need the following result
from [2]:

Proposition 4.3 (see [2, Corollary 73])Letu, v € Reg(X). LetV be afinite alphabet
and lety : V' — D(X) be injective such that all blocks afandv are in the image op.
Thenu andv are isomorphic if and only if the-skeletons ofi andv are isomorphic.

We will consider finite and infinite sequences, whose symbodsregular words and
where the underlying order type is either finikepr @. In the following, when writing
(u;)icr, we assume that eithér= {1,...,n} # 0 (i.e., (u;):es is the finite sequence
(u1,...,up))orl ={1,2,3,...} (i.e.,(u;);es is the infinite sequende:y , us, ua, . . .))
orl = {...,—2,—1,0} (i.e., (u;)ics is the infinite sequencé .. u_o,u_1,up)).
The corresponding generalized Word]"llsiej u; (eitherwuy - - -wu,, OF uyugug--- or
---u_gu_qup). We say that two sequencés;);c; and(v;);cs areequivalentif the
generalized word$], ., u; and]].. ; v; are isomorphic. We use commas to separate
the successive; in the sequencéui)ie] in order to avoid misinterpretations. For in-
stance(a, a) viewed as a sequence over regular words has length two veéhexeehas
length 1. Of course€ia, a) and(aa) are equivalent sequences.

4 In combinatorics on words, a finite word is called primitiVieit is not a proper power of a
non-empty word. Our notion of a primitive word should not loaftised with this definition.

22

Definition 4.4. Letu = (u;);er be a sequence of regular words. We say thdbes not
merge if the set of blocks ﬂie] u; is the union of the set of blocks of the If this is
not the case, then we say thamerges.

In other wordsyu merges if there exists a block that contains elements framtifferent
u;. In [2, Corollary 32] it is shown that a sequencenerges, if and only if there exists
a factor(u;, u;11) or (u;, uit1, uiro) that merges.

Example 4.5.Clearly if uw andv are finite words, theffu, v) merges. Also(I", ')
and (I, a, ') merge for everyl” C X anda € I' (in both cases, the sequence is
equivalent tol™). On the other handjab]”, [ab]") does not merge. The reason is that
the blocks oflab]" are the copies afb. More generally, ifu is not primitive andX is a
finite subset of regular words, théX U {«})"7, (X U {u})") does not merge.

For the case of a sequence of primitive words, a completerigéisa of merging se-
guences was given in [2]. Moreover, if a sequence of primitisords merges, then it
can be simplified to a non-merging sequence of primitive wofid® make this more
precise, let, v, w be primitive words. Ifu, v) merges, then by [2, Lemma 24] either
andv arel’-uniform for somel” C X oru is right-closed and is left-closed. Then, the
regular worduv has a single block. Ifu, v, w) merges, then by [2, Lemma 24] either
(u,v) merges, ov, w) merges, o, w are '-uniform andv is a singleton from/".
This motivates the definition of the following rewriting $§m R over finite sequences
overD(X).

Definition 4.6 (rewriting system R). The rewriting systenR over the setD(X') con-
sists of the following rules:

— (u1,u2,u3) = wifug =uz =u=I"forsomel’ C X anduy € I
— (u1,u2) — u if one of the following holds:

e w; isright-closedus is left-closed and: = ujus

o u; = uy =u=1"forsomel’ C Y.

In the following, we will use some basic facts from rewritittigeory, see e.g. [4] for
further details. For sequencegsandy over Reg(X), we writez —p g if there exist
a rewrite ruleu — u and an occurrence of the sequencen z such that replacing
that occurrence by gives the sequencg Here,z andy may be infinite sequences.
Moreover, thoser; of Z = (x;);c; that are not primitive are left untouched in the
rewrite stepr —r 7. Clearly,z — g ¢ implies that the sequencesandy are equiv-
alent. A (possibly infinite) sequenaeis irreducible w.r.t.R if there does not exist
a sequence with u —r . Clearly, on infinite sequenceg, cannot beterminating
(e.g.,(a",a",a"...) =g (a",a",a"...) is a loop). On the other hang is trivially
terminating on finite sequences, since it is length-redudvioreover, by analyzing
overlapping left-hand sides @i, one can easily show:

Lemma 4.7. The rewriting systenR is strongly confluent (on finite and infinite se-

quences), i.e., for alfi, v, w such thatu —g v andu — g w there existst such that
(v=zo0rv—pgx)and @ =z orw —g).

23

By a simple fact from rewriting theory, it follows thak is alsoconfluenti.e., for
all @, v, w such thatu —} v andu —} w there existst such thatv —% z and
w —% Z. Termination (on finite sequences) and confluence imply ih@roduces
unique normal forms for finite sequences, i.e., for everydinequence there exists a
unique finite sequendesuch thati — 7}, © anda is irreducible w.r.t.R. This@ is called
theirreducible normal fornof «.

The following is a direct consequence of [2, Lemma 24 & Cali32].

Lemma 4.8. Letu be a sequence of primitive words. Thedoes not merge if and only
if @ is irreducible w.r.t.R.

We also have to verify that a sequenceverReg(X') containing non-primitive words
does not merge. We use the definition below. Note that a reguded need not have
a first or last block. For instancég®)“ has a first block but no last block, whereas
(a¥)¥(a*)* andlaa]” neither have a first block nor a last block.

Definition 4.9 (good and semi-good sequence3he sequence = (u;);c; is goodif
the following conditions hold:

(1) @ isirreducible with respect té.
(2) Foralli € I we have:

(@) If u; is not primitive and has a first block, then eithér{ 1 € I, u;_ is
uniform, and(u;_1,u;) does not merge) ori(— 1,i — 2 € I, u;—1 andu;_o
are primitive, and(u; 2, u;—1, u;) does not merge).

(b) If u; is not primitive and has a last block, then eithet(l € I, u; 1 is uniform,
and(u;, u;41) doesnotmerge) ot ¢ 1,i+2 € I, u; 41 andu,; o are primitive,
and (u;, uit1, u;42) does not merge).

If only (2) holds, theni is said to besemi-good
Lemma 4.10. If w is good, therz does not merge.

Proof. Assume that: is good but merges. By [2, Corollary 32], one of the following
cases holds:

Case 14 contains a factofu;, u;+1) that merges. If;; andw;; would be both prim-
itive, thenuz would be not irreducible, which is a contradictionié good). Hencey;
or u;11 must be not primitive. W.l.o.g. assume thatis not primitive (the other case
is symmetric). Ifu; has no last block, then [2, Corollary 30(1)] implies tliaf, w;41)
does not merge, which is a contradiction. Hence, we can asthatu; has a last block.
But then, since: is good,(u;, u;+1) does not merge, which is again a contradiction.

Case 2.u contains a factofu;, u;11,u;42) that merges but neithef;, u;41) nor
(uit+1,ui+2) merges. Since is irreducible w.r.t.R, it follows thatw;, u;41, OF w2
is not primitive. The case that; , is not primitive is symmetric to the case thatis
not primitive. Hence, it suffices to consider the followingptsubcases:

Case 2a.u; is not primitive. If u; has no last block, then [2, Corollary 31(1)] im-
plies that(u;, u;+1,u;42) does not merge, which is a contradiction. Hence, we can
assume that; has a last block, call ;. Sincew is good and u;, u;+1, u;+2) merges,

24

u;+1 Must be uniform. Ifu;; o has no first block, then again [2, Corollary 31(1)] im-
plies that(u;, u;+1, u;+2) does not merge, which is a contradiction. lbet, be the
first block ofu; 2. Moreover, [2, Corollary 31(2)] implies thab;, w;1, b;1+2) merges.
Since(u;, uit+1) and(u; 11, u;+2) do not merge, als¢h;, u;11) and(w; 1, b;12) do not
merge. It follows (from the form of our rewriting systeR) thatb; = b, is uniform
andu;; is a singleton word. But we have already shown that; is uniform, which

is a contradiction.

Case 2b.u;41 IS not primitive. Thenu;;,; has more than one block and [2, Corol-
lary 31(1)] directly implies thafu;, u;+1, u;+2) does not merge, which is again a con-
tradiction. O

Lemma 4.11. If z is semi-good and — r v, then is semi-good as well.

Proof. Assume thati = (u;);c; IS semi-good andi —r ©. We have to show that
v = (vj);jes is semi-good. For this, consider gne J such that; is not primitive.
Since the system® does not introduce non-primitive words;, must have been already
present inu. Leti € I be the position iri that corresponds to positighin v. Hence,
u; = v;. By symmetry it suffices to show that condition (2a) from Diiom 4.9 holds
for j € J. The case thai; = v; has no first block is clear. So, assume thghas a first
block. Sinceu is semi-good, we can distinguish the following two cases.

Case 1:—1 € I, u;_1 is uniform, andw;_1, u;) does not merge. From the form of the
rewrite rules, it follows thav;_, = u;_;. Hencew;_1 is uniform, and(v,_1,v;) =
(u;—1,u;) does not merge. Thus, we have shown condition (2a) from Diefind.9 for

VE

Case 2i—1,i—2 € I, u;_o,u;_7 are primitive, andu;_o, u;—1, u;) does not merge.
We make a case distinction on the position, where the rewrigeis applied.

Case 2ai — 3 € I and in the rewrite step —r v, (u;—3,u;—2,u;—1) is replaced by
u € D(X). Thusu;—3 = u;—1 = wis uniform. Hencey;_, = wis uniform. Moreover,
(vj—1,v;) = (ui—1,u;) does not merge.

Case 2bi — 4 € I and in the rewrite step — g v, (u;—4,u;—3,u;,—2) is replaced by
u e D(E) Thus,u;—4 = u;—o = uis Uniform,’Uj,Q =u=uj_9, andu;_; = Vj—1- It
follows thatv,_» andv;_, are primitive, and thatv; 2, v;_1,v;) = (wi—2, ui—1,u;)
does not merge.

Case 2cln the rewrite stepi — g 0, (ui—2,u;—1) is replaced by, € D(X). Then,
(u;—2,u;—1) merges. But this contradicts the assumption thats, u;_1, u;) does not
merge.

Case 2d.i — 3 € I and in the rewrite ste@ —r v, (u;—3,u;—2) is replaced by
u € D(X). If uj—g = u;—o = wis uniform, thenv;_» = u;_2 andv;_; = u,_; are
primitive and(v;_2, v;—1,v;) = (ui—2, u;—1,u;) does not merge. Finally, assume that
u;—3 Is right-closedyu;_o is left-closed and;_s = u = u;_su;—2. We havev;_; =
u;—1. Thusv;_; andv,_o are primitive. It remains to show thét;_,v;_1,v;) =
(ui—3u;—2,u;—1,u;) does not merge. We know that; 1, u;) does not merge (since
(uj—2,u;—1,u;) does not merge). Assume th@at; _su,;_o,u;—1) merges. Then (since

25

u;—3u;—o IS primitive and scattered ang,_; is primitive) u;_su;_» must be right-
closed andy;_; must be left-closed. But them,;_o # ¢ is right-closed as well and
(u;—2,u;—1) merges. This is a contradiction. Hen¢e; _su;_», u;—1) does not merge.
Let b; be the first block ofu;. If (u;—3u;—2,u;—1,u;) merges, then by [2, Corol-
Iary 31(2)],(ui_3ui_2, Ui—1, bl) merges. Since neithém-_3ui_2, ui_l) nor (ui_l, bl)

mergesu,;_su;_s andb; must be uniform. But we know that; su;_o is scattered,
which leads again to a contradiction. Thus, indeed su; o, u;—1, u;) does not merge.

If the rewrite rule is applied at a position different frono#e considered in Case 2a—2d,

then (Uj_g, Vj—1, ’Uj) = (’ui_g, Ui—1, ui). Since(ui_g, Ui—1, ul) fulfills condition (2a)

from Definition 4.9, so doe&;_2, v;_1, v;). This concludes the proof of the lemma.
O

Lemma 4.11 implies that from a given finite semi-good seqa@nge can compute an
equivalent good sequence, by computing the (unique) igibtunormal form ofz.

4.3 Expressions and succinct expressions

Regular words can be naturally described by expressiong tise operations of con-
catenationw-power,w-power, and shuffle. Formally, the s&{(V, X') of expressions
overV andX is inductively defined as follows:

@ VuxrcT(V,y)

(b) faq,...,an € T(V,X) (n>1),thenay - -, € T(V, X).

(c) faeT(V,X), thena” € T(V,X)anda” € T(V, Y).

d) faqg,...,an € T(V,X) (n > 1), then[ay,...,a,]" € T(V, X).

A mappingf : V. — Reg(X) will be extended homomorphically to a mappirig:
T(V,X) — Reg(X) inductively as follows, where, a1, ..., o, € T(V, X):

cap) = flar) - flan)

a®) = f(a)®
= feas s an]?) = ([fla), -, flan)]

Fora € T(V, X) we define the sizéy| € N inductively as follows:

—Jaj=1forae VU X

- |a1...an|_: log |+ -+ + |an]
= la¥| =a®| = |a| + 1
= loa, - an] = laa| + -+ |an| + 1

A succinct expression system (SIBS) tupleA = (V, X, rhs) such that:

— V (the set of variables) ant (the terminal alphabet) are disjoint finite alphabets.

— rhs (for right-hand side) is a mapping frofi to 7'(V, X') such that the relation
{(Y,;X) € VxV | Y occurs inrhs(X)} is acyclic. The reflex transitive closure of
this relation is called thhierarchical orderof A and denoted by .

26

The property forrhs ensures that there exists a uniqgue mappiig : V' — Reg(X)
such thawvaly (X) = valg(rhs(X)) for all X € V. If A is clear from the context, we
will simply write val(X).

In the following a quadruplé. = (V, X, rhs, S) where(V, X, rhs) is as above and
S € V (i.e., an SES with a distinguished start variaB)ewe will be called asuccinct
expressionin this case let us setl(A) = valy(.S). A succinct expression may be also
seen as a dag (directed acyclic graph), whose unfolding expression in the above
sense.

Example 4.12 Consider the succinct expression
A= ({X1, X2, X3, X4, X5}, {a,b}, rhs, X7)
with
rhs(X1) = [X2, X3]" rhs(Xs) = X3X3 rhs(Xs) = X4 Xy
= X5Xs rhs(X5) = ab rhs(Xs) = ba.

We haveval(A) = [abbaabba, abbaabbaabbaabba]". The corresponding dag looks as
follows:

Nodes labelled withh compute the concatenation of their successor nodes. Irtlcase
order of the successor nodes matters, we specify it by etigésla

For an SESA we define
Al =" |rhs(X)].

XeV

An SESA = (V, X, rhs) is in normal formif all right-hand sides are ifi U X)* or of
the formY« Y% [v1,...,Y,]" forsomeY,Y;,...,Y, € V U Y. For such an SES&,
we definedepth, (X) andwn-depth, (X) for X € V inductively as follows (below,
we setdepth, (a) = wn-depth, (a) = 0 for a € X):

—lfrhs(X)=Yi Y, (n> 1, V,...,Y, € ZUV), then
depth, (X) = max(depth, (Y1),...,depth, (V) + 1,
wn-depth, (X) = max(wn-depth, (Y1), ..., wn-depthy (Y3,)).
— If rhs(X) = Y“ orrhs(X) = Y, then
depth, (X) = depth, (V) + 1,
wn-depth, (X) = wn-depthy (V) + 1.
— If rhs(X) = [Y1,...,Y,]", then
depth, (X) = max(depth, (Y7),...,depth, (Y5)) + 1,
wn-depth, (X) = max(wn-depthy, (Y1), ...,wn-depthy (Y,)) + 1.

27

Straight-line programs. A succinct expression, where all right-hand sides belong to
(V U X)T is called astraight-line program (SLPJ25]. In this caseyal(A) is a finite
non-empty word. An SLRA can be viewed as a succinct representation of the word
val(A). More precisely, the length afl(A) may be exponential ifA|. We will make
heavy use of the fact that certain algorithmic problems oR-8hcoded finite words
can be solved in polynomial time. More precisely, we use thiewing results:

Remark 4.13.There exist polynomial time algorithms for the followingoptems:

(a) Given an SLR\, calculategval(A)].

(b) Given an SLRA and a numbek € N (coded in binary) we can produce an SBP
of size|A| + O(log k) such thaval(B) = val(A)*.

(c) Given an SLPA and numbers < j < |val(A)|, compute an SLB with val(B) =
val(A)[i : j]. Herewli : j] = a; . .. a; for afinite wordw = a4 . . . a,.

(d) Given SLPsA andB decide whetheval(A) = val(B) [24].

(e) Given SLPs\ andB decide whetheval(A) is a factor ofval(B) [11, 20, 22].

The proofs for (a), (b), and (c) are straightforward.

2-level systems.A 2-level systens a tupleA = (Up, Lo, X, rhs) such that the follow-
ing holds (fT 4 denotes the restriction of a functigito the setA):

— The tuple(Up, Lo, rhs|y,) is an SES (w.l.o.g. in normal form) over the terminal
alphabeto.
— The tuple(Lo, X, rhs[\,) is an SES over the terminal alphaliet

The setUp (resp.Lo) is called the set ofipper level variableglower level variable}
of A. Moreover, we sel/ = Up U Lo and call it the set of variables &f. The SES
(Up, Lo, rhsTy,) is called theupper part ofA, brieflyup(A), and the SE$Lo, X, rhs[|,)
is thelower part ofA, briefly,lo(A). The upper level evaluation mappingal, : Up —
Reg(Lo) of A is defined asvaly = val,p(a). The evaluation mappingl, is defined by
vaIA(X) = Va||0(A) (valup(A) (X)) for X € Up andvaIA(X) = vaI|O(A\)(X) for X € Lo.

4.4 Heilbrunner's algorithm

Theorem 4.14. From a given partitioned DFA4, we can compute in polynomial time
a succinct expressioft such thatw(A) = val(A).

Proof. There is nothing new about the proof. We just have to followlthianner’s
algorithm carefully. Letd = (Q, I 6, qo, (Fu)acx) be a partitioned DFA and let
F = {J,ex Fa. We can assume that every statefins a dead end, i.e., does not have
outgoing transitions. For this, take a new symboas well as a copy’ together with
the transition(q, §, ¢’) for every final statey € F'. We setF! = {¢’ | ¢ € F,} and let
$ be the smallest symbol ifi U {$}. The resulting partitioned DFA produces the same
generalized word ad.

So, assume that every state Aihis a dead end. W.l.o.g. we can also assume that
A is coaccessible. The variables of the succinct expressiaill be the states ofd.
Consider a statp € @ and let(p, a;,¢;) (1 < i < k) be all outgoing transitions for

28

p, wherea; < ag < -+ < ag. Let us defineout(p) = ¢1¢2 - - - qx. Next, consider
the graph with node se&p and an edge from € Q to ¢ € @ if there is a transition
from p to ¢. We patrtition this graph into its strongly connected conmgrds (SCCs).
An SCCC is smaller than an SCO if there exists a path from a stateto a state
in D; this defines a partial order on the set of SCCs. We eliminht8GCs starting
with the maximal ones. When eliminating an SCCwe definerhsy (p) for each state
p € C. Ifthe SCCC is a singleton sefp} with p € F,, then we sethsy (p) = a. If
the SCCC = {p} is a singleton set withh ¢ F, then we seths, (p) = out(p). Note
thatout(p) # ¢, sincep ¢ F and.A is coaccessible. Now, consider an SCO®f size
|C| > 2. Then every wordut(p) (p € C) contains at least one occurrence of a state
from C'. Henceout(p) can be factored asut(p) = upz,v,, Whereu, andv, do not
contain occurrences of states from the SC(i.e., all states occurring in, andv,
belong to larger SCCs), ang, starts and ends with a state frath(x, might consist
of a single state fron®). Define functions : C — C andr : C — C as follows:
£(p) (resp.r(p)) is the first (resp. last) state of the watg. Then, for everyp € C, the
sequenceg, £(p), /*(p), ... andp,7(p),r%(p), ... become periodic after at mokF|
steps. We now define regular expressiénsndr, as follows: Letpg, p1,...,p, and
0,41, - - - » qc be shortest sequences such that qo = p, pi+1 = €(pi), gi+1 = (),

andg(pa) € {p07p17 R 7pa}! T(qC) € {QO7 qiy-- -, QC} Assume thaf(pa) = Po and
7(gc) = qafor0 < b < a,0 < d < c. Then, we define

by = (Up * Upy o) (Up, *+Up,)Y

Tp = (vo T qu)w(qufl o "qu).
Next, letT" be the set of all regular expressions of the fdtmr; (s, ¢ € C) such that
some wordout(p) (p € C) contains a factogyt, where the word; does not contain
a state fromC. Then we finally sethss(p) = ¢,[T]"r, for all p € C. This con-
cludes the elimination step for the SQC By [13], for every staty € Q) we have

w(QaFa 67pa (FG)GGE) %valA(p). O
By Theorem 4.14, it suffices to prove the following result ider to prove Theorem 4.1.

Theorem 4.15. The following problem can be solved in polynomial time:

INPUT: Two succinct expressiods andA,.
QUESTIONwal(A;) = val(Ay)?

In the next section, we will prove this result for the specibe that botkal(A;) and
val(Ay) are primitive.

4.5 A polynomial time equivalence test for succinct primitve expressions

By Theorem 4.14, the remaining goal is to test in polynonniaét whether two succinct
expressions represent isomorphic regular words. In a fipt sve accomplish this for
succinct expressions that represent primitive words. énftlowing, X' will always
refer to dinitealphabet. Let us first show that we can decide in polynonmed tivhether
a succinct expression represents a primitive word.

29

(o Jw o Jw [w] [ufwl]elw]w]

(v [e [| e] (o [o [on] o]

Fig. 8.

Lemma 4.16. Given a succinct expressidn we can decide in polynomial time whether
val(A) is a primitive word, and in case it is we can compute in polyi@riime a
representation, which has one of the following forms, whgr€, D are SLPs and
I' C ¥ (here, we should allow also the empty word¥el(C)): val(B), val(C)val(D)«,
val(B)“val(C), val(B)“val(C)val(D)«, I'".

Proof. We proceed along the hierarchical order®ofnd compute for each variahle
of A whetherval(A) is of one of the following forms«,w € X, v € X*, I" C X,
a,b € I): v, u®v, vw®, u@ow®, I', al™, I'b, alb. Moreover, SLPs for the finite
wordsu, v, andw can computed simultaneously. Observe that froe{A) and the
information already computed we can easily obtain wheth&rA) is of such a form
and in this case of which form. The following identities hawebe used for shuffles
rcxX,n>0m2>1,a,a1,...,a, € I',and everyu; (1 < i < m) has one of the
formsI™, cI'™, "¢, cIMd with ¢,d € T')

1

[@1, ..oy @ny gy .ty 2T
rrne gl (MY =2 (I = (IMa)¥ = (al™)¥ =2 [
(al'M¥ = al™
(IMa)® = IMa

All these identities can be deduced from the axioms for @gakpressions in [2].
Now val(A) is primitive if and only ifval(S) is of one of the following formsy, w €
Ytve X, I CX) v u¥, vw?, uCow®, I'. a

For our polynomial time equivalence test for succinct egpi@ns that represent primi-
tive words, we need the following technical lemma.

Lemma 4.17. Letu;, v;, w; (i € {1,2}) be finite words such that;| = |ug| = |vi| =
[va] = |wi| = |wa| > 0. Thenufviwy = u§vowy if and only if one of the following
conditions hold:

ugvaw3 is a factor ofudvyw?.
uyvyw? is a factor ofudvow3.
— v] = wy, uy = vo, andusw?3 is a factor ofuw?.
— w1 = vy, v2 = wy, andu,w? is a factor ofulw3.

Proof. The four conditions from the lemma are shown in Figure 8 amgaliféi 9. It is
straightforward to show that any of these four situationglies u{ v, wy = u§vowy.

30

Lo [ea [wn [o] [o [[e]

[| oo | v | (e [o [e [e]

Fig. 9.

For instance, if the left situation in Figure 8 occurs, thieeré exist words:, y, ', 3/’

such thatu; = zy, us = yx, w1 = 'y, we = y'z’ andvews = yvi2’. Hence,
ufvws = (zy)“v(2'y")* = (yo)“yva’ (y'2')¥ = u§vowaw§ = usvows.

Let us now assume that' v, w$ = ugvews . We distinguish the following cases:

Case 1.The occurrence of; in uYv,w$ overlaps the occurrence of in u§vowy.
Then, eithemsvow3 is a factor ofu?v;w? (if v, starts before,) or u;viw? is a factor
of udvow3 (if vy starts before,), see Figure 8.

Case 2.The occurrence of; in uYv,w$ does not overlap the occurrence @f in
us vow$'.

Case 2.1.The occurrence ofiyviw; in ufviw$ overlaps the occurrence ef, in
us'vow§ . Then, one of the following two situations occurs:

(o fu]m]olwo]

[z [ve Jwe [wa [|

(o [o [w]w]w]

[z [ue [[v [e]

In the first situation, we obtain; = w; (sincev,w; is a factor ofw3) andus = v,
(sinceuquy is a factor ofu?). Hence, we get the left situation shown in Figure 9, i.e.,
ugw? is a factor ofu?w?. In the second situation, we obtain = v; (sinceujv; is

a factor ofu3) andv, = wy (sincevsws is a factor ofws). Hence, we get the right
situation shown in Figure 9, i.eu; w? is a factor ofu3w3.

Case 2.2The occurrence ofi;viw; in ufv;wy does not overlap the occurrence of
vg IN uSvowy . Thenujviw, either occurs inug or wy'. Henceu; = v; = wy and
similarly uy = vy = wy. Butufus = ugug implies thatu3 is a factor ofuf. Hence,
the third condition from the lemma holds. O

Lemma 4.18. Given two succinct expressios, A, over X' such thatval(A,) and
val(Aq) are primitive words, we can decide in polynomial time wheths(A,) =
VE'(AQ).

Proof. We have to distinguish the following cases:

Case 1val(A;) (i € {1,2}) is finite. Thenval(A;) = val(A3) can be checked in
polynomial time by Remark 4.13(d).

31

Case 2wal(A;) is I;-uniform ¢ € {1,2}). Thenval(A;) = val(Ap) if and only if
I'1 = I'; which can be checked in polynomial time.

Case 3val(A;) = u;v¥ (i € {1,2}). By Lemma 4.16 we can produce SLPs fgrand
v; (i € {1,2}) from A; andA,, respectively, in polynomial time. Lét = |u;| and¢; =
|v;|. Let gem(¢1, ¢2) denote the greatest common multipledpfand¢,. By replacing
v; by pRaxknka) M) /8 o \which we can compute an SLP in polynomial time

by Remark 4.13(b)), we can assume thal = |va| > ki, ko. Letl = |v1| = |uva].
W.l.o.g assume that; < k, and letk = ky — k; < £. Then, we can replace, and

vy by ugvq[1 @ k] andwvy [k + 1 : £Juy[1 : k], respectively (we can compute SLPs for
these words in polynomial time by Remark 4.13(c)). Hencecam also assume that
|u1| = |uz|. But thenu vy = ugvy if and only if u; = us andv; = ve, which can be
checked in polynomial time by Remark 4.13(d).

Case 4val(A;) = u¥v; (i € {1,2}). This case can be dealt with analogously to Case 3.

Case 5val(A;) = v¥v,wy (i € {1,2}). By Lemma 4.16 we can produce SLPs for
ui, v;, andw; in polynomial time. As in Case 3, by replacing the wordsw; by
appropriate powers, we can enforce the condition = |uz| = |wi| = |we| = £ >
|v1], |vz]. In addition, we can enforce the conditipm| = |vz| = ¢ as follows: Let
k; = |v;| < £. Then we can replace andw; by v;w;[1 : ¢ — k;] andw;[¢ — k; + 1 :
Lw;[1 : € — k4], respectively. Now, that we have;| = |uz| = |v1| = |v2| = |wi| =
|wa|, we can checki{viwy = u§vews in polynomial time using Lemma 4.17 and
Remark 4.13(e). a

4.6 A polynomial time equivalence test for succinct expregmns

In this section, we will finally prove Theorem 4.15. The geletrategy is very sim-
ilar to [2]. We will incrementally reduce then-depth of the two given succinct ex-
pressions, until one of them (or both) describe primitivedo This allows to use the
results from the previous section. We have to analyze ciydhe size of the interme-
diate succinct expressions. In the followidg will always refer to dinite alphabet. We

will need certain nice properties of SESs.

Definition 4.19 (primitive). A primitive SES is an SE& = (V, X, rhs) such that
valy (X)) is primitive for all X € V. A 2-level systerB is primitive iflo(IB) is primitive.

Definition 4.20 (irredundant). An irredundant SES is an SES= (V, X, rhs) such
thatvaly (X) # valy(Y) forall X, Y € V with X # Y. Again we say that a 2-level
systen® is irredundant iflo(B) is irredundant.

One can think of a primitive and irredundant SES as a sucoi#pcesentation of a finite
subset ofD(X) wherevaly : V — D(X) defines an injective mapping frof to
this finite subset. Hence, for a regular warduch that all blocks belong to the image
of valy, we can define theal,-skeleton ofu. In the following, we will simply call it
the A-skeleton ofu. A primitive and irredundant 2-level system intuitivelyasystem,
where the terminal alphabet is a finite subsefdf’) (namely the valuations of the
variables of the lower pafb(B)).

32

Remark 4.21 If a primitive 2-level systen® is not irredundant then, using Lemma 4.18,
one can produce in polynomial time an irredundant 2-levetesyC such thatal(B) =
val(C). Indeed, if there are two different variablé5 Y € Lo such thatvalg(X) =
vals (Y'), then one has to replace in all right-hand sides by". ThereaftetX can be
removed fronlLo. Note that this process does not change the set of uppentaniables

of B.

Assume thaB is an SES or 2-level system and let= (A;);c; be a (possibly infinite)
sequence of variables @f. We say that: does not merge (is good, semi-good, irre-
ducible), if the sequendgal(4;));cr does not merge (is good, semi-good, irreducible).
Moreover, two sequences= (4;);c; andv = (B,),ec, of variables (possibly from
two different SESs or 2-level systems) are equivalent isguencefval(A;))cr and
(val(B;));e. are equivalent (i.e]], val(A;) and[[, ; val(B;) are isomorphic gen-
eralized words). The following definition is an adaption bé tdefinition of a proper
expression in [2].

Definition 4.22 (proper). LetB = (Up, Lo, X, rhs) be a primitive 2-level system. A
variable X € Lo U Up is proper if one of the following cases holds:

(1) X € Lo

(2) rhs(X) =Y7 - Y, whereY; - - -Y,, does not merge ant,, ..., Y,, are proper.
(3) rhs(X) =Y¥orrhs(X) = Y%, whereY is proper andY'Y'Y does not merge.
(4) rhs(X) = [Y1,...,Y,]" whereYy, ..., Y, are proper andval(X) is not primitive.

The 2-level systeri® is proper if B is irredundant, primitive, and all variables are
proper.

Note that the condition that'Y'Y” does not merge in Definition 4.22(3) implies that
YYY--- and---YYY both do not merge by [2, Corollary 32]. Moreover, condition
(4) from Definition 4.22 means tha, . .., Y,, are proper and at least oal(Y;) is not

a single symbol.

Lemma 4.23 (see[2, Corollary 75])LetB be a proper 2-level system atidan upper
level variable. Themval(X) is thelo(B)-skeleton ofral(X).

The next two lemmas will be used to make a given 2-level sygtamper.

Lemma 4.24. Given a primitive 2-level systefi and a finite semi-good sequence
Ay --- A, of variables ofB, we can produce in polynomial time a primitive 2-level
systenC and a sequencs; - - - B,, of variables ofC such that the following holds:

— The upper parts dB andC are the same, and the lower part@fextends the lower
part of B by at mostn — 1 many new lower level variables, whose right-hand sides
have length 2.

— The sequenc8; - - - B, is good.

- Ay ---A,, and By - - - B,, are equivalent sequences.

— The subsequence of upper level variableslin - - A,, is the same as the subse-
guence of upper level variables By - - - B,,.

- n<m.

33

Proof. As long as the sequenct - - - A,,, contains a factord; A; 1 or A;A; 11 A;42,
whose evaluation is a left-hand side of our rewriting sysfemve do the following:

If val(A;) is right-closed andial(A;41) is left-closed, then we introduce a new
lower level variableA, setrhs(A) = A;A;+1, and replace the sequendg --- A,
by the sequencd; --- A;_1AA; o A If val(A;) = val(4,11) = I' for some
I' C ¥, we continue with the sequenel - -+ A;_1A; 11 -+ A, Finally, if val(A;) =
val(A;42) = I' for somel’ C X andval(A;+1) = a € I, we continue with the
sequencel; --- A;_1A;y2--- A, We iterate this process as long as possible. O

Lemma 4.25. Given a primitive 2-level systefi and a finite irreducible sequence
Ay -+ Ag (kE > 3), where everyA; is a lower level variable o8, we can produce in
polynomial time a primitive 2-level SESand sequenceB; - - - B,,, Cy - - - Cy, (m > 0,

n > 1) of lower level variables of such that the following holds:

— The upper parts dB andC are the same, and the lower part@fextends the lower
part of B by at most one new lower level variable, whose right-hane ks length
2.

— The infinite sequencB; - - - B,,(C; ... C,)¥ is irreducible.

— (Ay---Ag)¥ andB; - - - B, (C - - - C,)¥ are equivalent sequences.

- m,n < k.

Proof. W.l.o.g. assume thatA; - - - Ax)* is not irreducible. Sinced; - - - Ay, is irre-
ducible, anR-reduction in the infinite sequenct, --- Ay Ay --- A Ay - Ag - -+ can
only occur at a border betweeh, and A;. There are the following cases, according to
the left-hand sides of the systefh

Case l.wal(Ag) = val(4;) = I'™ for someI’ C X. Then, the infinite sequence
A1 Ag - Ag(As - -+ A)¥ is irreducible and equivalent to our original sequencegltec
thatk > 3).

Case 2val(Ay) is scattered and right-closed) (4,) is scattered and left-closed. Then,
we introduce a new lower level variable with rhs(A) = Ay A;. It follows that the
infinite sequencel; As - - - Ax_1(AAs - - - Ax_1)¥ is irreducible and equivalent to our
original sequence.

Case 3val(Ay) = I', val(A1) = a,val(Az) = I forsomel’ C Yanda € I'. If k =
3,thenA; Ay - -+ A = A; A3 As would not be irreducible (sinoal(As) = val(As) =
'), which contradicts our assumptions. Hence, assuméthat. Then, the sequence
A1 As - Ap(As - - - A)¥ is again irreducible and equivalent to our original seqeenc

Case 4val(Aix—1) = I'", val(Ay) = a, val(A;) = ' for somel’ C ¥ anda € I.
This case is similar to Case 3. |

Let B be an SES an& a variable withwn-depth(X) = h > 1. Then there is a se-
quence of variableX, . .., X}, suchthatX;, = X, X; < X1, andwn-depth(X;) =

i. Note thatval(X;) is either primitive or a shuffle of finite words. Mal(X;) =
[u1,...,ux]" where at least one of the; is in X=2 (thus,val(X;) is not primitive),
then this sequence is calledbad sequencdf a variable X has a bad sequence, then
we say it is olbad shapeOtherwise it is ofgjood shapeFor instance, iths(X) = [Y]"
andrhs(Y') = ab, thenX is of bad shape.

34

Proposition 4.26. LetB = (V, X, rhs) be an SES such that for every variaiec V,
eitherrhs(X) € X TUX*V X*UVV or rhs(X) is of the formY™, Y, or [Y3, ..., Y,]"
forY,Y;,...,Y, € V.U X. GivenB we can produce in polynomial time a proper 2-
level systenC = (Up, Lo, I, rhs) such that every variabl& € V, wherevalg(X) is
not primitive, belongs t&Jp and for each of these variablés we have:

(a) vaIB(X) = vaIC(X)

(b) If X is of good shape i, thenwn-depthy (X) > wn-depth,,) (X).

(c) If X is of bad shape i, thenwn-depthy(X) = wn-depth,,c)(X) and X is of
good shape imp(C).

Proof. W.l.0.g. we can assume thatl(B) is not primitive. We start with some prepro-
cessing.

Preprocessing. First we transform our succinct expressibrinto a 2-level systent
by collecting inLo all variablesX such thawal(X) is primitive. This can be done in
polynomial time using Lemma 4.16. Note that#fl(X) is primitive and scattered, then
for everyY in rhs(X), val(Y) is primitive too. But ifval(X) is primitive and dense (i.e.,
of the formI™" for somel” C X)), then this is not necessarily trd¢dence, in this case
we have to redefinens(Y') = I'". After this process the 2-level systethis already
primitive, satisfies conditions (a), (b), and (c) in our posjpion, and for allX € Up
the wordval(X) is not primitive. All these properties will stay invariatroughout the
remaining proof where we manipulate the systénm order to make it proper.

Before we come to the actual algorithm we transfd@rfor technical convenience
such that for allX € Up one of the following holds:

(1) rhs(X) € Lo=? U Lo*UpLo*,

(2) rhs(X) = [Y1,...Y,]" for someYy,...,Y, € UpU Lo,
(3) rhs(X) € UpUp,

(4) rhs(X)=Y«“forY € UpU Lo,

(5) rhs(X) =Y“forY € Up U Lo.

In order to achieve this form we simply introduce for eacherdpvel variableX with
rhs(X) = uYv whereu,v € X* andY € V two variablesX,, X, € Lo and set
rhs(X) = X, Y X, rhs(X,) = u, andrhs(X,) = v (if e.g.u = ¢, thenX,, is not
present). Moreover, if a symbale X occurs in a right-hand side of the for¥t’, V<,
or[Yi,...,Y,]", then we replace that occurrence by a neavariable with right-hand
sidea.

In fact, by this preprocessing all right-hand sides of thref¢l) have length at most
3. This fact will be important when we estimate the size of thalfsystem. From now
on variables inUp that have a right-hand side of form (1) or (2) are said to be/pét
(1, 2), all other variables are said to be of type (3-5).

Following [2, proof of Theorem 65 & 66] we will now give an algihm that pro-
duces a proper 2-level system. We will proceed along thelgaical order of the vari-
ables inUp where in each step we possibly add a constant number of nésbies and

® Let, for instancerhs(X) = [Y]7 with val(Y) = a[a]”. Thenval(X) = [a]” is primitive but
val(Y') is not primitive.

35

change the right-hand sides of the old variables such thaagables are proper and
of the form (1)—(5) and, moreover, all old variabl&sare of type (1, 2) and fulfill the
following technical condition (TEC):

(a) If val(X) has a first block, therhs(X) € Lo=? U Lo"UpLo™ and the first
variable ofrhs(X') evaluates to the first block @&l(X).

(b) If val(X) has a second block and the first block is scattered, th&(X) €
Lo=? U Lo=?UpLo" and the second variable dfs(X) evaluates to the second
block ofval(X).

(c) If val(X) has a last block therhs(X) € Lo=? U Lo*UpLo™ and the last
variable ofrhs(X') evaluates to the last block ol(X).

(d) If val(X) has a second last block and the last block is scatteredritheli) €
Lo=? U Lo*UpLo=? and the second last variable bfs(X) evaluates to the
second last block ofal(X).

We need the following claim about this property (TEC):
Claim. If rhs(X) € Lo" U Lo*UpLo* andrhs(X) is good, thenX satisfies (TEC).

Proof. By symmetry let us only consider conditions (a) and (b) of C)EAssume
thatrhs(X) is a good sequence. ths(X) € Lo*, then Lemma 4.10 implies that the
variables inrhs(X) evaluate to the blocks ohl(X) (recall thaths(X) is good). Hence
(a) and (b) hold. Next, assume thhs(X) € Lo=?UpLo*. Again, sincehs(X) is good,
Lemma 4.10 implies that the first two variablesfia(X') evaluate to the first two blocks
of val(X). Thus, (a) and (b) hold again. fiis(X) € UpLo*, then the first variable of
rhs(X) evaluates to a non-primitive word. Sinde(X) is good, it follows thatal(X)
does not have a first block and (a) and (b) hold. Finally asshatehs(X) € LoUpLo*
and the first two variables ohs(X) areA € Lo andZ € Up. Then,val(4) is the
first block ofval(X). Sincerhs(X) is good eithewal(Z) does not have a first block
orval(Z) has a first blockyal(A) is uniform, and(val(A), val(Z)) does not merge. In
both cases (a) and (b) are obviously satisfied. This prowesl&im.

Actual algorithm. We can now outline our procedure. Consider a variable Up
such that every variables imhs(X) is either inLo or was already processed and is
therefore now proper, satisfies (TEC), and is of type (1, 2.n&kd to distinguish on
the form of the right-hand side oX. In all of the following cases, we resets(X)
either

(i) to a shuffle of variables that are already proper or
(ii) to a good sequence frobm™ U Lo*UpLo™ (and all variables in that sequence are
already proper).

In (i), X is proper by Definition 4.22(4) (note thail(X) is not primitive sinceX €
Up). In (ii) it follows from Lemma 4.10 and Claim 4.6, th&f is proper and satisfies

(TEC). For every other new upper level variabléghat is introduced, the right-hand
side is either

36

(i) a non-merging sequence of (already proper) variables or
(i) Z« or Z¥, whereZ is already proper and Z Z does not merge.

In both cases it follows from Definition 4.22 thgtis proper too.

Case 1rhs(X) € Lo® U Lo® (hencerhs(X) is semi-good). By applying Lemma 4.24
to rhs(X'), we can compute in polynomial time an equivalent good secgiehat most
three possibly newo-variables (and their corresponding right-hand sides)s Ek-
quence becomes the new right-hand sid& of

Case 2rhs(X) € Lo='UpLo=". Let Z be the uniqué/p-variable inrhs(X). Note that

Z is one of the old variables, which has already been procemsedhence is proper,
of type (1, 2), and satisfies (TEC).fis(Z) € Lo=? U Lo*UpLo*, then we replaceZ

in rhs(X) by rhs(Z) (if rhs(Z) is a shuffle, then we leav& in rhs(X)). Recall thatZ

is proper and satisfies (TEC). It follows easily that the l@sg new right-hand side of
X is semi-good and iho=2 U Lo*UpLo*. Thus, we can apply Lemma 4.24 and obtain
an equivalent good sequencelisi” U Lo*UpLo* (as in Case 1, we will introduce new
Lo-variables thereby). This good sequence will be the newt-tigind side ofX .

Case 3rhs(X) = [Y1,...,Y]". Then there is nothing to do. Recall that we assumed
thatval(X) is not primitive and hencé is proper and satisfies the technical condition
(TEC) asval(X) neither has a first nor a last block.

Case 4rhs(X) = YZ for someY, Z € Up. HereY and Z are old variables, which
have already been processed and therefore are propergdfityp), and satisfy (TEC).
If rhs(Y) € Lo=2 U Lo*UpLo* then we replac& in Y Z by rhs(Y) (if rhs(Y) is a
shuffle, we leave” in Y 7). We proceed analogously with in Y Z. SinceY andZ
are proper and satisfy (TEC), it follows (as in Case 2) thatrésulting new right-hand
side of X is semi-good and contains at most two variables ftégnThus we can apply
Lemma 4.24 and obtain an equivalent good sequenckvariables with at most two
variables fromUp (again, we introduce nelo-variables thereby).

Now, we replace parts in the sequencin order to getrhs(X). First, assume that
u=A;--- A, € Lo, If k < 5, thenrhs(X) simply becomes: (which is good). If
k > 6, then we introduce a neldp-variableU and set

rhs(X) = AlAQUAkflAk, rhs(U) = Ag s Ak,Q.

Sincew is good, both right-hand sides are good as well. Secondjressbaty =
A1+ AUBy--- By € Lo*UpLo™ with U € Up. If k < 2 and? < 2 then we we
simply setrhs(X) = u. On the other hand, # > 2 or ¢ > 2, then we introduce a new
Up-variableV and set

rhs(X) = AlAQVBgleg, rhs(V) = Ag ce AkUBl cee Bg,Q

(ifeg.k > 2but¢ = 1, thenB; --- B;_» and B,_; disappear). Since is good,
rhs(X) will be good too. Moreover, since does not merge (by Lemma 4.18)s(V)

does not merge as welths(V') is not necessarily good). Third, assume that=

Ay AyUBy---B,VCy---C, € Lo"UpLo*UpLo™ with U,V € Up. In this case
we introduce two neWp-variablesi?; andW, and set

rhs(X) = A1A2W101 s Cn, rhs(Wl) = WQ‘/, rhs(Wg) = Ag ce AkUBl RPN B[.

37

Again, sinceu is good,rhs(X) is good as well. Moreover, since does not merge,
neitherrhs(1¥;) norrhs(W5) merges. Note that the numbeiin the right-hand side of
X above is bounded bjrhs(Z)|. This will be important for estimating the length of
right-hands.

Case 5rhs(X) = Y. Note thatY is either alLo-variable, or it is an oldJp-variable,
which has already been processed and hence is proper, o{ty[®, and satisfies
(TEC). We can therefore distinguish the following subcases

Case 5(a)rhs(Y) = [Z1,. .., Z,]" forsomeZ,, ..., Z, € LoU Up. Then by the gen-
eral identity(I")~ = ' (which follows from Cantor’s theorem), we havel(X) =
val(Y) and we seths(X) = Y. ThenX is obviously proper. Since we assumed that
val(X) is not primitiveval (X ') does not have a first or a last block and (TEC) is satisfied.

Case 5(b)rhs(Y) € Lo*UpLo®. Letrhs(Y) = uZv with Z € Up andu,v € Lo™.
SinceY is proper and satisfies (TEC), the infinite sequeneuZv - - - = u(Zvu)¥ is
semi-good. By applying Lemma 4.24 to the sequencef Lo-variables, we obtain an
equivalentgood sequengé€Zw)*. Herew is a sequence of (possibly nelay-variables
such thatw represents the irreducible normal form w.Rtof the sequence represented
by vu. Note thatiw| < |uv|. We set

rhs(X) =uV, rhs(V)=U%, rhs(U)= Zw.

Since the sequeneg Zw)* is good, also the sequena® is good. Moreover, since
u(Zw)* does not merge (by Lemma 4.10), the same holdghdil/) andUUU (soU
andV are proper by definition).

Case 5(c)Y € Lo and henceal(Y') is primitive. Then the infinite sequeng&’Y - - -
must be irreducible, because otherwia®(Y") would be either finite or uniform and
val(X) = val(Y*) would be primitive. We introduce a nep-variableZ and set

rhs(X) =YY Z, rhs(Z)=Y".

Thenrhs(X) is good and’Y'Y does not merge.

Case 5(d)rhs(Y) € Lo?. Let rhs(Y) = A; A for Ay, Ay € Lo. SinceY is already
proper, we know thatl; A, is irreducible. If the infinite sequencé; A3 A1 As - - - s
irreducible too, then we introduce a nélg-variablesZ and set

ths(X) = A1 AsZ, rhs(Z) = Y¥.

Clearly,rhs(X) is good and’Y'Y does not merge. On the other hand}{fA; A; As - - -

is not irreducible, then (sincd; A, is irreducible), anR-reduction can only occur at a
border betweem; and 4;. The case thatal(A;) = val(A42) = I'" for somel’ C ¥
cannot occur (sincel; A, is irreducible). Ifval(Az) is scattered and right-closed and
val(A;) is scattered and left-closed, then we introduce a hewariable B and a new
Up-variableZ and set

ths(X) = A1BZ, rhs(Z) = BY, rhs(B)= A24;.

38

It is straightforward to show that the infinite sequen¢eBBB - -- is irreducible.
Hencerhs(X) is good andB BB does not merge. Next,val(A;) = I andval(43) =
a for somel’ C ¥ anda € I', thenA;A3A4; A, - - - evaluates td™. Henceval(X)
is primitive, which is a contradiction. Finally, ifal(43) = I'” andval(A;) = a € T,
thenA; Ay A1 Ay - - - evaluates ta ™ = val(Y') and we seths(X) =Y.

Case 5(d)val(Y) € Lo=%. We apply Lemma 4.25 to the irreducible sequeriagY’)
and compute sequencesv of (possibly new)Lo-variables with their corresponding
right-hand sides. The infinite sequenee’ of Lo-variables is irreducible and evaluates
toval(Y). W.l.o.g. we can assuma| > 2 (otherwise, we can replaeeby uvv). We
introduce newJp-variablesV andV and set

rhs(X) =uV, rhs(V)=U®, rhs(U)=w.

(if |v] = 1, i.e.,v consists of a singleo-variable, then we do not neéd).
Case 6rhs(X) = Y¥. This case is symmetric to Case 4.

The resulting systerf is primitive and allUp-variables are proper. On the other hand,
C is not necessarily irredundant. But this can be easily &elies described in Re-
mark 4.21. a

We are now in the position to prove Theorem 4.15.

Proof of Theorem 4.15t suffices to show that the following problem can be solved in
polynomial time:

INPUT: An SESA and two variables(, Y of A.
QUESTION:val(X) = val(Y)?

If both variablesX andY evaluate to primitive words, then we just need to apply
Lemma 4.18. If only one of the two evaluates to a primitive dyathenval(X) %
val(Y"). Hence, we may assume that beth(X) andval(Y") are not primitive. In par-
ticular, we haveun-depth(X), wn-depth(Y) > 0. Itis easy to bring\ into the normal
form required in Proposition 4.26. Applying PropositioB@to A gives a proper 2-level
systemA. The variablesX andY belong to the upper level part @fy. Starting with
Ao we construct a sequence of proper 2-level systéms= (Up,, Lo;, Lo; 1, rhs;)
(with Lo_; = X). In order to obtaird; we apply the procedure of Proposition 4.26
to up(A;_1). Let k be maximal such thak’ andY belong to the upper level part of
Ay. Since by Proposition 4.26 in every second steputhelepth of X andY strictly
decreases we have< 2 - |A|.

Let0 < j < k. By Lemma 4.23wval;(X) is thelo(A;)-skeleton ofval;(X) and
similarly for Y. Henceval;(X) = val;(Y) if and only if uval;(X) = uval;(Y) by
Proposition 4.3. Recall that;,; is obtained by applying the procedure of Propo-
sition 4.26 toup(A;). We obtainval;(X) = val;(Y) if and only if val;;;(X) =
valj11(Y) forall 0 < j < k. Henceval(X) = val(Y) if and only if val,(X) =
valg(Y) if and only if uval, (X) 2 uval,(Y). Now, by the maximality of, uvaly(X)
or uval,(Y') must be primitive. Hence, using Lemma 4.18, we can checklynpmial
time whethemvaly (X) = uval, (V).

39

Runtime. Let us analyze the systenp(4;) for 1 < j < k. The 2-level syster;
is obtained by applying Proposition 4.26ip(A;_;). Observe that by the construc-
tion in the proof, the systemp(A;) already has the normal form that we require in
Proposition 4.26. LeType(3-5); be the set of variables idp, that are of type (3-5).

Now let us estimate the numbgsp;| for 1 < j < k. Observe that in the proof
of Proposition 4.26 in each of the Cases (1)—(3) only new toleeel variables are
introduced. In each of the Cases (4)—(6) the old variablerised into a variable of
type (1, 2) and at most one new variable of type (3-5) is addedpt;. Moreover,
additionally at most one new variables of type (1, 2) is addddb ;. We conclude that
|Type(3-5);| < |Type(3-5);_; | and the total number of variableslitp; is bounded by
|Up,;_1| +2 - [Type(3-5),_,|. Recall thatj < k < 2|A|. Hence|Up;| < |Upy| + 2; -
| Type(3-5)| < |Ag|-(4-]A|+1)forall0 < j <k.

Let us now estimate the maximal length of a right-hand sidé jnLet us first
bound the length of the right-hand side of a variales Up; N Up;_, (i.e., an old
variable). By reanalyzing all cases from the proof of Prajims 4.26, we see that for
such a variabléX, |rhs; (X)] is either at most 5 or it is bounded Byt |rhs; (Y')|, where
Y € Up; NUp,_; is an old variable, which was processed before. We therefutan
Irhs; (X)| < 3-|Up; NUp;_;| + 5. Hence|rhs;(X)| < 3 - [Aq| - (4 |A] + 1) +5. For
the newly added variable&; € Up, \ Up,_; the size of the right-hand side is bounded
by twice the maximal size of a right-hand side of an old vdgab Up, N Up,_, (the
factor 2 comes from Case 4). Henjebs,; (X)| < 6 - |Ag| - (4 - |A| + 1) + 10 for all
X € Up;,. Finally, note thatA,| is bounded polynomially bounded jA|.

Concerning lower level variables @f;, note that the lengthvhs; (A)| for a lower
level variable ofd ; is bounded by 2 (if4 is introduced in one of the Cases 1-6) or by
the maximal length of the right-hand side of a variable frhm (if A is introduced in
the preprocessing step). Moreover, in each of the Casegte-Gumber of new lower
level variables that are introduced is bounded by twice thgimal size of a right-hand
side of an old variable iVp; N Up,_; (the factor 2 comes again from Case 4). Hence
the number of lower level variables is also bounded polymdignin |A|.

We have shown that the total size of very 2-level systenfl < j < k) is bounded
polynomially in|A|. As the time needed to construkt; from A, is polynomially
bounded by Proposition 4.26, we conclude that the overaliing time of our algo-
rithm is polynomially bounded as well. a

4.7 Lower bounds for regular linear orders

In this section we prove lower bounds for the isomorphisnbfmm for regular words.
In fact, all these lower bounds only need a unary alphateet,they hold for regular
linear orders. The results in this section nicely contitastésults from Section 3, where
we studied the isomorphism problem for the prefix order toeesegular languages. In
this section, we replace the prefix order by the lexicogregdidrder.

Theorem 4.27. The following problem i®-hard (and henc®&-complete) for every fi-
nite alphabet’.:

INPUT: Two succinct expressiods and A, over the alphabet.
QUESTIONwal(A7) = val(Ay)?

40

Proof. Note that the problem can be solved in polynomial time by Taep4.15.P-
hardness will be shown by a reduction from the monotone itivaue problem. So,
let C' be a monotone Boolean circuit. We can assume that the gatéaue partitioned
into layersL4, ..., L,, whereL; contains all input gated,,, only contains the output
gate, and all inputs for a gate fromy,, belong toL;. Moreover,L; (: > 1) either
contains onlyand-gates oror-gates. We construct an SES (over a unary terminal
alphabet{a}), which contains for each gateof C' a variabletest,, and for each layer
d € {1,...,n} two variablesgood,, andbad, such that the following holds for all
gatesv € Ly:

(a) Eithervaly(test,) = valy(badg) orvaly(test,) 22 valy(good,).

(b) vala(test,) = valy(good,) if and only if gatev evaluates tarue.

(c) The linear ordersaly(good,;) andvala(bad;) do not contain an interval isomor-
phic tow - d (recall thatw - d denotes the linear order+ - - - + w).

d times

The base case for the first layer is trivial. S&ts (good;) = a andrhsy (bad;) = aa.
In other wordsyals (good;) = 1 andvaly(bady) = 2. Moreoverrhsy(test,) = a if
v € Ly is atrue-gate ancdhsy (test,) = aa if v € L, is afalse-gate.

Now assume that € L, is a gate with inputs;, v € Ly. Forn € N we use the
abbreviation

w-n=a"a”---a".
———
n times
Moreover, we writex + (3 for the concatenation of the regular expressiam and
(which denote regular linear orders since the alphabetasy)nThere are two cases:

Case 1.L 4.1 consists obnd-gates. Then we set

rhsy (test,) = [w - d + testy, ,w - d + test,,,w - d + good,]"
rhsy(good,,) = [w - d + good,]"
rhsy(badg41) = [w - d + goody, w - d + badg]".

Case 2.L 4.1 consists obr-gates.

rhsa(test,) = [w - d + testy, ,w - d + testy,,w - d + badg]"
rhsy (good,, ;) = [w - d + good,,w - d + badg]"
rhsA(baddH) = [w -d+ badd]”.

The above three properties (a), (b), and (c) can be showndyction on the layer.
For layerL; all three properties are trivially true. Now, consider layg.. Property
(a) follows directly from the induction hypothesis for layk,;. Since the linear orders
valy (good,;) andvaly (bady) are shuffles, (c) holds for layédr,; too. Finally, for (b)
we consider two cases:

Case 1w € L4411 is anand-gate. Letv;, vy € Ly be the inputs fop. First, assume that
v evaluates tarue. Then,v; andwvs both evaluate terue. Hence, by induction, we get

41

valy (test,,) 2 valy (test,,) = valy(good,). Thus,
valy (test,) = [w - d + vala(test,,), w - d + valy (test,,), w - d + vala (good,)]"”

2 [w - d + vals(good,)]"

= valy(goody,).

For the other direction assume that

valy (test,) = [w - d + valy(test,,), w - d + vala(test,,),w - d + vals (good,)]"”
2 [w - d + vals(good,)]".

Since neithewaly (test,,) nor valy (test,,) nor valy(good,) contains an interval iso-
morphic tow - d, [18, Lemma 23] implies that

w - d+ valy(testy,) = w - d + valy(test,,) = w - d + valy(good,).
This implies
valy (test,,) 2 valy (test,,) = valy(good,).

Finally, the induction hypothesis yields that bathandv., and hence also evaluate
to true.

Case 2w € L4+ is anor-gate. We can use similar arguments as for Case 1. O

We do not know, whether the lower bound from Theorem 4.27 ifid ordinary ex-
pressions too (instead of succinct expressions).

Theorem 4.28. The following problem i®-hard (and henc®-complete):

INPUT: Two DFAsA; andAs.
QUESTION:(L(A1); <jex) = (L(A2); <iex)?

Proof. Note that by Theorem 4.1 the problem belong®1td-or P-hardness, it suffices
by Theorem 4.27 to construct in logspace from a given suteixpressiom (over a
unary terminal alphabet) a DFA such that the linear ordenl(A) is isomorphic to
(L(A); <iex)- But this is accomplished by the construction in the prod28f Proposi-
tion 2]. a

Theorem 4.1 implies that it can be checkedEXPTIME whether the lexicographical
orderings on two regular languages, given by NFAs, are isphio. We do not know
whether this upper bound is sharp. Currently, we can onlye lower bound of
PSPACE:

Theorem 4.29. The following problem i®SPACE-hard:

INPUT: Two NFAsA; and As.
QUESTION:(L(A1); <iex) = (L(A2); <jex)?

42

Proof. We provePSPACE-hardness by a reduction from tRE PACE-complete prob-
lem whether a given NFA4 (over the terminal alphabdu, b}) accepts{a, b}* [28].
So let. A be an NFA over the terminal alphabgt, b} and letK = L(A). Let X =
{0,1,a,b, %1, $2} and fix the following order ort:

$1<0<1<$<ax<b.

Under this order({0, 1}*1; <iex) = ({a, b}*b; <iex) = 1.
It is straightforward to construct fromd in logspace NFAs for the following lan-
guages:

Ly = {a,b}*b$,

Ly = Kb{0,1}"1

Ls = {a,b}*b$,

L=LULyU Ls (6)

It follows that

(L; <iex) = Z L(w),

we{a,b}*b

(the sum is taken over all words frofa, b}*b in lexicographic order), where

E(w)2{1+n+1 ifwekK
2 else.

Hence, ifK # {a,b}*, then(L; <i) contains an interval isomorphic Band therefore
is not dense. Hendd.; <iex) % 1. On the other hand, iK = {a,b}*, then(L; <) =
(14+n+1)-n=n. This proves the theorem. O

Remark 4.30.The proof of Theorem 4.29 shows that itHSPACE-hard to check for a
given NFA A, whether(L(A); <ix) 2 7. In fact, this problem i®SPACE-complete,
since we can check in polynomial space whetti€r4); <) = 7: In polynomial time,
we can construct an NFA that accepts a convolution of two wofds ® v if and only

if u,v € L(A) and there exist words, , wa, w3 € L(A) such thaty; < v <jex w2
and @ <jex u OFr u <jex w3 <jex v). Then,(L(A); <) = n if and only if B accepts the
set of all convolutions ® v with u, v € L(.A). The latter can be checked in polynomial
space.

Remark 4.31.In [9] it is shown that the problem, whether for a given comtigge lan-
guagelL the linear orderL; <i) is isomorphic ton, is undecidable. This result is
shown by a reduction from Post’s correspondence problerte tiat this result can be
also easily deduced using the technique from the above pfoeé start with a push-
down automaton fo instead of an NFA, then the languagérom (6) is context-free.
Hence(L; <ix) = nifand only if L(.A) = {a, b}*. The latter property is a well-known
undecidable problem.

5The convolution of the words aiaz---am and bibs---b, is the word
(a1,b1)(az,b2) - (ak,b), wherek = max{m,n}, a; = # (a dummy symbol) for
m<i<kandb, =#forn <i<k.

43

In Section 3 we also studied the isomorphism problem forditiees that are suc-
cinctly given by the prefix order on the finite language aceéfty a DFA (resp., NFA).
To complete the picture, we will finally consider the isonuigm problem for linear
orders that consist of a lexicographically ordered finitglaage, where the latter is rep-
resented by a DFA (resp., NFA). Of course, this problem isedwow trivial, since two
finite linear orders are isomorphic if and only if they have #ame cardinality. Hence,
we have to consider the problem whether two given acyclic ©fasp. NFAs) accept
languages of the same cardinality.

Proposition 4.32. Itis C_L-complete (respC— P-complete) to check whether two given
acyclic DFAs (resp., acyclic NFAs) accept languages of #messize.

Proof. The upper bounds are easy: There exists a nondetermin@tingmial time
(resp., logspace) machine, which gets an NFA (resp. a DEAYer an alphabel as
input, and has precisely.(.A)| many accepting paths. Letbe the number of states
of n. The machine first branches nondeterministically for attmoslog(|X|) steps
and thereby produces a wotd € <™. Then it checks whether € L(.A) and only
accepts it this holds. The checking step can be done in digtistio polynomial time
for an NFA and in deterministic logspace for a DFA.

For the lower bound, we first consider the DFA-case. Givennandeterministic
logspace machine®(;, M, (over the same input alphabet) together with an inpute
can produce in logspace the configuration graphsand G, of M; and Ms, respec-
tively, on inputw. W.l.0.g. we can assume th&4 andG, are acyclic (one can add a
step counter taV/;). Now, from G; it is straightforward to construct an acyclic DFA
A; such thaiL(A;)| is the number of paths i&'; from the initial configuration to the
(w.l.o.g. unique) accepting configuration. The latter nemib the number of accepting
computations of\/; on inputw.

Finally, C_P-hardness for NFAs follows from [16, Theorem 2.1], where @sw
shown that counting the number of words accepted by an NEAPiccomplete. O

4.8 Ordered trees

Let us briefly discuss the isomorphism problem for ordereplliar trees, i.e., regular
trees, where the children of a node are linearly ordered.r8ered tree can be viewed
as a triple(4; <, R), where(A; <) is a tree as defined in Section 2.3 and the binary
relation R is the disjoint union of relation, (a € A), whereR, is a linear order
on the children ofi. Now, assume thatl is a (deterministic or nondeterministic) finite
automaton with input alphabef and let<y be a linear order o). Assume that

e € L(A). Then, we can define a finitely branching ordered regulardiged, <x)
with A4 as follows:

OT(Aa SE) = (L(A)7 Sprefv UuEL(.A) Ru)a
whereR,, is the relation

R, = {(v,w) | v,w are children otz in (L(A); <pref), v <iex w}.

44

This means that we order the children of a nade L(.A) lexicographically. In the
following, we will omit the order< 5 on the alphabet. The proof of the following result
combines ideas from the proof of Theorem 3.1 with Theorem 4.1

Proposition 4.33. The following problem i®-complete:

INPUT: Two DFAsA; and.A; withe € L(A;) N L(Ag).
QUESTION:0T(A;) = 0T(A,)?

Proof. Similarly to the proof of Theorem 3.1, it suffices to take a DEA= (Q, X, 0, F')
without initial state and two statesq € F', and to check in polynomial time, whether
oT(A,p) = oT(A,q), whereoT(A,r) = oT(Q,X,0,r, F) for r € F. Define the
following equivalence relation oA’

iso={(p,q) € F x F'|oT(A,p) 20oT(A,q)}.

We show thatso can be computed in polynomial time. As in the proof of TheoBn
this will be done with a partition refinement algorithm. Weede few definitions.

Recall from the proof of Theorem 3.1 the definition of the laagesL(A, p, C)
andK (A, p,C) C L(A,p,C) forp € F andC C F. Assume thaR is an equivalence
relation onF' and letm be the number of equivalence classeshofFix an arbitrary
bijection f between the the alphabét, ..., m} and the set of equivalence classes of
R. With Randp € F we associate a partitioned DEA(p, R) as follows: Take the DFA
for the languagéd.(A, p, F') as defined in the proof of Theorem 3.1 and Bet= f(4)
(1 < i < m), which is the set of final states associated with symibbinally, define
the regular wordu(p, R) = w(A(p, R)) over the alphabefl, ..., m}. We define the
new equivalence relatioR on F as follows:

Thus, R is a refinement o which, by Theorem 4.1, can be computed in polynomial
time from R. Let us define a sequence of equivalence relatiBgnsh,, ... on F' as
follows: Ry = F x F, R;y1 = R;. Then, there exists < |F| such thatR, = Rj1.

We claim thatR;, = iso.

For the inclusionso C Ry, one shows, by induction oi) thatiso C R; for all
1 <@ < k. The point is that for every equivalence relati@ron I’ with iso C R, we
also havéso C R. To see this, assume thisd C R butthere igp, ¢) € iso, which does
not belong toR. Since(p, q) belongs toR, we must havev(p, R) % w(q, R). On the
other hand, sincép, ¢) € iso, it follows that the regular words (p, iso) andw(g, iso)
are isomorphic. But sinc&go C R, w(p, R) is a homomorphic image ab(p, iso)
and similarly forw(gq, R). Thus, alsow(p, R) andw(q, R) are isomorphic, which is a
contradiction.

For the inclusion?;, C iso, we show that if? is an equivalence relation dn such
that R = R (this holds forRy), thenR C iso. For this, take a paifp;,p2) € R. Take
the treeoT (A, p;). We assign types in form of final states to the nodes™fA, p;)
in the same way as in the proof of Theorem 3.1. We now constnmudsomorphism
f i oT(A,p1) = oT(A,p2) as the limit of isomorphismg,,, n > 1. Here, f,, is an

45

isomorphism between the trees that result frohiA, p;) andoT (A, p2) by cutting off
all nodes below leveh. Let us call these treesT (A, p;) [, (@ € {1,2}). Moreover, if
an f,, maps a node; of typeq; to a nodeu, of typeg., then we will have(q,, ¢2) € R.
Assume thatf,, is already constructed and let of type ¢; be a leaf ofoT (A, p1) 4.
Let us = f(u1) be of typegs. Then we havdqi,q2) € R and hence the regular
wordsw(q:, R) andw(g2, R) are isomorphic. Ley be an isomorphism. The elements
of these regular words correspond to the children:pfand uo, respectively. More
precisely, ifv; belongs to the domain af(g;, R), thenw,;v; is a child ofu; and vice
versa. Clearlyg can be also viewed as an isomorphism between the lexicogedph
orderings on the children af; andus, respectively. Moreover, by definition of the
regular wordsw(q1, R) andw(qa, R), if ¢ maps some:; v, of typer; to ugvy of type
ro, then(ry,r2) € R. By choosing such an isomorphispfor every pair(uy, f(u1))

of leaves i T (A, p1) [, andoT (A, p2)[,, respectively, we can exterfd to f,11. O

Let us now consider prefix-closed automata. Here, we canawepthe upper bound
from Theorem 4.33 tolL.

Proposition 4.34. The following problem i&lL-complete:

INPUT: Two prefix-closed DFA4; and As.
QUESTION:0T (A1) 2 0T (A2)?

Proof. Again, it suffices to take a prefix-closed DEA = (Q, X, ¢, Q) without ini-
tial state, and two states g € @, and two check ilNL, whetheroT(Q, X', 6, p, Q) =
oT(Q, X, 4, p, Q). By the complement closure biL, it suffices to check nondetermin-
istically in logarithmic space, whethe (Q, X', 4,p, Q) % oT(Q, X, 6, p, Q) This can
be done as follows: Let; < as--- < a,, andb; < by < --- < b, the transi-
tion labels of the outgoing transitions pfandq, respectively. Ifm # n then clearly
oT(Q,X,4,p,Q) # oT(Q, X, 0,q,Q) and the algorithm can accept./if = m, then
oT(Q,X,4,p,Q) #oT(Q, X, 4,q,Q) if and only if there existd < i < m such that
oT(Q,X,4,6(p,a;),Q) 2 oT(Q, X,6,0(¢q,b;), Q). Hence, the algorithm will simply
guessl <14 < m and replace the state pair, ¢) by (6(p, a;), d(q, b;)). In this way, the
algorithm only has to store two states.df which is possible in logspace.
NL-hardness can be shown by a reduction from the complemeim @fraph acces-
sibility problem. Take a directed gragh = (V, E) and two nodes,t € V. Add to
each node oV loops, so that every nodec V' \ {¢} has outdegree (wheren can be
taken as the maximal outdegree of a nodé&daind¢ has outdegree + 1. Then label
the edges of the resulting multigraph arbitrarily by synstsn that we obtain a DFA
(the initial state iss and all states are final). Then there is no path frota ¢t in G if
and only if the tre@T(A) is a full n-ary tree. O

Corollary 4.35. The following problem i®SPACE-complete:

INPUT: Two prefix-closed NFA4; and As.
QUESTION:0T (A1) £ 0T (A3)?

Proof. The PSPACE upper bound follows from Proposition 4.34, using Lemma 2.1
and the obvious fact that the power set automaton of a givexaddii be produced by

46

DFA NFA

acyclic PSPACE-complete
P-complete
arbitrary EXPTIME-complete

Table 1.Main results for the isomorphism problem for regular trees

DFA NFA
acyclic C-L-complete C_P-complete
arbitrar P-complete PSPACE-hard,
d P in EXPTIME

Table 2. Main results for the isomorphism problem for regular lineeters

a PSPACE-transducer. For theSPACE lower bound, note that for an NFA over
an alphabet’ we haveL(A) = X* if and only if oT(A) is a full | X|-ary tree. But
universality for NFAs iSPSPACE-complete [28]. a

5 Conclusion and open problems

Table 1 (Table 2) summarizes our complexity results for soenorphism problem for
regular trees (regular linear orders). Let us conclude sothe open problems. As can
be seen from Table 2, there is a complexity gap for the isohisnp problem for regu-
lar linear orders that are represented by NFAs. This prolblelongs taEXPTIME and

is PSPACE-hard. Another interesting problem concerns the equiwagroblem for
straight-line programs (i.e., succinct expressions tieakegate finite words, or equiva-
lently, acyclic partitioned DFAs, or equivalently, contdsee grammars that generate a
single word). Plandowski has shown that this problem camlwed in polynomial time.
Recall that this result is fundamental for our polynomiaddialgorithm for succinct ex-
pressions (Theorem 4.15). In [10], it was conjectured thatguivalence problem for
straight-line programs iB-complete, but this is still open.

References

1. V. Barany, E. Gradel, and S.Rubin. Automata-basedgmitions of infinite structures. In
Finite and Algorithmic Model Theorywumber 379 in London Mathematical Society Lecture
Notes Series. Cambridge University Press, 2011. to appear.

2. Stephen L. Bloom and Zoltdasik. The equational theory of regular wordsmformation
and Computation197(1-2):55-89, 2005.

3. Stephen L. Bloom and Zolt48sik. Algebraic linear orderings. Technical report, arig,
2010.http://arxiv.org/abs/1002.1624.

4. Ronald V. Book and Friedrich Ott&tring—Rewriting System$Springer, 1993.

47

(e2}

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeféernation. Journal of the

Association for Computing Machiner28(1):114-133, 1981.

. Bruno Courcelle. Frontiers of infinite tred3A, 12(4), 1978.
. Bruno Courcelle. The definability of equational graphsnionadic second-order logic. In

Proceedings of the 16th International Colloquium on Auttanhanguages and Program-
ming (ICALP 1989) number 372 in Lecture Notes in Computer Science, pages2207—
Springer, 1989.

. ZoltanEsik. Representing small ordinals by finite automataPioceedings ofthe Twelfth

Annual Workshop on Descriptional Complexity of Formal 8yst, DCFS 2010/0lume 31
of EPTCS pages 78-87, 2010.

. ZoltanEsik. An undecidable property of context-free linear osdémformation Processing

Letters 111(3):107-109, 2011.

Leszek Gasieniec, Alan Gibbons, and Wojciech Rytteficiehcy of fast parallel pattern
searching in highly compressed texts. In M. Kutylowski, lacRolski, and T. Wierzbicki,
editors,Proceedings of the 24th International Symposium on MathieaidFoundations of
Computer Science (MFCS’99), Szklarska Poreba (Polamathber 1672 in Lecture Notes in
Computer Science, pages 48-58. Springer, 1999.

Leszek Gasieniec, Marek Karpinski, Wojciech Plandawaskd Wojciech Rytter. Efficient
algorithms for Lempel-Ziv encoding (extended abstraat) Rblf G. Karlsson and Andrzej
Lingas, editorsProceedings of the 5th Scandinavian Workshop on Algoritheofly (SWAT
1996), Reykjavik (Icelandhumber 1097 in Lecture Notes in Computer Science, pages 392
403. Springer, 1996.

Leslie M. Goldschlager. The monotone and planar circaitie problems are log space
complete for PSIGACT News9(2):25-99, 1977.

Stephan Heilbrunner. An algorithm for the solution oféixpoint equations for infinite
words. ITA, 14(2):131-141, 1980.

Birgit Jenner, Johannes Kdbler, Pierre McKenzie, awmbldo Toran. Completeness results
for graph isomorphismJournal of Computer and System Scien&t3):549-566, 2003.
Paris C. Kanellakis and Scott A. Smolka. CCS expressfonte state processes, and three
problems of equivalencénformation and Computatiqrd6(1), 1990.

Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney.tiG@and random generation
of strings in regular languages. Rroceedings of SODA'9pages 551-557, 1995.
Bakhadyr Khoussainov, André Nies, Sasha Rubin, amikF3tephan. Automatic structures:
richness and limitationd.ogical Methods in Computer Scien@£2):2:2, 18 pp. (electronic),
2007.

Dietrich Kuske, Jiamou Liu, and Markus Lohrey. The isophism problem on classes
of automatic structures. Technical report, arXiv.org, @0kttp://arxiv.org/abs/
1001.2086.

Dietrich Kuske, Jiamou Liu, and Markus Lohrey. The isgpmism problem on classes of
automatic structures with transitive relations. subrdift® publication, extended version of
a paper presented at LICS 2010, 2011.

Yury Lifshits. Processing compressed texts: A tratitgtiiorder. In Bin Ma and Kaizhong
Zhang, editorsProceedings of the 18th Annual Symposium on Combinatoaibéf Match-
ing (CPM 2007), London (Canadahumber 4580 in Lecture Notes in Computer Science,
pages 228-240. Springer, 2007.

Steven Lindell. A logspace algorithm for tree canon@atextended abstract). Proceed-
ings of STOC’'92pages 400-404. ACM Press, 1992.

Masamichi Miyazaki, Ayumi Shinohara, and Masayuki TkeAn improved pattern match-
ing algorithm for strings in terms of straight-line progranin Alberto Apostolico and Jotun
Hein, editorsProceedings of the 8th Annual Symposium on CombinatoriéfaMatching

48

23.
24,

25.

26.
27.

28.

29

(CPM 97), Aarhus (Denmarkpumber 1264 in Lecture Notes in Computer Science, pages
1-11. Springer, 1997.

C. H. PapadimitriouComputational ComplexityAddison Wesley, 1994.

Wojciech Plandowski. Testing equivalence of morphismscontext-free languages. In
Jan van Leeuwen, edito§econd Annual European Symposium on Algorithms (ESA’94),
Utrecht (The Netherlandshumber 855 in Lecture Notes in Computer Science, pages 460—
470. Springer, 1994.

Wojciech Plandowski and Wojciech Rytter. Complexitylarfguage recognition problems
for compressed words. In Juhani Karhumaki, Hermann A. Miaugheorghe Paun, and
Grzegorz Rozenberg, editordewels are Forever, Contributions on Theoretical Computer
Science in Honor of Arto Salomapages 262—272. Springer, 1999.

J. RosensteirLinear Ordering Academic Press, 1982.

Wojciech Rytter. Grammar compression, LZ-encodingd,siring algorithms with implicit
input. In J. Diaz, J. Karhumaki, A. Lepistd, and D. SanagdiditorsProceedings of the 31st
International Colloquium on Automata, Languages and Paogming (ICALP 2004), Turku
(Finland), number 3142 in Lecture Notes in Computer Science, page&71Springer, 2004.
Larry J. Stockmeyer and A. R. Meyer. Word problems réggiexponential time (prelim-
inary report). InProceedings of the 5th Annual ACM Symposium on Theory of Qtimgp
(STOCS 73)pages 1-9. ACM Press, 1973.

. Wolfgang Thomas. On frontiers of regular treE&, 20(4):371-381, 1986.

49

