
ar
X

iv
:1

10
2.

27
82

v1
 [

cs
.F

L]
 1

4
F

eb
 2

01
1

Isomorphism of regular trees and words

Markus Lohrey and Christian Mathissen

Institut für Informatik, Universität Leipzig, Germany
{lohrey,mathissen}@informatik.uni-leipzig.de

Abstract. The computational complexity of the isomorphism problem for reg-
ular trees, regular linear orders, and regular words is analyzed. A tree is regular
if it is isomorphic to the prefix order on a regular language. In case regular lan-
guages are represented by NFAs (DFAs), the isomorphism problem for regular
trees turns out to beEXPTIME-complete (resp.P-complete). In case the input au-
tomata are acyclic NFAs (acyclic DFAs), the corresponding trees are (succinctly
represented) finite trees, and the isomorphism problem turns out to bePSPACE-
complete (resp.P-complete). A linear order is regular if it is isomorphic to the
lexicographic order on a regular language. A polynomial time algorithm for the
isomorphism problem for regular linear orders (and even regular words, which
generalize the latter) given by DFAs is presented. This solves an open problem
by Ésik and Bloom.

1 Introduction

Isomorphism problems for infinite but finitely presented structures are an active re-
search topic in algorithmic model theory [1]. It is a folklore result in computable model
theory that the isomorphism problem for computable structures (i.e., structures, where
the domain is a computable set of natural numbers and all relations are computable too)
is highly undecidable — more precisely, it isΣ1

1-complete, i.e., complete for the first
existential level of the analytical hierarchy. Khoussainov et al. proved in [17] that even
for automatic structures (i.e., structures, where the domain is a regular set of words
and all relations can be recognized by synchronous multitape automata), the isomor-
phism problem isΣ1

1 -complete. In [19], this result was further improved to automatic
order trees and automatic linear orders. On the decidability side, Courcelle proved that
the isomorphism problem for equational graphs is decidable[7]. Recall that a graph is
equational if it is the least solution of a system of equations over the HR graph opera-
tions. We remark that Courcelle’s algorithm for the isomorphism problem for equational
graphs has very high complexity (it is not elementary), since it uses the decidability of
monadic second-order logic on equational graphs.

In this paper, we continue the investigation of isomorphismproblems for infinite
but finitely presented structures at the lower end of the spectra. We focus on two very
simple classes of infinite structures:regular treesandregular words. Both are particular
automatic structures. Recall that a countable tree is regular if it has only finitely many
subtrees up to isomorphism. This definition works for ordered trees (where the children
of a node are linearly ordered) and unordered trees. An equivalent characterization in
the unordered case uses regular languages: An unordered (countable) treeT is regular

http://arxiv.org/abs/1102.2782v1

if and only if there is a regular languageL ⊆ Σ∗ which contains the empty word and
such thatT is isomorphic to the tree obtained by taking the prefix order onL (the empty
word word is the root of the tree). Hence, a regular tree can berepresented by a finite
deterministic or nondeterministic automaton (DFA or NFA),and the isomorphism prob-
lem for regular trees becomes the following computational problem: Given two DFAs
(resp., NFAs) accepting both the empty word, are the corresponding regular trees iso-
morphic? It is is not difficult to prove that this problem can be solved in polynomial
time if the two input automata are assumed to be DFAs; the algorithm is very simi-
lar to the well-known partition refinement algorithm for checking bisimilarity of finite
state systems [15], see Section 3.1. Hence, the isomorphismproblem for regular trees
that are represented by NFAs can be solved in exponential time. Our first main result
states that this problem is in factEXPTIME-complete, see Section 3.2. The proof of the
EXPTIME lower bound uses three main ingredients: (i)EXPTIME coincides with alter-
nating polynomial space [5], (ii) a construction from [14],which reduces the evaluation
problem for Boolean expressions to the isomorphism problemfor (finite) trees, and (iii)
a small NFA accepting all words that donot represent an accepting computation of a
polynomial space machine [28].1. Our proof technique yields another result too: It is
PSPACE-complete to check for two givenacyclic NFAs A1, A2 (both accepting the
empty word), whether the trees that result from the prefix orders onL(A1) andL(A2),
respectively, are isomorphic. Note that these two trees areclearly finite (since the au-
tomata are acyclic), but the size ofL(Ai) can be exponential in the number of states of
Ai. In this sense, acyclic NFAs can be seen as a succinct representation of finite trees.
ThePSPACE-upper bound for acyclic NFAs follows easily from Lindell’sresult [21]
that isomorphism of explicitly given trees can be checked inlogarithmic space.

The second part of this paper studies the isomorphism problem for regular words,
which were introduced in [6]. Ageneralized wordover an alphabetΣ is a countable
linear order together with aΣ-coloring of the elements. A generalized word is regu-
lar if it can be obtained as the least solution (in a certain sense made precise in [6])
of a systemX1 = t1, . . . , Xn = tn. Here, everyti is a finite word over the alphabet
Σ ∪{X1, . . . , Xn}. For instance, the systemX = abX defines the regular word(ab)ω.
Courcelle [6] gave an alternative characterization of regular words: A generalized word
is regular if and only if it is equal to the frontier word of a finitely-branching ordered
regular tree, where the leaves are colored by symbols fromΣ. Here, the frontier word
is obtained by ordering the leaves in the usual left-to-right order (note that the tree is
ordered). Alternatively, a regular word can be representedby a DFAA, where the set of
final states is partitioned into setsFa (a ∈ Σ); we call such a DFA apartitioned DFA.
The corresponding regular word is obtained by ordering the language ofA lexicograph-
ical and coloring a wordw ∈ L(A) with a if w leads from the initial state to a state
from Fa. A third characterization of regular words was provided by Heilbrunner [13]:
A generalized word is regular if it can be obtained from singleton words (i.e., symbols
from Σ) using the operations of concatenation,ω-power,ω-power and dense shuffle.
For a generalized wordu, itsω-power (resp.ω-power) is the generalized worduuu · · ·
(resp.· · ·uuu). Moreover, the shuffle of generalized wordsu1, . . . , un is obtained by

1 This construction is used in [28] to prove that the universality problem for NFAs isPSPACE-
complete.

2

choosing a dense coloring of the rationals with colors{1, . . . , n} (up to isomorphism,
there is only a single such coloring [26]) and then replacingevery i-colored rational
by ui. In fact, Heilbrunner presents an algorithm which computesfrom a given system
of equations (or, alternatively, a partitioned DFA) an expression over the above set of
operations (called aregular expressionin the following) which defines the least solu-
tion of the system of equations. A simple analysis of Heilbrunner’s algorithm shows
that the computed regular expression in general has exponential size with respect to
the input system of equations and it is easy to see that this cannot be avoided.2 The
next step was taken by Thomas in [29], where he proved that theisomorphism problem
for regular words is decidable. For his proof, he uses the decidability of the monadic
second-order theory of linear orders; hence his proof does not yield an elementary upper
bound for the isomorphism problem for regular words. Such analgorithm was presented
later by Bloom and́Esik in [2], where the authors present a polynomial time algorithm
for checking whether two given regular expressions define isomorphic regular words.
Together with Heilbrunner’s algorithm, this yields an exponential time algorithm for
checking whether the least solutions of two given systems ofequations (or, alterna-
tively, the regular words defined by two partitioned DFAs) are isomorphic. It was asked
in [2], whether a polynomial time algorithm for this problemexists. Our second main
result answers this question affirmatively. In fact, we prove that the problem, whether
two given partitioned DFAs define isomorphic regular words,is P-complete. A large
part of this paper deals with the polynomial time upper bound. The first step is simple.
By reanalyzing Heilbrunner’s algorithm, it is easily seen that from a given partitioned
DFA (defining a regular wordu) one can compute inpolynomial timea succinct repre-
sentationof a regular expression foru. This succinct representation consists of a DAG
(directed acyclic graph), whose unfolding is a regular expression foru. The second and
main step of the proof shows that the polynomial time algorithm of Bloom andÉsik
for regular expressions can be refined in such a way that it works (in polynomial time)
for succinct regular expressions too. The main tool in our proof is (besides the machin-
ery from [2]) algorithmics on compressed strings (see [27] for a survey), in particular
Plandowski’s result that equality of strings that are represented bystraight-line pro-
grams(i.e., context free grammars that only generate a single word) can be checked in
polynomial time [24]. It is a simple observation that anacyclicpartitioned DFA is basi-
cally a straight-line program. Hence, we show how to extend Plandowski’s polynomial
time algorithm from acyclic partitioned DFAs to general partitioned DFAs.

An immediate corollary of our result is that it can be checkedin polynomial time
whether the lexicographic orderings on the languages defined by two given DFAs (so
called regular linear orderings) are isomorphic. For the special case that the two input
DFAs accept well-ordered languages, this was shown in [8]. Let us mention that it is
highly undecidable (Σ1

1 -complete) to check, whether the lexicographic orderings on
the languages defined by two given deterministic pushdown automata (these are the
algebraic linear orderings [3]) are isomorphic [19].

2 Take for instance the systemXi = Xi+1Xi+1 (1 ≤ i ≤ n), Xn = a, which defines the finite
worda2

n

.

3

2 Preliminaries

For an equivalence relationR on a setA anda ∈ A we denote with[a]R the equivalence
class containingR. Moreover,[A]R = {[a]R | a ∈ A}. Let us take a finite alphabetΣ.
The length of a finite wordsu ∈ Σ∗ is denoted by|u|. LetΣ+ = {u ∈ Σ∗ | |u| > 0},
Σk = {u ∈ Σ∗ | |u| = k}, Σ≤k = {u ∈ Σ∗ | |u| ≤ k}, andΣ≥k = {u ∈ Σ∗ | |u| ≥
k}. Foru, v ∈ Σ∗, we writeu ≤pref v if there existsw ∈ Σ∗ with v = uw, i.e.,u is
a prefixof v. We writeu <pref v if u ≤pref v andu 6= v. For a languageL ⊆ Σ∗ let
pref(L) = {u ∈ Σ∗ | ∃v ∈ L : u ≤pref v}. For a fixed linear order≤ on the alphabet
Σ we define thelexicographic order≤lex on Σ∗ as follows:u ≤lex v if u ≤pref v or
there exist wordsw, x, y anda, b ∈ Σ such thata < b, u = wax, andv = wby.

2.1 Complexity theory

We assume that the reader has some basic background in complexity theory, in partic-
ular concerning the complexity classesNL, P, PSPACE, andEXPTIME, see e.g. [23].
All completeness results in this paper refer to logspace reductions.

A PSPACE-transducer is a deterministic Turing machine with a read-only input
tape, a write-only output tape and a work tape, whose length is bounded bynO(1),
wheren is the input length. The output is written from left to right on the output tape,
i.e., in each step the transducer either outputs a new symbolon the output tape, in which
case the output head moves one cell to the right, or the transducer does not output a new
symbol in which case the output head does not move. Moreover,we assume that the
transducer terminates for every input. This implies that aPSPACE-transducer computes
a mappingf : Σ∗ → Θ∗, where|f(w)| is bounded by2|w|O(1)

. We need the following
simple lemma:

Lemma 2.1. Assume that the mappingf : Σ∗ → Θ∗ can be computed by aPSPACE-
transducer and letL ⊆ Θ∗ be a language inNSPACE(logk(n)) for some constantk.
Thenf−1(L) belongs toPSPACE.

Proof. The proof uses the same idea that shows that the composition of two logspace
computable mappings is again logspace computable. Letw ∈ Σ∗ be an input. Basically,
we run theNSPACE(logk(n))-algorithm forL on the inputf(w). But sincef can be
computed by aPSPACE-transducer (which can generate an exponentially long output)
the length off(w) can be only bounded by2|w|O(1)

. Hence, we cannot constructf(w)
explicitly. But this is not necessary. We only store a pointer to some positionf(w) (this
pointer needs space|w|O(1)) while running theNSPACE(logk(n))-algorithm forL.
Each time, this algorithm needs theith letter off(w), we run the PSPACE-transducer
for L until theith output symbol is generated. The firsti − 1 symbols off(w) are not
written on the output tape. Note that theNSPACE(logk(n))-algorithm forL needs space
logk(2|w|O(1)

) = |w|O(1) while running onf(w). Hence, the total space requirement is
bounded by|w|O(1). ⊓⊔

An alternating Turing machineis an ordinary nondeterministic Turing machine, where
in addition the set of statesQ is partitioned into existential states (Q∃) and universal

4

states (Q∀). A configuration, where the current state is existential (resp., universal) is
called an existential (resp., universal) configuration. Let us assume thatM is an alter-
nating Turing machine without infinite computation paths. Then, we define inductively
the notion of anaccepting configurationas follows: Ifc is an existential configuration,
thenc is accepting if and only ifc has an accepting successor configuration. Ifc is a
universal configuration, thenc is accepting if and only if all successor configurations of
c are accepting. Note that a universal configuration without successor configurations is
accepting, whereas an existential configuration without successor configurations is not
accepting. An inputx is accepted byM (briefly, x ∈ L(M)) if and only if the initial
configuration with inputx is accepting.

The complexity classC=P consists of all languagesL ⊆ Σ∗ such that there exist
nondeterministic polynomial time Turing machinesM1 andM2 with input alphabet
Σ such that for every inputw ∈ Σ∗: w ∈ L if and only if the number of accepting
computations ofM1 on inputw equals the number of accepting computations ofM2

on inputw. If we replace in this definition nondeterministic polynomial time Turing
machines by nondeterministic logspace Turing machines, weobtain the classC=L.

2.2 Finite automata and transducer

LetA = (Q,Σ, δ, q0, F) be a nondeterministic finite automaton, brieflyNFA, whereQ
is the set of states,Σ is the input alphabet,δ ⊆ Q × Σ × Q is the transition relation,
q0 ∈ Q is the initial state, andF ⊆ Q is the set of final states. A stateq ∈ Q isaccessible
(resp.coaccessible), if q can be reached from the initial stateq0 (resp., if a final state
from F can be reached fromq). We say thatA is accessible (resp., coaccessible), if
every state ofA is accessible (resp, coaccessible). An NFAA is calledprefix-closed
if every state ofA is a final state. In that case, the languageL(A) is prefix-closed.
Moreover, ifA is coaccessible and the prefix-closed NFAB results fromA by making
every state final, then clearlyL(B) = pref(L(A)). For a DFA (deterministic finite
automaton),δ is a partial map fromQ × Σ to Q. Sometimes, we will also deal with
NFAs (DFAs) without an initial state. IfA is an NFA without an initial state andq is
a state ofA, thenL(A, q) is the language accepted byA, whenq is declared to be the
initial state. We will need the following simple lemma, which is probably folklore:

Lemma 2.2. For a given a DFAA = (Q,Σ, δ, q0, F), we can compute the cardinality
|L(A)| ∈ N ∪ {∞} in polynomial time.

Proof. W.l.o.g we can assume thatA is accessible and coaccessible. ThenL(A) is finite
if and only if A is acyclic. So assume thatA is acyclic. SinceA is deterministic, the
size ofL(A) equals the number of paths fromq0 toF . Now, in a directed acyclic graph,
the number of paths from a source node to all other nodes can beeasily computed by
dynamic programming in polynomial time. ⊓⊔

A partitioned DFAis a tupleA = (Q,Σ, δ, q0, (Fa)a∈Γ), whereΓ is a finite alphabet,
B = (Q,Σ, δ, q0,

⋃
a∈Γ Fa) is an ordinary DFA andFa ∩ Fb = ∅ for a 6= b. Since

B is a DFA, it follows that the languageL(B) is partitioned by the languagesL(Aa),
whereAa = (Q,Σ, δ, q0, Fa) (a ∈ Γ). We use partitioned DFAs to label elements
of a structure with symbols fromΓ . The languageL(Aa) will be the set ofa-labelled

5

elements. We do not introduce partitioned NFAs, since for NFAs the languagesL(Aa)
(a ∈ Γ) would not partitionL(B) (thus, a point could get several labels).

A (ε-free)rational transduceris a tupleT = (Q,Σ, Γ, δ, q0, F), whereQ (the set
of states),Σ (the input alphabet), andΓ (the output alphabet) are finite sets,q0 ∈ Q
is the initial state,F ⊆ Q is the set of final states, andδ ⊆ Q × Σ × Γ+ × Q is the

transition relation. A transition(q, a, w, p) ∈ δ is also written asq
a|w
−−→ p. The rational

transducerT defines a binary relation[[T]] ⊆ Σ∗×Γ ∗ in the usual way. For a language
L ⊆ Σ∗ let T (L) = {v ∈ Γ ∗ | ∃u ∈ L : (u, v) ∈ [[T]]}.

2.3 Trees

A tree is a partial orderT = (A;≤), where≤ has a smallest element (the root of the
tree; in particularA 6= ∅) and for everya ∈ A, the set{b ∈ A | b ≤ a} is finite
and linearly ordered by≤. We writea ⋖ b if a < b and there does not existc ∈ A
with a < c < b. Fora ∈ A, let child(a, T) (the set of children ofa) be the set of all
b ∈ A such thata ⋖ b. The set of leaves ofT is leaf(T) = {a ∈ A | child(a, T) = ∅}.
For a ∈ A let T ↾a be the subtree ofT rooted ata, i.e., the set of nodes ofT ↾a is
{b ∈ A | a ≤ b}. The treeT is finitely branchingif child(a, T) is finite for all a ∈ A.
An infinite pathof T is an infinite chaina0 ⋖ a1 ⋖ a2 ⋖ · · · ; finite pathsare defined
analogously. IfT is finite anda ∈ A, then theheightof a in T is the maximal length
of a path that starts ina. For treesT1 andT2 we writeT1

∼= T2 in caseT1 andT2 are
isomorphic.

A tree over the finite alphabetΣ is a pairT = (L;≤pref), whereL ⊆ Σ∗ is a
language withε ∈ L. Note thatT is indeed a tree in the above sense. Most of the time,
we will identify the languageL with the tree(L;≤pref). Moreover, ifL = pref(L) (i.e.,
L is prefix-closed), thenT is a finitely branching tree.

A countable treeT is called regular if T has only finitely many subtrees up to
isomorphism. Equivalently, a countable tree is regular if it is isomorphic to a tree of the
form (L;≤pref), whereL is a regular language withε ∈ L. We require that the empty
word ε belongs toL in order to ensure the existence of a root (otherwiese(L;≤pref)
would be only a forest). IfL is accepted by the accessible DFAA, then the subtrees of
(L;≤pref) correspond to the final states ofA. Note that by our definition, a regular tree
need not be finitely branching.

Our definition of a regular tree (having only finitely many subtrees up to isomor-
phism) makes sense for other types of trees as well, e.g. for node-labeled trees or or-
dered trees (where the children of a node are linearly ordered). These variants of regular
trees can be generated by finite automata as well. For instance, a node-labeled regu-
lar tree(L;≤pref , (La)a∈Γ), whereΓ is the finite labeling alphabet andLa is the set
of a-labeled nodes can be specified by a partitioned DFA(Q,Σ, δ, q0, (Fa)a∈Γ) with
La = L(Q,Σ, δ, q0, Fa) andL =

⋃
a∈Γ La. We do not consider node labels in this

paper, since it makes no difference for the isomorphism problem (node labels can be
eliminated by adding additional children to nodes). Ordered regular trees will be briefly
considered in Section 4.8.

6

2.4 Linear orders

See [26] for a thorough introduction into linear orders. Letη be the order type of the
rational numbers,ω the order type of the natural number, andω be the order type of
the negative integers. Withn we denote a finite linear order withn elements. LetΛ =
(L;≤) be a linear order.Λ is denseif L consists of at least two elements, and for all
x < y there existsz with x < z < y. By Cantor’s theorem, every countable dense
linear order, which neither has a smallest nor largest element is isomorphic toη. Hence,
if we take symbols0 and1 with 0 < 1, then({0, 1}∗1;≤lex) ∼= η. The linear orderΛ
is scatteredif there does not exist an injective order morphismϕ : η → Λ. Clearly,
ω, ω, as well as every finite linear order are scattered. A linear order isregular if it is
isomorphic to a linear order(L;≤lex) for a regular languageL. Hence, for instance,η,
ω, ω, and every finite linear order are regular linear orders.

For two linear ordersΛ1 = (L1;≤1) andΛ1 = (L2;≤2) with L1 ∩ L2 = ∅ we
define the sumΛ1 + Λ2 = (L1 ∪ L2;≤), wherex ≤ y if and only if eitherx, y ∈ L1

andx ≤1 y, or x, y ∈ L2 andx ≤2 y, or x ∈ L1 andy ∈ L2. We define the product
Λ1 · Λ2 = (L1 × L2;≤) where(x1, x2) ≤ (y1, y2) if and only if eitherx2 <2 y2 or
(x2 = y2 andx1 ≤1 y1).

An intervalof Λ is a subsetI ⊆ L such thatx < z < y andx, y ∈ I impliesz ∈ I.
An interval isright-closed(resp.left-closed) if it has a greatest (resp. smallest) element
and it isclosedif it is both right-closed and left-closed. An intervalI is dense(resp.,
scattered) if the linear order≤ restricted toI is dense (resp.,scattered). A predecessor
(resp., successor) ofx ∈ L is a largest (resp., smallest) element of{y ∈ L | y < x}
(resp.,{y ∈ L | x < y}). Of course, apredecessor(resp.,successor) of x need not
exist, but if it exists then it is unique.

2.5 Generalized words

Generalized words are countable colored linear orders. LetΣ be a (possibly infinite)
alphabet. Ageneralized word(or simply word)u overΣ is a triple(L;≤, τ) such that
L is a finite or countably infinite set,≤ is a linear order onL andτ : L → Σ is a
coloring ofL. The alphabetalph(u) equals the image ofτ . If L is finite, we obtain a
finite word in the usual sense. As for trees, we writeu ∼= v for generalized wordsu and
v in caseu andv are isomorphic.

Let u = (L;≤, τ) be a generalized word overΣ with Γ = alph(u). Let va =
(La;≤a, τa) be a generalized word for eacha ∈ Γ . We define the generalized word
u[(a/va)a∈Γ] = (L′;≤, τ ′) as follows:

– L′ = {(x, y) | y ∈ L, x ∈ Lτ(y)},
– (x, y) ≤ (x′, y′) if and only if eithery < y′ or (y = y′ andx ≤τ(y) x

′), and
– τ ′(x, y) = ττ(y)(x).

Thus,u[(a/va)a∈Γ] is obtained fromu by replacing everya-labelled point byva (for all
a ∈ Σ). Now we can define the regular operations on words. In order to do so we need
the following words. The wordsab andaω for a, b ∈ Σ are as usual. The generalized
word aω hasω as underlying order and every element is colored witha. Finally, we
let [a1, . . . , an]η be the generalized word with underlying orderη where the coloring

7

is such that any point is labeled by someai (1 ≤ i ≤ n) and, moreover, for any two
pointsx < y and any1 ≤ i ≤ n we find a pointz with x < z < y colored byai. It can
be shown that this describes a unique word up to isomorphism [26].

Definition 2.3 (Regular Operations).Letu, v, u1, . . . , un be words overΣ. We let:

uv = (ab)[a/u, b/v] uω = aω[a/u]

[u1, . . . , un]
η = [a1, . . . , an]

η[a1/u1, . . . , an/un] uω = aω[a/u].

Thus, the underlying linear order ofuv is the sum of the underlying linear orders
of u andv. Intuitively, we haveuω = uuu · · · anduω = · · ·uuu. Note that since
[u1, . . . , un]

η is invariant under permutations of theui we also sometimes use the nota-
tion Xη for a finite setX . The least set of words which is closed under the regular op-
erations and contains the singleton wordsa for a ∈ Σ is called the set ofregular words
overΣ, denotedReg(Σ). Note that this implies that every regular word is non-empty,
i.e., its domain is a non-empty set. Moreover, although we allow Σ to be infinite (this
will be useful later), the alphabetalph(u) of a regular wordu must be finite. Clearly,
every regular word can be described by aregular expressionover the above operations,
but this regular expression is in general not unique.

Example 2.4.Here are some typical identities between regular words, where X is a
finite set of regular words,n ≥ 0, m ≥ 1, u, u1, . . . , un ∈ X , everyvi (1 ≤ i ≤ m)
has one of the formsXη, yXη, Xηz, yXηz with y, z ∈ X , andv, w are regular words:

XηXη ∼= XηuXη ∼= (Xη)ω ∼= (Xηu)ω ∼= (Xη)ω ∼= (uXη)ω ∼= Xη,

[u1, . . . , un, v1, . . . , vm]η ∼= Xη,

(vw)ω = v(wv)ω , (vw)ω = (wv)ωw.

See [2] for a complete axiomatization of the equational theory of regular words.

By a result of Heilbrunner [13], regular words can be characterized by partitioned
DFAs as follows: LetA = (Q,Γ, δ, q0, (Fa)a∈Σ) be a partitioned DFA, and letB =
(Q,Γ, δ, q0,

⋃
a∈Σ Fa). Let us fix a linear order on the alphabetΓ , so that the lexico-

graphic order≤lex is defined onΓ ∗. Then we denote withw(A) the generalized word

w(A) = (L(B);≤lex, τ),

whereτ(u) = a (a ∈ Σ, u ∈ L(B)) if and only if u ∈ L(Q,Γ, δ, q0, Fa). It is easy to
construct from a given regular expression (describing the regular wordu) a partitioned
DFA A with u ∼= w(A), see e.g. [29, proof of Proposition 2] for a simple construction.
The other direction is more difficult. Heilbrunner has shownin [13] how to compute
from a given partitioned DFAA (such thatw(A) is non-empty) a regular expression
for the wordw(A), which is therefore regular.3 Unfortunately, the size of the regular
expression produced by Heilbrunner’s algorithm is exponential in the size ofA. In

3 In fact, Heilbrunner speaks about systems of equations and their least solutions instead of
partitioned DFAs. But these two formalisms can be easily (and efficiently) transformed into
each other.

8

Section 4.4, we will see that a succinct representation of a regular expression forw(A)
can be produced in polynomial time.

One can show that the isomorphism problem for regular words (given by partitioned
DFAs) can be reduced (in logspace) to the isomorphism problem for regular linear or-
ders (given by DFAs). In other words, node labels can be eliminated as for regular trees
(as remarked at the end of Section 2.3). So, the reader might ask, why we consider the
isomorphism problem for regular words and do not restrict toregular linear orders. The
point is that even if we start with regular linear orders, in the course of our polynomial
isomorphism check regular words will naturally arise.

3 Isomorphism problem for regular trees

In this section, we investigate the isomorphism problem for(unordered) regular trees.
We consider two input representations for regular trees: DFAs and NFAs. It turns out
that while the isomorphism problem for DFA-represented regular trees isP-complete,
the same problem becomesEXPTIME-complete for NFA-represented regular trees.
Moreover, we show that forfinite trees that are succinctly represented byacyclicNFAs,
isomorphism isPSPACE-complete.

3.1 Upper bounds

Theorem 3.1. The following problem can be solved in polynomial time:

INPUT: Two DFAsA1 andA2 such thatε ∈ L(A1) ∩ L(A2).
QUESTION:(L(A1);≤pref) ∼= (L(A2);≤pref)?

Proof. By taking the disjoint union ofA1 andA2, it suffices to solve the following
problem in polynomial time:

INPUT: A DFA A without initial state and two final statesp, q of A.
QUESTION:(L(A, p);≤pref) ∼= (L(A, q);≤pref)?

Note thatε ∈ L(A, p) ∩ L(A, q) sincep andq are final. LetA = (Q,Σ, δ, F). In fact,
we will compute in polynomial time the equivalence relation

iso = {(p, q) ∈ F × F | (L(A, p);≤pref) ∼= (L(A, q);≤pref)}.

This will be done similarly to the classical partition refinement algorithm for checking
bisimilarity of finite state systems [15].

For p ∈ F andC ⊆ F let L(A, p, C) be the set of all words accepted by the DFA
(Q,Σ, δ, p, C). Hence, the setsL(A, p, {q}) (q ∈ F) partitionL(A, p). Let us say that
a nodeu ∈ L(A, p) is of typeq if u ∈ L(A, p, {q}). For p ∈ F andC ⊆ F let us
define the subsetK(A, p, C) ⊆ L(A, p, C) as the set of all words overΣ labeling a
path fromp to a state fromC without intermediate final states; this is clearly a regular
language and a DFA forK(A, p, C) can be easily computed in polynomial time from
A, p, andC: We take the DFAA and remove every transition leaving a final state from
F . Moreover, we introduce a copyp′ of p, which will be the new initial state and there

9

is ana-labeled transition fromp′ to q if and only if there is ana-labeled transition from
p to q in A. Finally,C is the set of final states.

Note that ifu ∈ L(A, p) is of typeq, then the nodesuv with v ∈ K(A, q, F) are
exactly the children ofu in the tree(L(A, p);≤pref). Let n(p, q) ∈ N ∪ {∞} be the
cardinality of the languageK(p, {q}). By Lemma 2.2, each of these numbersn(p, q)
can be computed in polynomial time. ForC ⊆ F let n(p, C) =

∑
q∈F n(p, q). Thus

n(p, C) is the cardinality of the languageK(p, C).
Let us now compute the equivalence relationiso. As already remarked, this will be

done by a partition refinement algorithm. Assume thatR is an equivalence relation on
F . We define the new equivalence relationR̃ onF as follows:

R̃ = {(p, q) ∈ R | n(p, C) = n(q, C) for every equivalence classC of R}.

Thus,R̃ is a refinement ofR which can be computed in polynomial time fromR. Let us
define a sequence of equivalence relationsR0, R1, . . . onF as follows:R0 = F × F ,
Ri+1 = R̃i. Then, there existsk < |F | such thatRk = Rk+1. We claim thatRk = iso.
A simple argument shows that for every equivalence relationR onF with iso ⊆ R, one
hasiso ⊆ R̃ as well. Hence, by induction overi ≥ 0, one getsiso ⊆ Ri for all i ≥ 0.

For the other direction, we show that ifR is an equivalence relation onF such that
R = R̃ (this holds forRk), thenR ⊆ iso. So, assume that(p1, p2) ∈ R = R̃. We
will define an isomorphismf : (L(A, p1);≤pref) → (L(A, p2);≤pref) as the limit of
isomorphismsfn, n ≥ 1. Here,fn is an isomorphism between the trees that result
from (L(A, p1);≤pref) and (L(A, p2);≤pref) by cutting off all nodes below leveln
(the roots are one level 1). Let us call these trees(L(A, pi);≤pref)↾n (i ∈ {1, 2}).
Moreover,fn has the additional property that iffn maps a nodeu1 of typeq1 to a node
u2 of typeq2, then we will have(q1, q2) ∈ R. Assume thatfn is already constructed
and letu1 of typeq1 be a leaf of(L(A, p1);≤pref)↾n. Let u2 = f(u1) be of typeq2;
it is a leaf of (L(A, p2);≤pref)↾n. Then we have(q1, q2) ∈ R = R̃ and hence for
every equivalence classC of R we haven(q1, C) = n(q2, C). We can therefore find a
bijectiong between the languagesK(q1, F) andK(q2, F) such that(u, g(u)) ∈ R for
all u ∈ K(q1, F). Note that the nodesuiv with v ∈ K(qi, F) are the children ofui in
the tree(L(A, p1);≤pref). We now extend the isomorphismfn by g and do this for all
leavesu1 of (L(A, p1);≤pref)↾n. This gives us the isomorphismfn+1. ⊓⊔

Corollary 3.2. The following problem belongs toEXPTIME:

INPUT: Two NFAsA1 andA2 such thatε ∈ L(A1) ∩ L(A2).
QUESTION:(L(A1);≤pref) ∼= (L(A2);≤pref)?

Proof. In exponential time, we can transformA1 andA2 into DFAs using the powerset
construction. Then we can apply Theorem 3.1. ⊓⊔

Theorem 3.3. The following problem belongs toPSPACE:

INPUT: Two acyclic NFAsA1 andA2 such thatε ∈ L(A1) ∩ L(A2).
QUESTION:(L(A1);≤pref) ∼= (L(A2);≤pref)?

10

Proof. By [21], isomorphism for finite trees, given explicitly by adjacency lists, can
be decided in deterministic logspace. Hence, by Lemma 2.1 itsuffices to show that for
a given acyclic NFA, the adjacency list representation for the tree(L(A);≤pref) can
be computed by aPSPACE-transducer. This is straightforward. Assume thatΣ is the
alphabet ofA and thatn is the number of states ofA. Let us fix an arbitrary order onΣ
and letz be the largest symbol inΣ.

The languageL(A) only contains words of length at mostn − 1. In an outer loop
we generate the languageL(A). For this, we enumerate all words (e.g. in lexicographic
order) of length at mostn− 1 and test whether the current word is accepted byA. For
each enumerated wordu ∈ L(A), we have to output a list of all children ofu in the tree
(L(A);≤pref). In an inner loop, we enumerate (again in lexicographic order) all words
uv (v ∈ Σ+) of length at mostn − 1 and check whetheruv ∈ L(A). In case, we find
such a worduv ∈ L(A), we outputuv and do the following: Ifv ∈ {z}+, then the
inner loop terminates. On the other hand, ifv = v′azk, wherea 6= z, then we jump in
the inner loop to the worduv′b, whereb is the symbol followinga in our order. ⊓⊔

3.2 Lower bounds

The main result of this section states that the isomorphism problem for regular trees
that are represented by NFAs isEXPTIME-hard, which matches the upper bound from
the previous section. It is straightforward to provePSPACE-hardness. IfΣ is the under-
lying alphabet of a given NFAA, then(L(A);≤pref) is a full |Σ|-ary tree if and only
if L(A) = Σ∗. But universality for NFAs isPSPACE-complete [28]. The proof for
theEXPTIME lower bound is more involved. Here is a rough outline:EXPTIME coin-
cides with alternating polynomial space [5]. Checking whether a given input is accepted
by a polynomial space bounded alternating Turing machineM amounts to evaluate a
Boolean expression whose gates correspond to configurations ofM . Using a construc-
tion from [14], the evaluation problem for (finite) Boolean expressions can be reduced
to the isomorphism problem for (finite) trees. In our case, the Boolean expression will
be infinite. Nevertheless, the infinite Boolean expressionswe have to deal with can be
evaluated because on every infinite path that starts in the root (the output gate) there will
be either anand-gate, where one of the inputs is afalse-gate, or anor-gate, where one
of the inputs is atrue-gate. Applying the construction from [14] to an infinite Boolean
expression (that arises from our construction) will yield two infinite trees, which are
isomorphic if and only if our Boolean expression evaluates to true. Luckily, these two
trees turn out to be regular, and they can be represented by small NFAs.

Infinite Boolean formulas. Let us fix the alphabet

Ω = {a, ℓ∧, ℓ
′
∧, r∧, ℓ∨, ℓ

′
∨, r∨}. (1)

In the following, we will only considerprefix-closedtrees over the alphabetΩ (we will
not mention this explicitly all the time). Moreover, we willidentify the tree(L;≤pref)
with the languageL. Now, consider such a treeT ⊆ Ω∗. Then,T is well-formed, if the
following conditions hold:

11

(a) If u = ε or u ∈ T ends withℓ∨, ℓ∧, r∨, or r∧, thenchild(u, T) is one of the
following sets, where◦ ∈ {∨,∧}: {u ℓ◦, u r◦}, {u ℓ′◦, u r◦}, {ua, u ℓ′◦, u r◦}.

(b) If u ∈ T ends witha, ℓ′∨, or ℓ′∧, thenu is a leaf ofT .
(c) For every infinite pathP in T , there existsu ∈ P with ua ∈ T .

Note that a well-formed treeT is always infinite; it contains an infinite path of the form
r1r2r3 · · · , whereri ∈ {r∧, r∨} for all i ≥ 1. Let us define the set

cut(T) = {u ∈ T | ua ∈ T, ∀v <pref u : va 6∈ T }. (2)

Hence, on every infinite path inT there is a unique node fromcut(T).
With a well-formed treeT we associate an infinite Boolean expressionbool(T) as

follows: The gates ofbool(T) are the nodes ofT that do not end witha.

– The set of input gates foru ∈ T is child(u, T) \ {ua}.
– If ur∨ ∈ T (resp.ur∧ ∈ T), thenu is anor-gate (resp.and-gate).
– If uℓ′∧ ∈ T andua 6∈ T , thenuℓ′∧ is atrue-gate.
– If uℓ′∧ ∈ T andua ∈ T , thenuℓ′∧ is afalse-gate.
– If uℓ′∨ ∈ T andua 6∈ T , thenuℓ′∨ is afalse-gate.
– If uℓ′∨ ∈ T andua ∈ T , thenuℓ′∨ is atrue-gate.

Althoughbool(T) is an infinite Boolean formula, the fact thatT is well-formed ensures
that the root ofbool(T) can be evaluated: We simply remove fromT all nodes that
have a proper prefix fromcut(T). The resulting tree has no infinite path and since it is
finitely branching it is finite by König’s lemma. Ifu ∈ cut(T) is such thatuℓ′∧ ∈ T
(resp.,uℓ′∨ ∈ T), thenu can be transformed into afalse-gate (resp.,true-gate). Then,
one has to evaluate the resulting finite Boolean expression.

We next transform a treeT ⊆ Ω∗ into trees[T]1, [T]2 ⊆ {ℓ, r}∗ using two rational
transducers. These two transducers only differ in their initial state. Fori ∈ {1, 2}, let
Ti be the transducer from Figure 1, where the initial state isqi and all states are final.
Then, for a treeT ⊆ Ω∗ andi ∈ {1, 2} let [T]i = pref(Ti(T)). We will show that for
every well-formed treeT ⊆ Ω∗: bool(T) evaluates to true if and only if[T]1 ∼= [T]2.
(Lemma 3.9) For this, we first have to show a few lemmas.

Lemma 3.4. LetT = {ε, ℓ′∨} ∪ r∨U or T = {ε, ℓ′∧} ∪ r∧U for a treeU (hence, also
T is a tree). Then[T]1 ∼= [T]2 if and only if[U]1 ∼= [U]2.

Proof. We only prove the lemma forT = {ε, ℓ′∨} ∪ r∨U ; the statement forT =
{ε, ℓ′∧} ∪ r∧U can be shown analogously. Let us compute computeT1(T) andT2(T).
We have

T1(ℓ
′
∨) = T2(ℓ

′
∨) = {ℓ2, rℓ2}. (3)

Next, we have to computeT1(r∨U). There are two transitions starting inq1, wherer∨
can be read, namely

q1
r∨|ℓrℓ
−−−−→ q2 and q1

r∨|r2ℓ
−−−−→ q1.

Hence, we get
T1(r∨U) = r2ℓ T1(U) ∪ ℓrℓ T2(U). (4)

12

q1 q2

s

ℓ∧| ℓ

r∧|rℓ

ℓ∨| ℓ
2

r∨|r
2ℓ

ℓ∧| ℓ

r∧|rℓ

ℓ∨|rℓ

r∨|r
2ℓ

ℓ∨| rℓ

r∨| ℓrℓ

ℓ∨| ℓ
2

r∨| ℓrℓ
ℓ′∨| ℓ

2

ℓ′∨| rℓ
2

ℓ′∧| ℓ

a| ℓ3

ℓ′∨| ℓ
2

ℓ′∨| rℓ
2

ℓ′∧| ℓ

a| ℓ3

a| ℓr

Fig. 1. The transducer

ℓ r

ℓ r ℓ r

[U]2 [U]1

ℓ ℓℓ

ℓ r

ℓ r ℓ r

[U]1 [U]2

ℓ ℓℓ

Fig. 2. [T]1 (left) and[T]2 (right) from Lemma 3.4

Similarly, we get
T2(r∨U) = r2ℓ T2(U) ∪ ℓrℓ T1(U). (5)

From (3), (4), and (5) it follows that the trees[T]i = pref(Ti({ε, ℓ′∨} ∪ r∨U)) (i ∈
{1, 2}) are the ones shown in Figure 2. The equivalence of[T]1 ∼= [T]2 and[U]1 ∼= [U]2
is obvious from these diagrams. ⊓⊔

The following three lemmas can be shown with the same kinds ofarguments as for
Lemma 3.4. We therefore only sketch the proofs.

Lemma 3.5. Let T = {ε, ℓ′∨, a} ∪ r∨U for a treeU (hence, alsoT is a tree). Then
[T]1 ∼= [T]2.

Proof. We haveT1(a) = {ℓ3} andT2(a) = {ℓ3, ℓr}. It follows, that the trees[T]1 and
[T]2 are as shown in Figure 3. Clearly, we have[T]1 ∼= [T]2. ⊓⊔

13

ℓ r

ℓ r ℓ r

[U]2 [U]1

ℓ ℓ ℓℓ

ℓ r

ℓ r ℓ r

[U]1 [U]2

ℓ ℓ ℓℓ

Fig. 3. [T]1 (left) and[T]2 (right) from Lemma 3.5

ℓ

ℓ

ℓ

r

[U]1

ℓ

ℓ

ℓ r

ℓ

r

[U]2

ℓ

Fig. 4. [T]1 (left) and[T]2 (right) from Lemma 3.6

Lemma 3.6. Let T = {ε, ℓ′∧, a} ∪ r∧U for a treeU (hence, alsoT is a tree). Then
[T]1 6∼= [T]2.

Proof. The trees[T]1 and[T]2 are shown in Figure 4. Clearly, we have[T]1 6∼= [T]2.
⊓⊔

Lemma 3.7. LetT = {ε} ∪ ℓ∨U ∪ r∨V for well-formed treesU, V (hence, alsoT is
well-formed). Then[T]1 ∼= [T]2 if and only if([U]1 ∼= [U]2 or [V]1 ∼= [V]2).

Proof. The trees[T]1 and[T]2 are shown in Figure 5. SinceU andV are well-formed,
in each of the trees[U]1, [U]2, [V]1, and [V]2, the root has two children. It follows
easily that[T]1 ∼= [T]2 if and only if ([U]1 ∼= [U]2 or [V]1 ∼= [V]2). ⊓⊔

Lemma 3.8. LetT = {ε} ∪ ℓ∧U ∪ r∧V for well-formed treesU, V (hence, alsoT is
well-formed). Then[T]1 ∼= [T]2 if and only if([U]1 ∼= [U]2 and[V]1 ∼= [V]2).

Proof. The trees[T]1 and [T]2 are as shown in Figure 6. SinceU andV are well-
formed, in each of the trees[U]1, [U]2, [V]1, and[V]2, the root has two children. It
follows easily that[T]1 ∼= [T]2 if and only if ([U]1 ∼= [U]2 and[V]1 ∼= [V]2). ⊓⊔

Lemma 3.9. For every well-formed treeT ⊆ Ω∗, we have:bool(T) evaluates to true
if and only if[T]1 ∼= [T]2.

14

ℓ r

[U]1 [U]2

ℓ r ℓ r

[V]2 [V]1

ℓ ℓ

ℓ r

[U]1 [U]2

ℓ r ℓ r

[V]1 [V]2

ℓ ℓ

Fig. 5. [T]1 (left) and[T]2 (right) from Lemma 3.7

[U]1

ℓ r

[V]1

ℓ

[U]2

ℓ r

[V]2

ℓ

Fig. 6. [T]1 (left) and[T]2 (right) from Lemma 3.8

Proof. Recall the definition of the setcut(T) from (2). From the definition it follows
thatpref(cut(T)) is a finitely branching tree without infinite paths. Hence, byKönig’s
lemma it is finite. Moreover, for everyu ∈ pref(cut(T)), the subtreeT ↾u is well-
formed as well (sincepref(cut(T)) ⊆ {ε} ∪ Ω∗{ℓ∨, ℓ∧, r∨, r∧}). Inductively over the
height ofu ∈ pref(cut(T)) in the finite treepref(cut(T)), we will prove for every
u ∈ pref(cut(T)): [T ↾u]1 ∼= [T ↾u]2 if and only if bool(T ↾u) evaluates totrue.

For the induction base, letu ∈ cut(T) be a leaf ofpref(cut(T)). Hence, we have
ua ∈ T . If uℓ′∧ ∈ T , then inbool(T ↾u), the root is anand-gate for which one of
the inputs (namelyuℓ′∧) is afalse-gate. Hence,bool(T ↾u) evaluates tofalse. Moreover,
Lemma 3.6 implies that[T ↾u]1 6∼= [T ↾u]2. On the other hand, ifuℓ′∨ ∈ T , then in
bool(T ↾u), the root is anor-gate for which one of the inputs (namelyuℓ′∨) is a true-
gate. Hence,bool(T ↾u) evaluates totrue. Moreover, Lemma 3.5 implies that[T ↾u]1 ∼=
[T ↾u]2. This concludes the induction base.

Next, letu ∈ pref(cut(T)) be a proper prefix of a node fromcut(T). In particular
u 6∈ cut(T). We can distinguish 4 different cases:

15

Case 1.child(u, T) = {uℓ∧, ur∧}. We must have{uℓ∧, ur∧} ⊆ pref(cut(T)). Hence,
the induction hypothesis (IH) holds foruℓ∧ andur∧. We get:

bool(T ↾u) evaluates totrue ⇐⇒ bool(T ↾uℓ∧) evaluates totrue and

bool(T ↾ur∧) evaluates totrue
(IH)
⇐⇒ [T ↾uℓ∧]1

∼= [T ↾uℓ∧]2 and

[T ↾ur∧]1
∼= [T ↾ur∧]2

Lemma 3.8
⇐⇒ [T ↾u]1 ∼= [T ↾u]2

Case 2.child(u, T) = {uℓ∨, ur∨}. This case is analogous to Case 1, using Lemma 3.7.

Case 3.child(u, T) = {uℓ′∧, ur∧}. Sinceu 6∈ cut(T), we haveua 6∈ T . We must
haveur∧ ∈ pref(cut(T)). Moreover, inbool(T ↾u), the root is anand-gate, where one
of the inputs is atrue-gate and the other input is the root for the Boolean expression
bool(T ↾ur∧). Hence, we get:

bool(T ↾u) evaluates totrue ⇐⇒ bool(T ↾ur∧) evaluates totrue
(IH)
⇐⇒ [T ↾ur∧]1

∼= [T ↾ur∧]2
Lemma 3.4
⇐⇒ [T ↾u]1 ∼= [T ↾u]2

Case 4.child(u, T) = {uℓ′∨, ur∨}. This case is analogous to Case 3. ⊓⊔

Our last auxiliary lemma states that an NFA for the tree[L]i can be easily computed
from an NFA forL.

Lemma 3.10. There is a logspace machine that computes from a given prefix-closed
NFAA with terminal alphabetΩ a prefix-closed NFAB such thatL(B) = [L(A)]i for
i ∈ {1, 2}.

Proof. LetA = (Q,Ω, δ, p0, Q). Recall that all states ofTi andA are final. The prefix-
closed NFAB is obtained from the direct product ofA andTi by adding further states
so that every transition is labeled with a single symbol. Thus, the set of states ofB

containsQ×{q1, q2, s} and the initial state ofB is (p0, qi). If q
b
−→ q′ in A andt

b|w
−−→ t′

in Ti for w ∈ {ℓ, r}+, then we add|w| − 1 many new states toB, which built up a
w-labeled path from from(q, t) to (q′, t′). ⊓⊔

EXPTIME-hardness. We are now in the position to prove the main result of this
section.

Theorem 3.11. The following problem isEXPTIME-hard (and henceEXPTIME-com-
plete):

INPUT: Two prefix-closed NFAsA1 andA2.
QUESTION:(L(A1);≤pref) ∼= (L(A2);≤pref)?

16

Proof. The upper bound is stated in Corollary 3.2. For the lower bound we use the fact
thatEXPTIME equals the class of all sets that can be accepted in polynomial space on
an alternating Turing machine [5]. Hence, letM be a polynomial space bounded alter-
nating Turing machine such that the accepted languageL(M) ⊆ {0, 1}∗ is EXPTIME-
complete. We can assume thatM has no infinite computation paths. By padding in-
puts, we can moreover assume thatM works in spacen for an input of lengthn. Let
Q = Q∃∪Q∀ be the set of states ofM and letΓ ⊇ {0, 1} be the tape alphabet. W.l.o.g.
we can assume that in every computation step,M moves from an existential state to a
universal state or vice versa, and that the initial stateq0 is universal.

Let us now fix an inputw ∈ {0, 1}∗ of lengthn. We will construct two prefix-closed
NFAsA1 andA2 such thatw ∈ L(M) if and only if (L(A1);≤pref) ∼= (L(A2);≤pref).
Let Θ = Γ ∪ Q. As usual, a configuration ofM can be represented by a string from
the languageΘn+1 (more precisely, from

⋃n−1
j=0 Γ jQΓn−j). A wordu ∈ Θ∗ is avalid

computation ofM on inputw if u is of the formc1 · · · cm for somem ≥ 0 such that
the following holds:

– ci ∈
⋃n−1

j=0 Γ jQΓn−j for all 1 ≤ i ≤ m
– ci ⊢M ci+1 (i.e.,ci+1 is a successor configuration ofci) for all 1 ≤ i ≤ m− 1
– q0w ⊢M c1

Note thatε is a valid computation in this sense. It is well known that from w one can
construct in logspace a coaccessible NFAAw such thatAw accepts all words overΘ
that arenota valid computation ofM onw [28].

Next, we will define a regular well-formed treeTw ⊆ Ω∗ (depending only onw)
such thatbool(Tw) evaluates totrue if and only if w ∈ L(M). In the following, we
identify the symbols inΘ with the integers0, . . . , |Θ| − 1 in an arbitrary way. We can
assume that|Θ| ≥ 2. We define two morphisms

ϕ∧ : Θ∗ → {ℓ∧, r∧}
∗

ϕ∨ : Θ∗ → {ℓ∨, r∨}
∗

as follows (◦ ∈ {∧,∨}):

ϕ◦(a) =

{
ra◦ℓ◦ if 0 ≤ a < |Θ| − 1

ra◦ if a = |Θ| − 1

For i ≥ 1, let ϕi be the mappingϕ∧ (resp.ϕ∨) if i is odd (resp., even). Similarly, for
x ∈ {ℓ, ℓ′, r}, let xi bex∧ (resp.x∨) if i is odd (resp., even). Then, the treeTw ⊆ Ω∗

is pref(T ′
w), where

T ′
w =

{(m∏

i=1

riϕi(ci)

)
ℓ′m+1 | m ≥ 0, c1, . . . , cm ∈ Θn+1

}
∪

{(m∏

i=1

riϕi(ci)

)
a | m ≥ 0, c1, . . . , cm ∈ Θn+1, c1 · · · cm ∈ L(Aw)

}

Clearly,Tw is regular, and a prefix-closed NFA forTw can be computed in logspace
fromw (using the logspace computable coaccessible NFAAw).

17

Claim 1:Tw is well-formed.

Proof of Claim 1:The first three conditions for well-formed trees are easy to check. For
the last condition, we have to consider an arbitrary infinitepathP of Tw and show that
there existsu ∈ Tw such thatua ∈ T . But this means thatu is of the form

u =

m∏

i=1

riϕi(ci)

with m ≥ 0, c1, . . . , cm ∈ Θn+1, andc1 · · · cm ∈ L(Aw). The latter condition means
thatc1 · · · cm is not a valid computation ofM on inputw. Claim 1 now follows from
the fact that for every infinite sequencec1c2c3 · · · with ci ∈ Θn+1 for i ≥ 1 there exists
m ≥ 1 such thatc1 · · · cm is not a valid computation ofM on inputw (sinceM does
not have infinite computation paths).

Claim 2:w ∈ L(M) if and only if bool(Tw) evaluates totrue.

Proof of Claim 2:Let us consider thefinite treepref(cut(Tw)). For every node

g = r∧ϕ∧(c1)r∨ϕ∨(c2)r∧ · · ·ϕm−1(cm−1)rmϕm(cm) ∈ pref(cut(Tw))

with m ≥ 0 andc1, . . . , cm ∈ Θn+1 we will prove (by induction on the height ofg) the
following: If c1 · · · cm is a valid computation ofM on inputw, thencm is an accepting
configuration if and only ifg evaluates to true inbool(Tw). Here, form = 0, we define
c0 as the initial configurationq0w.

So, assume thatg ∈ pref(cut(Tw)) is of the above form and thatc1 · · · cm is a valid
computation ofM on inputw. W.l.o.g. assume thatm is odd (the case thatm is even
can be dealt analogously). Thus,

g = r∧ϕ∧(c1)r∨ϕ∨(c2)r∧ · · ·ϕ∨(cm−1)r∧ϕ∧(cm).

Then, inbool(Tw), the input gates for theor-gateg aregℓ′∨ andgr∨. Sincec1 · · · cm
is a valid computation ofM on inputw, ga does not belong to the treeTw. Hence,
in bool(Tw), gℓ′∨ is a false-gate. Thus,g evaluates totrue if and only if gr∨ eval-
uates totrue. From the structure ofTw we see that the latter holds if and only if
there existscm+1 ∈ Θn+1 such thatgr∨ϕ∨(cm+1) evaluates totrue. First assume
thatcm+1 is such thatc1 · · · cmcm+1 is not a valid computation. The inputs for theand-
gategr∨ϕ∨(cm+1) aregr∨ϕ∨(cm+1)ℓ

′
∧ andgr∨ϕ∨(cm+1)r∧. Sincec1 · · · cmcm+1 is

not a valid computation,gr∨ϕ∨(cm+1)a belongs to the treeTw. Thus, inbool(Tw),
gr∨ϕ∨(cm+1)ℓ

′
∧ is a false-gate andgr∨ϕ∨(cm+1) evaluates tofalse. This holds for all

cm+1 such thatc1 · · · cmcm+1 is not a valid computation. Hence,gr∨ evaluates totrue
if and only if there exists a configurationcm+1 ∈ Θn+1 such thatc1 · · · cmcm+1 is
a valid computation (which means thatcm+1 is a successor configuration ofcm) and
gr∨ϕ∨(cm+1) evaluates totrue in bool(Tw). Now, if c1 · · · cmcm+1 is a valid com-
putation, then by induction,gr∨ϕ∨(cm+1) (which belongs topref(cut(Tw)) as well)
evaluates totrue in bool(Tw) if and only if cm+1 is an accepting configuration ofM .

We have shown thatg evaluates totrue if and only if cm has an accepting successor
configuration. Finally, sincem is odd,cm is an existential configuration (recall that the

18

initial configurationc0 = q0w is universal). Thus, indeed,g evaluates totrue if and
only if cm is accepting. This proves Claim 2.

Let T1 andT2 be the rational transducers from Section 3.2. Using Lemma 3.10 we can
compute in logspace from a prefix-closed NFA forTw two prefix-closed NFAsA1 and
A2 such thatL(Ai) = [Tw]i for i ∈ {1, 2}. By Lemma 3.9 and Claim 2, we have

w ∈ L(M) ⇐⇒ bool(Tw) evaluates totrue ⇐⇒ (L(A1);≤pref) ∼= (L(A2);≤pref).

This concludes the proof of theEXPTIME lower bound. ⊓⊔

PSPACE-hardness

Theorem 3.12. The following problem isPSPACE-hard (and thereforePSPACE-com-
plete):

INPUT: Two prefix-closed acyclic NFAsA1 andA2.
QUESTION:(L(A1);≤pref) ∼= (L(A2);≤pref)?

Proof. The upper bound is stated in Theorem 3.3. For the lower bound,we use the same
idea as in the proof of Theorem 3.11. In fact, we will use most of the notations from that
proof; some of them will be slightly modified. This time, we use the fact thatPSPACE
equals the class of all sets that can be accepted in polynomial time on an alternating
Turing machine. Hence, letM be a polynomial time bounded alternating Turing ma-
chine such that the accepted languageL(M) ⊆ {0, 1}∗ isPSPACE-complete. Letp(n)
(a polynomial) be the time bound and letq(n) = p(n) + 1. We can assume thatq(n) is
odd for alln ≥ 0. W.l.o.g. we can assume again thatM works in spacen for an input
of lengthn. Letw ∈ {0, 1}∗ be an input forM of lengthn.

Let us add to the alphabetΩ in (1) an additional symbolr′∨. The notions from Sec-
tion 3.2 have to be extended to this new alphabetΩ. In condition (a) for the definition of
a well-formed treeT , we also allow the set{ua, uℓ′∨, ur

′
∨} for child(u, T). Moreover,

every nodeur′∨ ∈ T is a leaf ofT . The new definition for the setcut(T) can be over-
taken from (2). Also the Boolean expressionbool(T) can be defined as in Section 3.2;
the truth value of a leaf ending withr′∨ is set arbitrarily (saytrue). Finally, let us extend
the two transducersT1 andT2 such that, fromq1 andq2 they can read the new symbol
r′∨ and outputℓ and then terminate in a sink states.

We now define the well-formed treeUw ⊆ Ω∗ asUw = pref(U ′
w), where:

U ′
w =

{(m∏

i=1

riϕi(ci)

)
ℓ′m+1 | 0 ≤ m ≤ q(n), c1, . . . , cm ∈ Θn+1

}
∪

{(m∏

i=1

riϕi(ci)

)
a | 0 ≤ m ≤ q(n), c1, . . . , cm ∈ Θn+1, c1 · · · cm ∈ L(Aw)

}
∪

{(q(n)∏

i=1

riϕi(ci)

)
r′∨ | c1, . . . , cq(n) ∈ Θn+1

}
.

Note thatUw is finite. An acyclic prefix-closed NFA forUw can be produced in logspace
fromw. Moreover, since every word fromΘ(n+1)q(n) is not a valid computation (since

19

M terminates after≤ p(n) = q(n) − 1 steps), the Boolean expressionbool(Uw) and
bool(Tw) (whereTw was defined in the proof of Theorem 3.11) evaluate to the same
truth value. Hence, using Claim 2 from the proof of Theorem 3.11, it follows thatw ∈
L(M) if and only if bool(Uw) evaluates totrue. Using an analogon of Lemma 3.9,
this holds if and only if[Uw]1 ∼= [Uw]2. Acyclic NFAs for [Uw]1 and [Uw]2 can be
easily constructed in logspace fromw (using an acyclic NFA forUw). This concludes
the proof of the theorem. ⊓⊔

P-hardness

Theorem 3.13. The following problem isP-hard (and henceP-complete):

INPUT: Two prefix-closed acyclic DFAsA1 andA2.
QUESTION:(L(A1);≤pref) ∼= (L(A2);≤pref)?

Proof. The upper bound is stated in Theorem 3.1. For the lower bound,we reduce
theP-complete monotone circuit value problem [12] to the problem from the theorem.
Note that the tree(L(A);≤pref), whereA is a prefix-closed acyclic DFA, is just the
unfolding of the underlying dag (directed acyclic graph) inthe initial ofA. Vice versa,
from a dagD with a root noder one can construct a prefix-closed acyclic DFAA such
that(L(A);≤pref) is isomorphic to the unfolding ofD in r (let us denote the latter tree
by unfold(D, r)). One only has to associate labels to the edges ofD. Hence, it suffices
to construct from a given monotone circuitC a dagD which contains for every gate
g of C two nodesg1, g2 such thatg evaluates totrue if and only if unfold(D, g1) ∼=
unfold(D, g2). This is straightforward for the input gates ofC. Forand- andor-gates of
C, we can use again the construction of [14]. Take the constructions from Figure 5 and
6, where in Figure 5 each of the subtrees[U]1, [U]2, [V]1, and[V]2 is represented only
once. The construction foror-gates is shown in Figure 7. Assume that the dagD below
the nodesu1, u2, v1, andv2 is already constructed. Hereu1 andu2 correspond to a gate
u andv1 andv2 correspond to a gatev. Hence,u (resp.,v) evaluates totrue if and only
if unfold(D, u1) ∼= unfold(D, u2) (resp.,unfold(D, u1) ∼= unfold(D, u2)). Let t be an
or-gate with inputsu andv. We add the nodes and edges as shown in Figure 7. Then the
arguments from the proof of Lemma 3.7 show thatu or v evaluates totrue if and only
if unfold(D, t1) ∼= unfold(D, t2). ⊓⊔

4 Isomorphism problem for regular words

In this section we study the isomorphism problem for regularwords that are represented
by partitioned DFAs. We prove that this problem as well as theisomorphism problem
for regular linear orders that are represented by DFAs areP-complete. It follows that
the isomorphism problem for regular linear orders that are represented by NFAs can be
solved in exponential time. We show that this problem isPSPACE-hard. For the case
of acyclic DFAs and NFAs, respectively, we obtain completeness results for counting
classes (C=L-completeness for acyclic DFAs andC=P-completeness for acyclic NFAs).

20

t1

u1 u2

t2

v1 v2

Fig. 7. Theor-construction in the proof of Theorem 3.13

4.1 Upper bounds

The main result of this section is:

Theorem 4.1. The following problem can be solved in polynomial time:

INPUT: Two partitioned DFAsA1 andA2.
QUESTION:w(A1) ∼= w(A2)?

In Section 4.2–4.6 we prove Theorem 4.15. Section 4.2 will introduce some of the ma-
chinery from [2] concerning blocks. Blocks allow to condensate a generalized word to
a coarser word (whose elements are the blocks of the originalword). In Section 4.3 we
will formally introduce succinct regular expressions (expressions in form of dags) and
in Section 4.4 we will argue that Heilbrunner’s algorithm from [13] allows to trans-
form a given partitioned DFA in polynomial time into an equivalent succinct (regular)
expression. Hence, the remaining goal is to develop a polynomial time algorithm for
checking whether two given succinct expressions representisomorphic regular words.
For the special case that these regular words consist of onlyone block (so called primi-
tive regular words), this will be accomplished in Section 4.5. In this step, we will make
use of algorithms for straight-line programs (succinctly represented finite words) [27].
Finally, in Section 4.6 we will present a polynomial time algorithm or checking whether
two given succinct expressions represent isomorphic regular words.

4.2 Blocks and their combinatorics

In this section, we will introduce the crucial notion of a block, and we recall some of
the results from [2] that we are using later.

Letu = (L;≤, τ) be a generalized word. Anintervalof u is an interval of the under-
lying linear order(L;≤). A subwordof u is an intervalI of u together with the coloring
τ restricted toI. Let Γ ⊆ Σ be finite. AΓ -uniformsubword ofu is a subword that is
isomorphic toΓ η. A subword isuniformif it is Γ -uniform for someΓ ⊆ Σ. A uniform
subword is amaximal uniform subwordif it is not properly contained in another uni-
form subword. Now letv be a subword such that no point ofv is contained in a uniform

21

subword ofu. Thenv is successor-closedif for each pointp of v, whenever the succes-
sor and the predecessor ofp exist, they are contained inv as well. A successor-closed
subword isminimal if it does not strictly contain another successor-closed subword.
Following [2] we define:

Definition 4.2 (blocks).Let u be a regular word. Ablock of u is either a maximal
uniform subword ofu or a minimal successor-closed subword ofu.

A regular word which consists of a single block is calledprimitive.4 By [2] a wordu is
primitive if and only if it is of one of the following forms (wherex, z ∈ Σ+, y ∈ Σ∗):
A finite non-empty word, a scattered word of the formxωy, a scattered word of the form
yzω, a scattered word of the formxωyzω, or a uniform word (Γ η for someΓ ⊆ Σ).
LetD(Σ) be the set of all primitive words overΣ.

Let u be a regular word. Each pointp of u belongs to some unique blockBl(p),
which induces a regular (and hence primitive) word. Moreover we can order the blocks
of u linearly by settingBl(p) < Bl(q) if and only if p < q. The order obtained that
way is denoted(Bl(u);≤). Then we extend the order(Bl(u);≤) to a generalized word
û overD(Σ) (here it is useful to allow infinite alphabets, sinceD(Σ) is infinite), called
the skeletonof u, by labeling each block with the corresponding isomorphic word in
D(Σ). Implicitly, it is shown in [2] that for every regular wordu there exists afinite
subset ofD(Σ) such that every block ofu is isomorphic to a primitive word from that
finite subset. Moreover,̂u is again a regular word. Later it will be convenient to have
the following renaming notion available. LetV be a finite alphabet, letϕ : V → D(Σ)
be an injective mapping and suppose that all blocks of a regular wordu belong to the
image ofϕ. The wordv that has(Bl(u);≤) as underlying order and each blockB of
u labeled withϕ−1(B) is called theϕ-skeleton ofu. We will need the following result
from [2]:

Proposition 4.3 (see [2, Corollary 73]).Letu, v ∈ Reg(Σ). LetV be a finite alphabet
and letϕ : V → D(Σ) be injective such that all blocks ofu andv are in the image ofϕ.
Thenu andv are isomorphic if and only if theϕ-skeletons ofu andv are isomorphic.

We will consider finite and infinite sequences, whose symbolsare regular words and
where the underlying order type is either finite,ω or ω. In the following, when writing
(ui)i∈I , we assume that eitherI = {1, . . . , n} 6= ∅ (i.e.,(ui)i∈I is the finite sequence
(u1, . . . , un)) orI = {1, 2, 3, . . .} (i.e.,(ui)i∈I is the infinite sequence(u1, u2, u2, . . .))
or I = {. . . ,−2,−1, 0} (i.e., (ui)i∈I is the infinite sequence(. . . , u−2, u−1, u0)).
The corresponding generalized word is

∏
i∈I ui (either u1 · · ·un, or u1u2u3 · · · or

· · ·u−2u−1u0). We say that two sequences(ui)i∈I and(vj)j∈J areequivalent, if the
generalized words

∏
i∈I ui and

∏
j∈J vj are isomorphic. We use commas to separate

the successiveui in the sequence(ui)i∈I in order to avoid misinterpretations. For in-
stance(a, a) viewed as a sequence over regular words has length two whereas(aa) has
length 1. Of course,(a, a) and(aa) are equivalent sequences.

4 In combinatorics on words, a finite word is called primitive,if it is not a proper power of a
non-empty word. Our notion of a primitive word should not be confused with this definition.

22

Definition 4.4. Let ū = (ui)i∈I be a sequence of regular words. We say thatū does not
merge if the set of blocks of

∏
i∈I ui is the union of the set of blocks of theui. If this is

not the case, then we say thatū merges.

In other words,̄u merges if there exists a block that contains elements from two different
ui. In [2, Corollary 32] it is shown that a sequenceū merges, if and only if there exists
a factor(ui, ui+1) or (ui, ui+1, ui+2) that merges.

Example 4.5.Clearly if u andv are finite words, then(u, v) merges. Also,(Γ η, Γ η)
and(Γ η, a, Γ η) merge for everyΓ ⊆ Σ anda ∈ Γ (in both cases, the sequence is
equivalent toΓ η). On the other hand,([ab]η, [ab]η) does not merge. The reason is that
the blocks of[ab]η are the copies ofab. More generally, ifu is not primitive andX is a
finite subset of regular words, then((X ∪ {u})η, (X ∪ {u})η) does not merge.

For the case of a sequence of primitive words, a complete description of merging se-
quences was given in [2]. Moreover, if a sequence of primitive words merges, then it
can be simplified to a non-merging sequence of primitive words. To make this more
precise, letu, v, w be primitive words. If(u, v) merges, then by [2, Lemma 24] eitheru
andv areΓ -uniform for someΓ ⊆ Σ oru is right-closed andv is left-closed. Then, the
regular worduv has a single block. If(u, v, w) merges, then by [2, Lemma 24] either
(u, v) merges, or(v, w) merges, oru,w areΓ -uniform andv is a singleton fromΓ .
This motivates the definition of the following rewriting systemR over finite sequences
overD(Σ).

Definition 4.6 (rewriting systemR). The rewriting systemR over the setD(Σ) con-
sists of the following rules:

– (u1, u2, u3) → u if u1 = u3 = u = Γ η for someΓ ⊆ Σ andu2 ∈ Γ
– (u1, u2) → u if one of the following holds:

• u1 is right-closed,u2 is left-closed andu = u1u2

• u1 = u2 = u = Γ η for someΓ ⊆ Σ.

In the following, we will use some basic facts from rewritingtheory, see e.g. [4] for
further details. For sequencesx̄ and ȳ overReg(Σ), we write x̄ →R ȳ if there exist
a rewrite ruleū → u and an occurrence of the sequenceū in x̄ such that replacing
that occurrence byu gives the sequencēy. Here,x̄ and ȳ may be infinite sequences.
Moreover, thosexi of x̄ = (xi)i∈I that are not primitive are left untouched in the
rewrite stepx̄ →R ȳ. Clearly,x̄ →R ȳ implies that the sequencesx̄ andȳ are equiv-
alent. A (possibly infinite) sequencēu is irreducible w.r.t.R if there does not exist
a sequencēv with ū →R v̄. Clearly, on infinite sequences,R cannot beterminating
(e.g.,(aη, aη, aη . . .) →R (aη, aη, aη . . .) is a loop). On the other hand,R is trivially
terminating on finite sequences, since it is length-reducing. Moreover, by analyzing
overlapping left-hand sides ofR, one can easily show:

Lemma 4.7. The rewriting systemR is strongly confluent (on finite and infinite se-
quences), i.e., for all̄u, v̄, w̄ such that̄u →R v̄ and ū →R w̄ there exists̄x such that
(v̄ = x̄ or v̄ →R x̄) and (w̄ = x̄ or w̄ →R x̄).

23

By a simple fact from rewriting theory, it follows thatR is alsoconfluent, i.e., for
all ū, v̄, w̄ such thatū →∗

R v̄ and ū →∗
R w̄ there exists̄x such thatv̄ →∗

R x̄ and
w̄ →∗

R x̄. Termination (on finite sequences) and confluence imply thatR produces
unique normal forms for finite sequences, i.e., for every finite sequencēu there exists a
unique finite sequencēv such that̄u →∗

R v̄ andv̄ is irreducible w.r.t.R. This v̄ is called
the irreducible normal formof ū.

The following is a direct consequence of [2, Lemma 24 & Corollary 32].

Lemma 4.8. Let ū be a sequence of primitive words. Thenū does not merge if and only
if ū is irreducible w.r.t.R.

We also have to verify that a sequenceū overReg(Σ) containing non-primitive words
does not merge. We use the definition below. Note that a regular word need not have
a first or last block. For instance,(aω)ω has a first block but no last block, whereas
(aω)ω(aω)ω and[aa]η neither have a first block nor a last block.

Definition 4.9 (good and semi-good sequences).The sequencēu = (ui)i∈I is goodif
the following conditions hold:

(1) ū is irreducible with respect toR.
(2) For all i ∈ I we have:

(a) If ui is not primitive and has a first block, then either (i − 1 ∈ I, ui−1 is
uniform, and(ui−1, ui) does not merge) or (i − 1, i − 2 ∈ I, ui−1 andui−2

are primitive, and(ui−2, ui−1, ui) does not merge).
(b) If ui is not primitive and has a last block, then either (i+1 ∈ I,ui+1 is uniform,

and(ui, ui+1) does not merge) or (i+1, i+2 ∈ I, ui+1 andui+2 are primitive,
and(ui, ui+1, ui+2) does not merge).

If only (2) holds, then̄u is said to besemi-good.

Lemma 4.10. If ū is good, then̄u does not merge.

Proof. Assume that̄u is good but merges. By [2, Corollary 32], one of the following
cases holds:

Case 1.̄u contains a factor(ui, ui+1) that merges. Ifui andui+1 would be both prim-
itive, thenū would be not irreducible, which is a contradiction (ū is good). Hence,ui

or ui+1 must be not primitive. W.l.o.g. assume thatui is not primitive (the other case
is symmetric). Ifui has no last block, then [2, Corollary 30(1)] implies that(ui, ui+1)
does not merge, which is a contradiction. Hence, we can assume thatui has a last block.
But then, sincēu is good,(ui, ui+1) does not merge, which is again a contradiction.

Case 2.ū contains a factor(ui, ui+1, ui+2) that merges but neither(ui, ui+1) nor
(ui+1, ui+2) merges. Sincēu is irreducible w.r.t.R, it follows thatui, ui+1, or ui+2

is not primitive. The case thatui+2 is not primitive is symmetric to the case thatui is
not primitive. Hence, it suffices to consider the following two subcases:

Case 2a.ui is not primitive. If ui has no last block, then [2, Corollary 31(1)] im-
plies that(ui, ui+1, ui+2) does not merge, which is a contradiction. Hence, we can
assume thatui has a last block, call itbi. Sinceū is good and(ui, ui+1, ui+2) merges,

24

ui+1 must be uniform. Ifui+2 has no first block, then again [2, Corollary 31(1)] im-
plies that(ui, ui+1, ui+2) does not merge, which is a contradiction. Letbi+2 be the
first block ofui+2. Moreover, [2, Corollary 31(2)] implies that(bi, ui+1, bi+2) merges.
Since(ui, ui+1) and(ui+1, ui+2) do not merge, also(bi, ui+1) and(ui+1, bi+2) do not
merge. It follows (from the form of our rewriting systemR) thatbi = bi+2 is uniform
andui+1 is a singleton word. But we have already shown thatui+1 is uniform, which
is a contradiction.

Case 2b.ui+1 is not primitive. Thenui+1 has more than one block and [2, Corol-
lary 31(1)] directly implies that(ui, ui+1, ui+2) does not merge, which is again a con-
tradiction. ⊓⊔

Lemma 4.11. If ū is semi-good and̄u →R v̄, thenv̄ is semi-good as well.

Proof. Assume that̄u = (ui)i∈I is semi-good and̄u →R v̄. We have to show that
v̄ = (vj)j∈J is semi-good. For this, consider anj ∈ J such thatvj is not primitive.
Since the systemR does not introduce non-primitive words,vj must have been already
present in̄u. Let i ∈ I be the position in̄u that corresponds to positionj in v̄. Hence,
ui = vj . By symmetry it suffices to show that condition (2a) from Definition 4.9 holds
for j ∈ J . The case thatui = vj has no first block is clear. So, assume thatui has a first
block. Sincēu is semi-good, we can distinguish the following two cases.

Case 1.i−1 ∈ I, ui−1 is uniform, and(ui−1, ui) does not merge. From the form of the
rewrite rules, it follows thatvj−1 = ui−1. Hence,vj−1 is uniform, and(vj−1, vj) =
(ui−1, ui) does not merge. Thus, we have shown condition (2a) from Definition 4.9 for
j.

Case 2.i− 1, i− 2 ∈ I, ui−2, ui−1 are primitive, and(ui−2, ui−1, ui) does not merge.
We make a case distinction on the position, where the rewriterule is applied.

Case 2a.i − 3 ∈ I and in the rewrite step̄u →R v̄, (ui−3, ui−2, ui−1) is replaced by
u ∈ D(Σ). Thus,ui−3 = ui−1 = u is uniform. Hence,vj−1 = u is uniform. Moreover,
(vj−1, vj) = (ui−1, ui) does not merge.

Case 2b.i − 4 ∈ I and in the rewrite step̄u →R v̄, (ui−4, ui−3, ui−2) is replaced by
u ∈ D(Σ). Thus,ui−4 = ui−2 = u is uniform,vj−2 = u = ui−2, andui−1 = vj−1. It
follows thatvj−2 andvj−1 are primitive, and that(vj−2, vj−1, vj) = (ui−2, ui−1, ui)
does not merge.

Case 2c.In the rewrite step̄u →R v̄, (ui−2, ui−1) is replaced byu ∈ D(Σ). Then,
(ui−2, ui−1) merges. But this contradicts the assumption that(ui−2, ui−1, ui) does not
merge.

Case 2d.i − 3 ∈ I and in the rewrite step̄u →R v̄, (ui−3, ui−2) is replaced by
u ∈ D(Σ). If ui−3 = ui−2 = u is uniform, thenvj−2 = ui−2 andvj−1 = ui−1 are
primitive and(vj−2, vj−1, vj) = (ui−2, ui−1, ui) does not merge. Finally, assume that
ui−3 is right-closed,ui−2 is left-closed andvj−2 = u = ui−3ui−2. We havevj−1 =
ui−1. Thusvj−1 andvj−2 are primitive. It remains to show that(vj−2, vj−1, vj) =
(ui−3ui−2, ui−1, ui) does not merge. We know that(ui−1, ui) does not merge (since
(ui−2, ui−1, ui) does not merge). Assume that(ui−3ui−2, ui−1) merges. Then (since

25

ui−3ui−2 is primitive and scattered andui−1 is primitive) ui−3ui−2 must be right-
closed andui−1 must be left-closed. But then,ui−2 6= ε is right-closed as well and
(ui−2, ui−1) merges. This is a contradiction. Hence,(ui−3ui−2, ui−1) does not merge.
Let bi be the first block ofui. If (ui−3ui−2, ui−1, ui) merges, then by [2, Corol-
lary 31(2)],(ui−3ui−2, ui−1, bi) merges. Since neither(ui−3ui−2, ui−1) nor(ui−1, bi)
merges,ui−3ui−2 andbi must be uniform. But we know thatui−3ui−2 is scattered,
which leads again to a contradiction. Thus, indeed(ui−3ui−2, ui−1, ui) does not merge.

If the rewrite rule is applied at a position different from those considered in Case 2a–2d,
then(vj−2, vj−1, vj) = (ui−2, ui−1, ui). Since(ui−2, ui−1, ui) fulfills condition (2a)
from Definition 4.9, so does(vj−2, vj−1, vj). This concludes the proof of the lemma.

⊓⊔

Lemma 4.11 implies that from a given finite semi-good sequence ū we can compute an
equivalent good sequence, by computing the (unique) irreducible normal form of̄u.

4.3 Expressions and succinct expressions

Regular words can be naturally described by expressions using the operations of con-
catenation,ω-power,ω-power, and shuffle. Formally, the setT (V,Σ) of expressions
overV andΣ is inductively defined as follows:

(a) V ∪Σ ⊆ T (V,Σ)
(b) If α1, . . . , αn ∈ T (V,Σ) (n ≥ 1), thenα1 · · ·αn ∈ T (V,Σ).
(c) If α ∈ T (V,Σ), thenαω ∈ T (V,Σ) andαω ∈ T (V,Σ).
(d) If α1, . . . , αn ∈ T (V,Σ) (n ≥ 1), then[α1, . . . , αn]

η ∈ T (V,Σ).

A mappingf : V → Reg(Σ) will be extended homomorphically to a mappingf :
T (V,Σ) → Reg(Σ) inductively as follows, whereα, α1, . . . , αn ∈ T (V,Σ):

– f(a) = a for a ∈ Σ
– f(α1 · · ·αn) = f(α1) · · · f(αn)
– f(αω) = f(α)ω

– f(αω) = f(α)ω

– f([α1, . . . , αn]
η) = ([f(α1), . . . , f(αn)]

η

Forα ∈ T (V,Σ) we define the size|α| ∈ N inductively as follows:

– |α| = 1 for α ∈ V ∪Σ
– |α1 · · ·αn| = |α1|+ · · ·+ |αn|
– |αω | = |αω | = |α|+ 1
– |[α1, . . . , αn]

η| = |α1|+ · · ·+ |αn|+ 1

A succinct expression system (SES)is a tupleA = (V,Σ, rhs) such that:

– V (the set of variables) andΣ (the terminal alphabet) are disjoint finite alphabets.
– rhs (for right-hand side) is a mapping fromV to T (V,Σ) such that the relation
{(Y,X) ∈ V ×V | Y occurs inrhs(X)} is acyclic. The reflex transitive closure of
this relation is called thehierarchical orderof A and denoted by�A.

26

The property forrhs ensures that there exists a unique mappingvalA : V → Reg(Σ)
such thatvalA(X) = valA(rhs(X)) for all X ∈ V . If A is clear from the context, we
will simply write val(X).

In the following a quadrupleA = (V,Σ, rhs, S) where(V,Σ, rhs) is as above and
S ∈ V (i.e., an SES with a distinguished start variableS) we will be called asuccinct
expression. In this case let us setval(A) = valA(S). A succinct expression may be also
seen as a dag (directed acyclic graph), whose unfolding is anexpression in the above
sense.

Example 4.12.Consider the succinct expression

A = ({X1, X2, X3, X4, X5}, {a, b}, rhs, X1)

with

rhs(X1) = [X2, X3]
η rhs(X2) = X3X3 rhs(X3) = X4X4

rhs(X4) = X5X6 rhs(X5) = ab rhs(X6) = ba.

We haveval(A) = [abbaabba, abbaabbaabbaabba]η. The corresponding dag looks as
follows:

η

◦

◦

◦

◦

◦

a

b

1

2

1

2

2

1

Nodes labelled with◦ compute the concatenation of their successor nodes. In casethe
order of the successor nodes matters, we specify it by edge labels.

For an SESA we define
|A| =

∑

X∈V

|rhs(X)|.

An SESA = (V,Σ, rhs) is in normal formif all right-hand sides are in(V ∪Σ)+ or of
the formY ω, Y ω , [Y1, . . . , Yn]

η for someY, Y1, . . . , Yn ∈ V ∪ Σ. For such an SESA,
we definedepthA(X) andωη-depthA(X) for X ∈ V inductively as follows (below,
we setdepthA(a) = ωη-depthA(a) = 0 for a ∈ Σ):

– If rhs(X) = Y1 · · ·Yn (n ≥ 1, Y1, . . . , Yn ∈ Σ ∪ V), then

depthA(X) = max(depthA(Y1), . . . , depthA(Yn)) + 1,

ωη-depthA(X) = max(ωη-depthA(Y1), . . . , ωη-depthA(Yn)).

– If rhs(X) = Y ω or rhs(X) = Y ω, then

depthA(X) = depthA(Y) + 1,

ωη-depthA(X) = ωη-depthA(Y) + 1.

– If rhs(X) = [Y1, . . . , Yn]
η, then

depthA(X) = max(depthA(Y1), . . . , depthA(Yn)) + 1,

ωη-depthA(X) = max(ωη-depthA(Y1), . . . , ωη-depthA(Yn)) + 1.

27

Straight-line programs. A succinct expression, where all right-hand sides belong to
(V ∪ Σ)+ is called astraight-line program (SLP)[25]. In this case,val(A) is a finite
non-empty word. An SLPA can be viewed as a succinct representation of the word
val(A). More precisely, the length ofval(A) may be exponential in|A|. We will make
heavy use of the fact that certain algorithmic problems on SLP-encoded finite words
can be solved in polynomial time. More precisely, we use the following results:

Remark 4.13.There exist polynomial time algorithms for the following problems:

(a) Given an SLPA, calculate|val(A)|.
(b) Given an SLPA and a numberk ∈ N (coded in binary) we can produce an SLPB

of size|A|+O(log k) such thatval(B) = val(A)k.
(c) Given an SLPA and numbersi ≤ j ≤ |val(A)|, compute an SLPB with val(B) =

val(A)[i : j]. Herew[i : j] = ai . . . aj for a finite wordw = a1 . . . an.
(d) Given SLPsA andB decide whetherval(A) = val(B) [24].
(e) Given SLPsA andB decide whetherval(A) is a factor ofval(B) [11, 20, 22].

The proofs for (a), (b), and (c) are straightforward.

2-level systems.A 2-level systemis a tupleA = (Up, Lo, Σ, rhs) such that the follow-
ing holds (f↾A denotes the restriction of a functionf to the setA):

– The tuple(Up, Lo, rhs↾Up) is an SES (w.l.o.g. in normal form) over the terminal
alphabetLo.

– The tuple(Lo, Σ, rhs↾Lo) is an SES over the terminal alphabetΣ.

The setUp (resp.Lo) is called the set ofupper level variables(lower level variables)
of A. Moreover, we setV = Up ∪ Lo and call it the set of variables ofA. The SES
(Up, Lo, rhs↾Up) is called theupper part ofA, brieflyup(A), and the SES(Lo, Σ, rhs↾Lo)
is thelower part ofA, briefly, lo(A). The upper level evaluation mappinguvalA : Up →
Reg(Lo) of A is defined asuvalA = valup(A). The evaluation mappingvalA is defined by
valA(X) = vallo(A)(valup(A)(X)) for X ∈ Up andvalA(X) = vallo(A)(X) for X ∈ Lo.

4.4 Heilbrunner’s algorithm

Theorem 4.14. From a given partitioned DFAA, we can compute in polynomial time
a succinct expressionA such thatw(A) ∼= val(A).

Proof. There is nothing new about the proof. We just have to follow Heilbrunner’s
algorithm carefully. LetA = (Q,Γ, δ, q0, (Fa)a∈Σ) be a partitioned DFA and let
F =

⋃
a∈Σ Fa. We can assume that every state inF is a dead end, i.e., does not have

outgoing transitions. For this, take a new symbol$, as well as a copyq′ together with
the transition(q, $, q′) for every final stateq ∈ F . We setF ′

a = {q′ | q ∈ Fa} and let
$ be the smallest symbol inΓ ∪ {$}. The resulting partitioned DFA produces the same
generalized word asA.

So, assume that every state inF is a dead end. W.l.o.g. we can also assume that
A is coaccessible. The variables of the succinct expressionA will be the states ofA.
Consider a statep ∈ Q and let(p, ai, qi) (1 ≤ i ≤ k) be all outgoing transitions for

28

p, wherea1 < a2 < · · · < ak. Let us defineout(p) = q1q2 · · · qk. Next, consider
the graph with node setQ and an edge fromp ∈ Q to q ∈ Q if there is a transition
from p to q. We partition this graph into its strongly connected components (SCCs).
An SCCC is smaller than an SCCD if there exists a path from a state inC to a state
in D; this defines a partial order on the set of SCCs. We eliminate all SCCs starting
with the maximal ones. When eliminating an SCCC, we definerhsA(p) for each state
p ∈ C. If the SCCC is a singleton set{p} with p ∈ Fa, then we setrhsA(p) = a. If
the SCCC = {p} is a singleton set withp 6∈ F , then we setrhsA(p) = out(p). Note
thatout(p) 6= ε, sincep 6∈ F andA is coaccessible. Now, consider an SCCC of size
|C| ≥ 2. Then every wordout(p) (p ∈ C) contains at least one occurrence of a state
from C. Henceout(p) can be factored asout(p) = upxpvp, whereup andvp do not
contain occurrences of states from the SCCC (i.e., all states occurring inup andvp
belong to larger SCCs), andxp starts and ends with a state fromC (xp might consist
of a single state fromC). Define functionsℓ : C → C andr : C → C as follows:
ℓ(p) (resp.r(p)) is the first (resp. last) state of the wordxp. Then, for everyp ∈ C, the
sequencesp, ℓ(p), ℓ2(p), . . . andp, r(p), r2(p), . . . become periodic after at most|C|
steps. We now define regular expressionsℓp andrp as follows: Letp0, p1, . . . , pa and
q0, q1, . . . , qc be shortest sequences such thatp0 = q0 = p, pi+1 = ℓ(pi), qi+1 = r(qi),
andℓ(pa) ∈ {p0, p1, . . . , pa}, r(qc) ∈ {q0, q1, . . . , qc}. Assume thatℓ(pa) = pb and
r(qc) = qd for 0 ≤ b ≤ a, 0 ≤ d ≤ c. Then, we define

ℓp = (up0 · · ·upb−1
)(upb

· · ·upa
)ω,

rp = (vqc · · · vqd)
ω(vqd−1

· · · vq0).

Next, letT be the set of all regular expressions of the formℓsyrt (s, t ∈ C) such that
some wordout(p) (p ∈ C) contains a factorsyt, where the wordy does not contain
a state fromC. Then we finally setrhsA(p) = ℓp[T]

ηrp for all p ∈ C. This con-
cludes the elimination step for the SCCC. By [13], for every statep ∈ Q we have
w(Q,Γ, δ, p, (Fa)a∈Σ) ∼= valA(p). ⊓⊔

By Theorem 4.14, it suffices to prove the following result in order to prove Theorem 4.1.

Theorem 4.15. The following problem can be solved in polynomial time:

INPUT: Two succinct expressionsA1 andA2.
QUESTION:val(A1) ∼= val(A2)?

In the next section, we will prove this result for the specialcase that bothval(A1) and
val(A2) are primitive.

4.5 A polynomial time equivalence test for succinct primitive expressions

By Theorem 4.14, the remaining goal is to test in polynomial time, whether two succinct
expressions represent isomorphic regular words. In a first step, we accomplish this for
succinct expressions that represent primitive words. In the following, Σ will always
refer to afinitealphabet. Let us first show that we can decide in polynomial time whether
a succinct expression represents a primitive word.

29

u2 v2 w2 w2

u1 u1 v1 w1 w1

u1 v1 w1 w1

u2 u2 v2 w2 w2

Fig. 8.

Lemma 4.16. Given a succinct expressionA, we can decide in polynomial time whether
val(A) is a primitive word, and in case it is we can compute in polynomial time a
representation, which has one of the following forms, whereB,C,D are SLPs and
Γ ⊆ Σ (here, we should allow also the empty word forval(C)): val(B), val(C)val(D)ω,
val(B)ωval(C), val(B)ωval(C)val(D)ω, Γ η.

Proof. We proceed along the hierarchical order ofA and compute for each variableA
of A whetherval(A) is of one of the following forms (u,w ∈ Σ+, v ∈ Σ∗, Γ ⊆ Σ,
a, b ∈ Γ): v, uωv, vwω, uωvwω , Γ η, aΓ η, Γ ηb, aΓ ηb. Moreover, SLPs for the finite
wordsu, v, andw can computed simultaneously. Observe that fromrhs(A) and the
information already computed we can easily obtain whetherval(A) is of such a form
and in this case of which form. The following identities haveto be used for shuffles
(Γ ⊆ Σ, n ≥ 0, m ≥ 1, a, a1, . . . , an ∈ Γ , and everyui (1 ≤ i ≤ m) has one of the
formsΓ η, cΓ η, Γ ηc, cΓ ηd with c, d ∈ Γ)

[a1, . . . , an, u1, . . . , um]η ∼= Γ η

Γ ηΓ η ∼= Γ ηaΓ η ∼= (Γ η)ω ∼= (Γ η)ω ∼= (Γ ηa)ω ∼= (aΓ η)ω ∼= Γ η

(aΓ η)ω ∼= aΓ η

(Γ ηa)ω ∼= Γ ηa

All these identities can be deduced from the axioms for regular expressions in [2].
Now val(A) is primitive if and only ifval(S) is of one of the following forms (u,w ∈
Σ+, v ∈ Σ∗, Γ ⊆ Σ): v, uωv, vwω , uωvwω , Γ η. ⊓⊔

For our polynomial time equivalence test for succinct expressions that represent primi-
tive words, we need the following technical lemma.

Lemma 4.17. Letui, vi, wi (i ∈ {1, 2}) be finite words such that|u1| = |u2| = |v1| =
|v2| = |w1| = |w2| > 0. Thenuω

1 v1w
ω
1 = uω

2 v2w
ω
2 if and only if one of the following

conditions hold:

– u2v2w
2
2 is a factor ofu2

1v1w
2
1 .

– u1v1w
2
1 is a factor ofu2

2v2w
2
2 .

– v1 = w1, u2 = v2, andu2w
2
2 is a factor ofu2

1w
2
1 .

– u1 = v1, v2 = w2, andu1w
2
1 is a factor ofu2

2w
2
2 .

Proof. The four conditions from the lemma are shown in Figure 8 and Figure 9. It is
straightforward to show that any of these four situations impliesuω

1 v1w
ω
1 = uω

2 v2w
ω
2 .

30

u2 w2 w2

u1 u1 w1 w1

u2 u2 w2 w2

u1 w1 w1

Fig. 9.

For instance, if the left situation in Figure 8 occurs, then there exist wordsx, y, x′, y′

such thatu1 = xy, u2 = yx, w1 = x′y′, w2 = y′x′ andv2w2 = yv1x
′. Hence,

uω
1 v1w

ω
1 = (xy)ωv1(x

′y′)ω = (yx)ωyv1x
′(y′x′)ω = uω

2 v2w2w
ω
2 = uω

2 v2w
ω
2 .

Let us now assume thatuω
1 v1w

ω
1 = uω

2 v2w
ω
2 . We distinguish the following cases:

Case 1.The occurrence ofv1 in uω
1 v1w

ω
1 overlaps the occurrence ofv2 in uω

2 v2w
ω
2 .

Then, eitheru2v2w
2
2 is a factor ofu2

1v1w
2
1 (if v2 starts beforev1) or u1v1w

2
1 is a factor

of u2
2v2w

2
2 (if v1 starts beforev2), see Figure 8.

Case 2.The occurrence ofv1 in uω
1 v1w

ω
1 does not overlap the occurrence ofv2 in

uω
2 v2w

ω
2 .

Case 2.1.The occurrence ofu1v1w1 in uω
1 v1w

ω
1 overlaps the occurrence ofv2 in

uω
2 v2w

ω
2 . Then, one of the following two situations occurs:

. . .
u2 v2 w2 w2 w2

u1 u1 u1 v1 w1 . . .

. . .
u2 u2 u2 v2 w2

u1 v1 w1 w1 w1 . . .

In the first situation, we obtainv1 = w1 (sincev1w1 is a factor ofw3
2) andu2 = v2

(sinceu2v2 is a factor ofu3
1). Hence, we get the left situation shown in Figure 9, i.e.,

u2w
2
2 is a factor ofu2

1w
2
1 . In the second situation, we obtainu1 = v1 (sinceu1v1 is

a factor ofu3
2) andv2 = w2 (sincev2w2 is a factor ofw3

1). Hence, we get the right
situation shown in Figure 9, i.e.,u1w

2
1 is a factor ofu2

2w
2
2.

Case 2.2.The occurrence ofu1v1w1 in uω
1 v1w

ω
1 does not overlap the occurrence of

v2 in uω
2 v2w

ω
2 . Thenu1v1w1 either occurs inuω

2 or wω
2 . Hence,u1 = v1 = w1 and

similarly u2 = v2 = w2. But uω
1 u

ω
1 = uω

2u
ω
2 implies thatu3

2 is a factor ofu4
1. Hence,

the third condition from the lemma holds. ⊓⊔

Lemma 4.18. Given two succinct expressionsA1,A2 overΣ such thatval(A1) and
val(A2) are primitive words, we can decide in polynomial time whether val(A1) =
val(A2).

Proof. We have to distinguish the following cases:

Case 1.val(Ai) (i ∈ {1, 2}) is finite. Thenval(A1) = val(A2) can be checked in
polynomial time by Remark 4.13(d).

31

Case 2.val(Ai) is Γi-uniform (i ∈ {1, 2}). Thenval(A1) = val(A2) if and only if
Γ1 = Γ2 which can be checked in polynomial time.

Case 3.val(Ai) = uiv
ω
i (i ∈ {1, 2}). By Lemma 4.16 we can produce SLPs forui and

vi (i ∈ {1, 2}) fromA1 andA2, respectively, in polynomial time. Letki = |ui| andℓi =
|vi|. Let gcm(ℓ1, ℓ2) denote the greatest common multiple ofℓ1 andℓ2. By replacing
vi by v

max(k1,k2)·gcm(ℓ1,ℓ2)/ℓi
i (for which we can compute an SLP in polynomial time

by Remark 4.13(b)), we can assume that|v1| = |v2| ≥ k1, k2. Let ℓ = |v1| = |v2|.
W.l.o.g assume thatk1 ≤ k2 and letk = k2 − k1 ≤ ℓ. Then, we can replaceu1 and
v1 by u1v1[1 : k] andv1[k + 1 : ℓ]v1[1 : k], respectively (we can compute SLPs for
these words in polynomial time by Remark 4.13(c)). Hence, wecan also assume that
|u1| = |u2|. But then,u1v

ω
1 = u2v

ω
2 if and only if u1 = u2 andv1 = v2, which can be

checked in polynomial time by Remark 4.13(d).

Case 4.val(Ai) = uω
i vi (i ∈ {1, 2}). This case can be dealt with analogously to Case 3.

Case 5.val(Ai) = uω
i viw

ω
i (i ∈ {1, 2}). By Lemma 4.16 we can produce SLPs for

ui, vi, andwi in polynomial time. As in Case 3, by replacing the wordsui, wi by
appropriate powers, we can enforce the condition|u1| = |u2| = |w1| = |w2| = ℓ ≥
|v1|, |v2|. In addition, we can enforce the condition|v1| = |v2| = ℓ as follows: Let
ki = |vi| ≤ ℓ. Then we can replacevi andwi by viwi[1 : ℓ − ki] andwi[ℓ − ki + 1 :
ℓ]wi[1 : ℓ − ki], respectively. Now, that we have|u1| = |u2| = |v1| = |v2| = |w1| =
|w2|, we can checkuω

1 v1w
ω
1 = uω

2 v2w
ω
2 in polynomial time using Lemma 4.17 and

Remark 4.13(e). ⊓⊔

4.6 A polynomial time equivalence test for succinct expressions

In this section, we will finally prove Theorem 4.15. The general strategy is very sim-
ilar to [2]. We will incrementally reduce theωη-depth of the two given succinct ex-
pressions, until one of them (or both) describe primitive words. This allows to use the
results from the previous section. We have to analyze carefully the size of the interme-
diate succinct expressions. In the following,Σ will always refer to afinitealphabet. We
will need certain nice properties of SESs.

Definition 4.19 (primitive). A primitive SES is an SESA = (V,Σ, rhs) such that
valA(X) is primitive for allX ∈ V . A 2-level systemB is primitive if lo(B) is primitive.

Definition 4.20 (irredundant). An irredundant SES is an SESA = (V,Σ, rhs) such
that valA(X) 6= valA(Y) for all X,Y ∈ V with X 6= Y . Again we say that a 2-level
systemB is irredundant iflo(B) is irredundant.

One can think of a primitive and irredundant SES as a succinctrepresentation of a finite
subset ofD(Σ) wherevalA : V → D(Σ) defines an injective mapping fromV to
this finite subset. Hence, for a regular wordu such that all blocks belong to the image
of valA, we can define thevalA-skeleton ofu. In the following, we will simply call it
theA-skeleton ofu. A primitive and irredundant 2-level system intuitively isa system,
where the terminal alphabet is a finite subset ofD(Σ) (namely the valuations of the
variables of the lower partlo(B)).

32

Remark 4.21.If a primitive 2-level systemB is not irredundant then, using Lemma 4.18,
one can produce in polynomial time an irredundant 2-level systemC such thatval(B) =
val(C). Indeed, if there are two different variablesX,Y ∈ Lo such thatvalB(X) =
valA(Y), then one has to replaceX in all right-hand sides byY . ThereafterX can be
removed fromLo. Note that this process does not change the set of upper levelvariables
of B.

Assume thatB is an SES or 2-level system and letu = (Ai)i∈I be a (possibly infinite)
sequence of variables ofB. We say thatu does not merge (is good, semi-good, irre-
ducible), if the sequence(val(Ai))i∈I does not merge (is good, semi-good, irreducible).
Moreover, two sequencesu = (Ai)i∈I andv = (Bj)j∈J of variables (possibly from
two different SESs or 2-level systems) are equivalent if thesequences(val(Ai))i∈I and
(val(Bj))j∈J are equivalent (i.e.,

∏
i∈I val(Ai) and

∏
j∈J val(Bj) are isomorphic gen-

eralized words). The following definition is an adaption of the definition of a proper
expression in [2].

Definition 4.22 (proper). Let B = (Up, Lo, Σ, rhs) be a primitive 2-level system. A
variableX ∈ Lo ∪ Up is proper if one of the following cases holds:

(1) X ∈ Lo

(2) rhs(X) = Y1 · · ·Yn, whereY1 · · ·Yn does not merge andY1, . . . , Yn are proper.
(3) rhs(X) = Y ω or rhs(X) = Y ω, whereY is proper andY Y Y does not merge.
(4) rhs(X) = [Y1, . . . , Yn]

η whereY1, . . . , Yn are proper andval(X) is not primitive.

The 2-level systemB is proper if B is irredundant, primitive, and all variables are
proper.

Note that the condition thatY Y Y does not merge in Definition 4.22(3) implies that
Y Y Y · · · and· · ·Y Y Y both do not merge by [2, Corollary 32]. Moreover, condition
(4) from Definition 4.22 means thatY1, . . . , Yn are proper and at least onval(Yi) is not
a single symbol.

Lemma 4.23 (see [2, Corollary 75]).LetB be a proper 2-level system andX an upper
level variable. Thenuval(X) is thelo(B)-skeleton ofval(X).

The next two lemmas will be used to make a given 2-level systemproper.

Lemma 4.24. Given a primitive 2-level systemB and a finite semi-good sequence
A1 · · ·Am of variables ofB, we can produce in polynomial time a primitive 2-level
systemC and a sequenceB1 · · ·Bn of variables ofC such that the following holds:

– The upper parts ofB andC are the same, and the lower part ofC extends the lower
part ofB by at mostm− 1 many new lower level variables, whose right-hand sides
have length 2.

– The sequenceB1 · · ·Bn is good.
– A1 · · ·Am andB1 · · ·Bn are equivalent sequences.
– The subsequence of upper level variables inA1 · · ·Am is the same as the subse-

quence of upper level variables inB1 · · ·Bn.
– n ≤ m.

33

Proof. As long as the sequenceA1 · · ·Am contains a factorAiAi+1 or AiAi+1Ai+2,
whose evaluation is a left-hand side of our rewriting systemR, we do the following:

If val(Ai) is right-closed andval(Ai+1) is left-closed, then we introduce a new
lower level variableA, set rhs(A) = AiAi+1, and replace the sequenceA1 · · ·Am

by the sequenceA1 · · ·Ai−1AAi+2 · · ·Am. If val(Ai) = val(Ai+1) = Γ η for some
Γ ⊆ Σ, we continue with the sequenceA1 · · ·Ai−1Ai+1 · · ·Am. Finally, if val(Ai) =
val(Ai+2) = Γ η for someΓ ⊆ Σ andval(Ai+1) = a ∈ Γ , we continue with the
sequenceA1 · · ·Ai−1Ai+2 · · ·Am. We iterate this process as long as possible. ⊓⊔

Lemma 4.25. Given a primitive 2-level systemB and a finite irreducible sequence
A1 · · ·Ak (k ≥ 3), where everyAi is a lower level variable ofB, we can produce in
polynomial time a primitive 2-level SESC and sequencesB1 · · ·Bm,C1 · · ·Cn (m ≥ 0,
n ≥ 1) of lower level variables ofC such that the following holds:

– The upper parts ofB andC are the same, and the lower part ofC extends the lower
part ofB by at most one new lower level variable, whose right-hand side has length
2.

– The infinite sequenceB1 · · ·Bm(C1 . . . Cn)
ω is irreducible.

– (A1 · · ·Ak)
ω andB1 · · ·Bm(C1 · · ·Cn)

ω are equivalent sequences.
– m,n ≤ k.

Proof. W.l.o.g. assume that(A1 · · ·Ak)
ω is not irreducible. SinceA1 · · ·Ak is irre-

ducible, anR-reduction in the infinite sequenceA1 · · ·AkA1 · · ·AkA1 · · ·Ak · · · can
only occur at a border betweenAk andA1. There are the following cases, according to
the left-hand sides of the systemR.

Case 1.val(Ak) = val(A1) = Γ η for someΓ ⊆ Σ. Then, the infinite sequence
A1A2 · · ·Ak(A2 · · ·Ak)

ω is irreducible and equivalent to our original sequence (recall
thatk ≥ 3).

Case 2.val(Ak) is scattered and right-closed,val(A1) is scattered and left-closed. Then,
we introduce a new lower level variableA with rhs(A) = AkA1. It follows that the
infinite sequenceA1A2 · · ·Ak−1(AA2 · · ·Ak−1)

ω is irreducible and equivalent to our
original sequence.

Case 3.val(Ak) = Γ η, val(A1) = a, val(A2) = Γ η for someΓ ⊆ Σ anda ∈ Γ . If k =
3, thenA1A2 · · ·Ak = A1A2A3 would not be irreducible (sinceval(A2) = val(A3) =
Γ η), which contradicts our assumptions. Hence, assume thatk ≥ 4. Then, the sequence
A1A2 · · ·Ak(A3 · · ·Ak)

ω is again irreducible and equivalent to our original sequence.

Case 4.val(Ak−1) = Γ η, val(Ak) = a, val(A1) = Γ η for someΓ ⊆ Σ anda ∈ Γ .
This case is similar to Case 3. ⊓⊔

Let B be an SES andX a variable withωη-depth(X) = h ≥ 1. Then there is a se-
quence of variablesX1, . . . , Xh such thatXh = X ,Xi �B Xi+1, andωη-depth(Xi) =
i. Note thatval(X1) is either primitive or a shuffle of finite words. Ifval(X1) =
[u1, . . . , uk]

η where at least one of theui is in Σ≥2 (thus,val(X1) is not primitive),
then this sequence is called abad sequence. If a variableX has a bad sequence, then
we say it is ofbad shape. Otherwise it is ofgood shape. For instance, ifrhs(X) = [Y]η

andrhs(Y) = ab, thenX is of bad shape.

34

Proposition 4.26. LetB = (V,Σ, rhs) be an SES such that for every variableX ∈ V ,
eitherrhs(X) ∈ Σ+∪Σ∗V Σ∗∪V V or rhs(X) is of the formY ω, Y ω, or [Y1, . . . , Yn]

η

for Y, Y1, . . . , Yn ∈ V ∪ Σ. GivenB we can produce in polynomial time a proper 2-
level systemC = (Up, Lo, Γ, rhs) such that every variableX ∈ V , wherevalB(X) is
not primitive, belongs toUp and for each of these variablesX we have:

(a) valB(X) = valC(X)
(b) If X is of good shape inB, thenωη-depthB(X) > ωη-depthup(C)(X).
(c) If X is of bad shape inB, thenωη-depthB(X) = ωη-depthup(C)(X) andX is of

good shape inup(C).

Proof. W.l.o.g. we can assume thatval(B) is not primitive. We start with some prepro-
cessing.

Preprocessing.First we transform our succinct expressionB into a 2-level systemC
by collecting inLo all variablesX such thatval(X) is primitive. This can be done in
polynomial time using Lemma 4.16. Note that ifval(X) is primitive and scattered, then
for everyY in rhs(X), val(Y) is primitive too. But ifval(X) is primitive and dense (i.e.,
of the formΓ η for someΓ ⊆ Σ), then this is not necessarily true.5 Hence, in this case
we have to redefinerhs(Y) = Γ η. After this process the 2-level systemC is already
primitive, satisfies conditions (a), (b), and (c) in our proposition, and for allX ∈ Up

the wordval(X) is not primitive. All these properties will stay invariant throughout the
remaining proof where we manipulate the systemC in order to make it proper.

Before we come to the actual algorithm we transformC for technical convenience
such that for allX ∈ Up one of the following holds:

(1) rhs(X) ∈ Lo≥2 ∪ Lo∗UpLo∗,
(2) rhs(X) = [Y1, . . . Yn]

η for someY1, . . . , Yn ∈ Up ∪ Lo,
(3) rhs(X) ∈ UpUp,
(4) rhs(X) = Y ω for Y ∈ Up ∪ Lo,
(5) rhs(X) = Y ω for Y ∈ Up ∪ Lo.

In order to achieve this form we simply introduce for each upper level variableX with
rhs(X) = uY v whereu, v ∈ Σ∗ andY ∈ V two variablesXu, Xv ∈ Lo and set
rhs(X) = XuY Xv, rhs(Xu) = u, andrhs(Xv) = v (if e.g. u = ε, thenXu is not
present). Moreover, if a symbola ∈ Σ occurs in a right-hand side of the formY ω, Y ω,
or [Y1, . . . , Yn]

η, then we replace that occurrence by a newLo-variable with right-hand
sidea.

In fact, by this preprocessing all right-hand sides of the form (1) have length at most
3. This fact will be important when we estimate the size of the final system. From now
on variables inUp that have a right-hand side of form (1) or (2) are said to be of type
(1, 2), all other variables are said to be of type (3-5).

Following [2, proof of Theorem 65 & 66] we will now give an algorithm that pro-
duces a proper 2-level system. We will proceed along the hierarchical order of the vari-
ables inUp where in each step we possibly add a constant number of new variables and

5 Let, for instance,rhs(X) = [Y]η with val(Y) = a[a]η. Thenval(X) = [a]η is primitive but
val(Y) is not primitive.

35

change the right-hand sides of the old variables such that all variables are proper and
of the form (1)–(5) and, moreover, all old variablesX are of type (1, 2) and fulfill the
following technical condition (TEC):

(a) If val(X) has a first block, thenrhs(X) ∈ Lo≥2 ∪ Lo+UpLo∗ and the first
variable ofrhs(X) evaluates to the first block ofval(X).

(b) If val(X) has a second block and the first block is scattered, thenrhs(X) ∈
Lo≥2 ∪ Lo≥2UpLo∗ and the second variable ofrhs(X) evaluates to the second
block ofval(X).

(c) If val(X) has a last block thenrhs(X) ∈ Lo≥2 ∪ Lo∗UpLo+ and the last
variable ofrhs(X) evaluates to the last block ofval(X).

(d) If val(X) has a second last block and the last block is scattered, thenrhs(X) ∈
Lo≥2 ∪ Lo∗UpLo≥2 and the second last variable ofrhs(X) evaluates to the
second last block ofval(X).

We need the following claim about this property (TEC):

Claim. If rhs(X) ∈ Lo+ ∪ Lo∗UpLo∗ andrhs(X) is good, thenX satisfies (TEC).

Proof. By symmetry let us only consider conditions (a) and (b) of (TEC). Assume
that rhs(X) is a good sequence. Ifrhs(X) ∈ Lo∗, then Lemma 4.10 implies that the
variables inrhs(X) evaluate to the blocks ofval(X) (recall thatrhs(X) is good). Hence
(a) and (b) hold. Next, assume thatrhs(X) ∈ Lo≥2UpLo∗. Again, sincerhs(X) is good,
Lemma 4.10 implies that the first two variables inrhs(X) evaluate to the first two blocks
of val(X). Thus, (a) and (b) hold again. Ifrhs(X) ∈ UpLo∗, then the first variable of
rhs(X) evaluates to a non-primitive word. Sincerhs(X) is good, it follows thatval(X)
does not have a first block and (a) and (b) hold. Finally assumethatrhs(X) ∈ LoUpLo∗

and the first two variables ofrhs(X) areA ∈ Lo andZ ∈ Up. Then,val(A) is the
first block of val(X). Sincerhs(X) is good eitherval(Z) does not have a first block
or val(Z) has a first block,val(A) is uniform, and(val(A), val(Z)) does not merge. In
both cases (a) and (b) are obviously satisfied. This proves the claim.

Actual algorithm. We can now outline our procedure. Consider a variableX ∈ Up

such that every variables inrhs(X) is either inLo or was already processed and is
therefore now proper, satisfies (TEC), and is of type (1, 2). We need to distinguish on
the form of the right-hand side ofX . In all of the following cases, we resetrhs(X)
either

(i) to a shuffle of variables that are already proper or
(ii) to a good sequence fromLo+ ∪ Lo∗UpLo∗ (and all variables in that sequence are

already proper).

In (i), X is proper by Definition 4.22(4) (note thatval(X) is not primitive sinceX ∈
Up). In (ii) it follows from Lemma 4.10 and Claim 4.6, thatX is proper and satisfies
(TEC). For every other new upper level variablesY that is introduced, the right-hand
side is either

36

(i) a non-merging sequence of (already proper) variables or
(ii) Zω orZω, whereZ is already proper andZZZ does not merge.

In both cases it follows from Definition 4.22 thatY is proper too.

Case 1.rhs(X) ∈ Lo2 ∪ Lo3 (hencerhs(X) is semi-good). By applying Lemma 4.24
to rhs(X), we can compute in polynomial time an equivalent good sequence of at most
three possibly newLo-variables (and their corresponding right-hand sides). This se-
quence becomes the new right-hand side ofX .

Case 2.rhs(X) ∈ Lo≤1UpLo≤1. LetZ be the uniqueUp-variable inrhs(X). Note that
Z is one of the old variables, which has already been processedand hence is proper,
of type (1, 2), and satisfies (TEC). Ifrhs(Z) ∈ Lo≥2 ∪ Lo∗UpLo∗, then we replaceZ
in rhs(X) by rhs(Z) (if rhs(Z) is a shuffle, then we leaveZ in rhs(X)). Recall thatZ
is proper and satisfies (TEC). It follows easily that the resulting new right-hand side of
X is semi-good and inLo≥2 ∪ Lo∗UpLo∗. Thus, we can apply Lemma 4.24 and obtain
an equivalent good sequence inLo+ ∪ Lo∗UpLo∗ (as in Case 1, we will introduce new
Lo-variables thereby). This good sequence will be the new right-hand side ofX .

Case 3.rhs(X) = [Y1, . . . , Yk]
η. Then there is nothing to do. Recall that we assumed

thatval(X) is not primitive and henceX is proper and satisfies the technical condition
(TEC) asval(X) neither has a first nor a last block.

Case 4.rhs(X) = Y Z for someY, Z ∈ Up. HereY andZ are old variables, which
have already been processed and therefore are proper, of type (1, 2), and satisfy (TEC).
If rhs(Y) ∈ Lo≥2 ∪ Lo∗UpLo∗ then we replaceY in Y Z by rhs(Y) (if rhs(Y) is a
shuffle, we leaveY in Y Z). We proceed analogously withZ in Y Z. SinceY andZ
are proper and satisfy (TEC), it follows (as in Case 2) that the resulting new right-hand
side ofX is semi-good and contains at most two variables fromUp. Thus we can apply
Lemma 4.24 and obtain an equivalent good sequenceu of variables with at most two
variables fromUp (again, we introduce newLo-variables thereby).

Now, we replace parts in the sequenceu in order to getrhs(X). First, assume that
u = A1 · · ·Ak ∈ Lo+. If k ≤ 5, thenrhs(X) simply becomesu (which is good). If
k ≥ 6, then we introduce a newUp-variableU and set

rhs(X) = A1A2UAk−1Ak, rhs(U) = A3 · · ·Ak−2.

Sinceu is good, both right-hand sides are good as well. Second, assume thatu =
A1 · · ·AkUB1 · · ·Bℓ ∈ Lo∗UpLo∗ with U ∈ Up. If k ≤ 2 andℓ ≤ 2 then we we
simply setrhs(X) = u. On the other hand, ifk > 2 or ℓ > 2, then we introduce a new
Up-variableV and set

rhs(X) = A1A2V Bℓ−1Bℓ, rhs(V) = A3 · · ·AkUB1 · · ·Bℓ−2

(if e.g. k > 2 but ℓ = 1, thenB1 · · ·Bℓ−2 andBℓ−1 disappear). Sinceu is good,
rhs(X) will be good too. Moreover, sinceu does not merge (by Lemma 4.10),rhs(V)
does not merge as well (rhs(V) is not necessarily good). Third, assume thatu =
A1 · · ·AkUB1 · · ·BℓV C1 · · ·Cn ∈ Lo∗UpLo∗UpLo∗ with U, V ∈ Up. In this case
we introduce two newUp-variablesW1 andW2 and set

rhs(X) = A1A2W1C1 · · ·Cn, rhs(W1) = W2V, rhs(W2) = A3 · · ·AkUB1 . . . Bℓ.

37

Again, sinceu is good,rhs(X) is good as well. Moreover, sinceu does not merge,
neitherrhs(W1) nor rhs(W2) merges. Note that the numbern in the right-hand side of
X above is bounded by|rhs(Z)|. This will be important for estimating the length of
right-hands.

Case 5.rhs(X) = Y ω . Note thatY is either aLo-variable, or it is an oldUp-variable,
which has already been processed and hence is proper, of type(1, 2), and satisfies
(TEC). We can therefore distinguish the following subcases.

Case 5(a).rhs(Y) = [Z1, . . . , Zn]
η for someZ1, . . . , Zn ∈ Lo ∪ Up. Then by the gen-

eral identity(Γ η)ω ∼= Γ η (which follows from Cantor’s theorem), we haveval(X) =
val(Y) and we setrhs(X) = Y . ThenX is obviously proper. Since we assumed that
val(X) is not primitiveval(X) does not have a first or a last block and (TEC) is satisfied.

Case 5(b).rhs(Y) ∈ Lo∗UpLo∗. Let rhs(Y) = uZv with Z ∈ Up andu, v ∈ Lo∗.
SinceY is proper and satisfies (TEC), the infinite sequenceuZvuZv · · · = u(Zvu)ω is
semi-good. By applying Lemma 4.24 to the sequencevu of Lo-variables, we obtain an
equivalent good sequenceu(Zw)ω. Herew is a sequence of (possibly new)Lo-variables
such thatw represents the irreducible normal form w.r.t.R of the sequence represented
by vu. Note that|w| ≤ |uv|. We set

rhs(X) = uV, rhs(V) = Uω, rhs(U) = Zw.

Since the sequenceu(Zw)ω is good, also the sequenceuV is good. Moreover, since
u(Zw)ω does not merge (by Lemma 4.10), the same holds forrhs(U) andUUU (soU
andV are proper by definition).

Case 5(c).Y ∈ Lo and henceval(Y) is primitive. Then the infinite sequenceY Y Y · · ·
must be irreducible, because otherwiseval(Y) would be either finite or uniform and
val(X) = val(Y ω) would be primitive. We introduce a newUp-variableZ and set

rhs(X) = Y Y Z, rhs(Z) = Y ω.

Thenrhs(X) is good andY Y Y does not merge.

Case 5(d).rhs(Y) ∈ Lo2. Let rhs(Y) = A1A2 for A1, A2 ∈ Lo. SinceY is already
proper, we know thatA1A2 is irreducible. If the infinite sequenceA1A2A1A2 · · · is
irreducible too, then we introduce a newUp-variablesZ and set

rhs(X) = A1A2Z, rhs(Z) = Y ω.

Clearly,rhs(X) is good andY Y Y does not merge. On the other hand, ifA1A2A1A2 · · ·
is not irreducible, then (sinceA1A2 is irreducible), anR-reduction can only occur at a
border betweenA2 andA1. The case thatval(A1) = val(A2) = Γ η for someΓ ⊆ Σ
cannot occur (sinceA1A2 is irreducible). Ifval(A2) is scattered and right-closed and
val(A1) is scattered and left-closed, then we introduce a newLo-variableB and a new
Up-variableZ and set

rhs(X) = A1BZ, rhs(Z) = Bω, rhs(B) = A2A1.

38

It is straightforward to show that the infinite sequenceA1BBB · · · is irreducible.
Hencerhs(X) is good andBBB does not merge. Next, ifval(A1) = Γ η andval(A2) =
a for someΓ ⊆ Σ anda ∈ Γ , thenA1A2A1A2 · · · evaluates toΓ η. Hence,val(X)
is primitive, which is a contradiction. Finally, ifval(A2) = Γ η andval(A1) = a ∈ Γ ,
thenA1A2A1A2 · · · evaluates toaΓ η = val(Y) and we setrhs(X) = Y .

Case 5(d).val(Y) ∈ Lo≥3. We apply Lemma 4.25 to the irreducible sequencerhs(Y)
and compute sequencesu, v of (possibly new)Lo-variables with their corresponding
right-hand sides. The infinite sequenceuvω of Lo-variables is irreducible and evaluates
to val(Y). W.l.o.g. we can assume|u| ≥ 2 (otherwise, we can replaceu by uvv). We
introduce newUp-variablesU andV and set

rhs(X) = uV, rhs(V) = Uω, rhs(U) = v.

(if |v| = 1, i.e.,v consists of a singleLo-variable, then we do not needU).

Case 6.rhs(X) = Y ω. This case is symmetric to Case 4.

The resulting systemC is primitive and allUp-variables are proper. On the other hand,
C is not necessarily irredundant. But this can be easily achieved as described in Re-
mark 4.21. ⊓⊔

We are now in the position to prove Theorem 4.15.

Proof of Theorem 4.15.It suffices to show that the following problem can be solved in
polynomial time:

INPUT: An SESA and two variablesX,Y of A.
QUESTION:val(X) ∼= val(Y)?

If both variablesX andY evaluate to primitive words, then we just need to apply
Lemma 4.18. If only one of the two evaluates to a primitive word, thenval(X) 6∼=
val(Y). Hence, we may assume that bothval(X) andval(Y) are not primitive. In par-
ticular, we haveωη-depth(X), ωη-depth(Y) > 0. It is easy to bringA into the normal
form required in Proposition 4.26. Applying Proposition 4.26 toA gives a proper 2-level
systemA0. The variablesX andY belong to the upper level part ofA0. Starting with
A0 we construct a sequence of proper 2-level systemsAj = (Upj , Loj , Loj−1, rhsj)
(with Lo−1 = Σ). In order to obtainAj we apply the procedure of Proposition 4.26
to up(Aj−1). Let k be maximal such thatX andY belong to the upper level part of
Ak. Since by Proposition 4.26 in every second step theωη-depth of X andY strictly
decreases we havek ≤ 2 · |A|.

Let 0 ≤ j ≤ k. By Lemma 4.23uvalj(X) is the lo(Aj)-skeleton ofvalj(X) and
similarly for Y . Hencevalj(X) ∼= valj(Y) if and only if uvalj(X) ∼= uvalj(Y) by
Proposition 4.3. Recall thatAj+1 is obtained by applying the procedure of Propo-
sition 4.26 toup(Aj). We obtainvalj(X) ∼= valj(Y) if and only if valj+1(X) ∼=
valj+1(Y) for all 0 ≤ j < k. Hence,val(X) ∼= val(Y) if and only if valk(X) ∼=
valk(Y) if and only if uvalk(X) ∼= uvalk(Y). Now, by the maximality ofk, uvalk(X)
or uvalk(Y) must be primitive. Hence, using Lemma 4.18, we can check in polynomial
time whetheruvalk(X) ∼= uvalk(Y).

39

Runtime. Let us analyze the systemup(Aj) for 1 ≤ j ≤ k. The 2-level systemAj

is obtained by applying Proposition 4.26 toup(Aj−1). Observe that by the construc-
tion in the proof, the systemup(Aj) already has the normal form that we require in
Proposition 4.26. LetType(3-5)j be the set of variables inUpj that are of type (3-5).

Now let us estimate the number|Upj | for 1 ≤ j ≤ k. Observe that in the proof
of Proposition 4.26 in each of the Cases (1)–(3) only new lower level variables are
introduced. In each of the Cases (4)–(6) the old variable is turned into a variable of
type (1, 2) and at most one new variable of type (3-5) is added to Upj . Moreover,
additionally at most one new variables of type (1, 2) is addedtoUpj . We conclude that
|Type(3-5)j | ≤ |Type(3-5)j−1| and the total number of variables inUpj is bounded by
|Upj−1| + 2 · |Type(3-5)j−1|. Recall thatj ≤ k ≤ 2|A|. Hence|Upj | ≤ |Up0| + 2j ·
|Type(3-5)0| ≤ |A0| · (4 · |A|+ 1) for all 0 ≤ j ≤ k.

Let us now estimate the maximal length of a right-hand side inAj . Let us first
bound the length of the right-hand side of a variableX ∈ Upj ∩ Upj−1 (i.e., an old
variable). By reanalyzing all cases from the proof of Proposition 4.26, we see that for
such a variableX , |rhsj(X)| is either at most 5 or it is bounded by3+ |rhsj(Y)|, where
Y ∈ Upj ∩ Upj−1 is an old variable, which was processed before. We thereforeobtain
|rhsj(X)| ≤ 3 · |Upj ∩Upj−1|+ 5. Hence,|rhsj(X)| ≤ 3 · |A0| · (4 · |A|+ 1)+ 5. For
the newly added variables,X ∈ Upj \Upj−1 the size of the right-hand side is bounded
by twice the maximal size of a right-hand side of an old variable in Upj ∩ Upj−1 (the
factor 2 comes from Case 4). Hence|rhsj(X)| ≤ 6 · |A0| · (4 · |A| + 1) + 10 for all
X ∈ Upj . Finally, note that|A0| is bounded polynomially bounded in|A|.

Concerning lower level variables ofAj , note that the length|rhsj(A)| for a lower
level variable ofAj is bounded by 2 (ifA is introduced in one of the Cases 1–6) or by
the maximal length of the right-hand side of a variable fromAj−1 (if A is introduced in
the preprocessing step). Moreover, in each of the Cases 1–6,the number of new lower
level variables that are introduced is bounded by twice the maximal size of a right-hand
side of an old variable inUpj ∩ Upj−1 (the factor 2 comes again from Case 4). Hence
the number of lower level variables is also bounded polynomially in |A|.

We have shown that the total size of very 2-level systemAj (1 ≤ j ≤ k) is bounded
polynomially in |A|. As the time needed to constructAj+1 from Aj is polynomially
bounded by Proposition 4.26, we conclude that the overall running time of our algo-
rithm is polynomially bounded as well. ⊓⊔

4.7 Lower bounds for regular linear orders

In this section we prove lower bounds for the isomorphism problem for regular words.
In fact, all these lower bounds only need a unary alphabet, i.e., they hold for regular
linear orders. The results in this section nicely contrast the results from Section 3, where
we studied the isomorphism problem for the prefix order treeson regular languages. In
this section, we replace the prefix order by the lexicographical order.

Theorem 4.27. The following problem isP-hard (and henceP-complete) for every fi-
nite alphabetΣ:

INPUT: Two succinct expressionsA1 andA2 over the alphabetΣ.
QUESTION:val(A1) ∼= val(A2)?

40

Proof. Note that the problem can be solved in polynomial time by Theorem 4.15.P-
hardness will be shown by a reduction from the monotone circuit value problem. So,
letC be a monotone Boolean circuit. We can assume that the gates ofC are partitioned
into layersL1, . . . , Ln, whereL1 contains all input gates,Ln only contains the output
gate, and all inputs for a gate fromLi+1 belong toLi. Moreover,Li (i > 1) either
contains onlyand-gates oror-gates. We construct an SESA (over a unary terminal
alphabet{a}), which contains for each gatev of C a variabletestv and for each layer
d ∈ {1, . . . , n} two variablesgoodd, andbadd such that the following holds for all
gatesv ∈ Ld:

(a) EithervalA(testv) ∼= valA(badd) or valA(testv) ∼= valA(goodd).
(b) valA(testv) ∼= valA(goodd) if and only if gatev evaluates totrue.
(c) The linear ordersvalA(goodd) andvalA(badd) do not contain an interval isomor-

phic toω · d (recall thatω · d denotes the linear orderω + · · ·+ ω︸ ︷︷ ︸
d times

).

The base case for the first layer is trivial. SetrhsA(good1) = a andrhsA(bad1) = aa.
In other words,valA(good1) ∼= 1 andvalA(bad1) ∼= 2. Moreover,rhsA(testv) = a if
v ∈ L1 is atrue-gate andrhsA(testv) = aa if v ∈ L1 is afalse-gate.

Now assume thatv ∈ Ld+1 is a gate with inputsv1, v2 ∈ Ld. Forn ∈ N we use the
abbreviation

ω · n = aωaω · · ·aω︸ ︷︷ ︸
n times

.

Moreover, we writeα + β for the concatenationαβ of the regular expressionα andβ
(which denote regular linear orders since the alphabet is unary). There are two cases:

Case 1.Ld+1 consists ofand-gates. Then we set

rhsA(testv) = [ω · d+ testv1 , ω · d+ testv2 , ω · d+ goodd]
η

rhsA(goodd+1) = [ω · d+ goodd]
η

rhsA(badd+1) = [ω · d+ goodd, ω · d+ badd]
η.

Case 2.Ld+1 consists ofor-gates.

rhsA(testv) = [ω · d+ testv1 , ω · d+ testv2 , ω · d+ badd]
η

rhsA(goodd+1) = [ω · d+ goodd, ω · d+ badd]
η

rhsA(badd+1) = [ω · d+ badd]
η.

The above three properties (a), (b), and (c) can be shown by induction on the layer.
For layerL1 all three properties are trivially true. Now, consider layer Ld+1. Property
(a) follows directly from the induction hypothesis for layer Ld. Since the linear orders
valA(goodd) andvalA(badd) are shuffles, (c) holds for layerLd+1 too. Finally, for (b)
we consider two cases:

Case 1.v ∈ Ld+1 is anand-gate. Letv1, v2 ∈ Ld be the inputs forv. First, assume that
v evaluates totrue. Then,v1 andv2 both evaluate totrue. Hence, by induction, we get

41

valA(testv1)
∼= valA(testv2)

∼= valA(goodd). Thus,

valA(testv) = [ω · d+ valA(testv1), ω · d+ valA(testv2), ω · d+ valA(goodd)]
η

∼= [ω · d+ valA(goodd)]
η

= valA(goodd+1).

For the other direction assume that

valA(testv) = [ω · d+ valA(testv1), ω · d+ valA(testv2), ω · d+ valA(goodd)]
η

∼= [ω · d+ valA(goodd)]
η.

Since neithervalA(testv1) nor valA(testv2) nor valA(goodd) contains an interval iso-
morphic toω · d, [18, Lemma 23] implies that

ω · d+ valA(testv1)
∼= ω · d+ valA(testv2)

∼= ω · d+ valA(goodd).

This implies
valA(testv1)

∼= valA(testv2)
∼= valA(goodd).

Finally, the induction hypothesis yields that bothv1 andv2, and hence alsov evaluate
to true.

Case 2.v ∈ Ld+1 is anor-gate. We can use similar arguments as for Case 1. ⊓⊔

We do not know, whether the lower bound from Theorem 4.27 holds for ordinary ex-
pressions too (instead of succinct expressions).

Theorem 4.28. The following problem isP-hard (and henceP-complete):

INPUT: Two DFAsA1 andA2.
QUESTION:(L(A1);≤lex) ∼= (L(A2);≤lex)?

Proof. Note that by Theorem 4.1 the problem belongs toP. ForP-hardness, it suffices
by Theorem 4.27 to construct in logspace from a given succinct expressionA (over a
unary terminal alphabet) a DFAA such that the linear orderval(A) is isomorphic to
(L(A);≤lex). But this is accomplished by the construction in the proof of[29, Proposi-
tion 2]. ⊓⊔

Theorem 4.1 implies that it can be checked inEXPTIME whether the lexicographical
orderings on two regular languages, given by NFAs, are isomorphic. We do not know
whether this upper bound is sharp. Currently, we can only prove a lower bound of
PSPACE:

Theorem 4.29. The following problem isPSPACE-hard:

INPUT: Two NFAsA1 andA2.
QUESTION:(L(A1);≤lex) ∼= (L(A2);≤lex)?

42

Proof. We provePSPACE-hardness by a reduction from thePSPACE-complete prob-
lem whether a given NFAA (over the terminal alphabet{a, b}) accepts{a, b}∗ [28].
So letA be an NFA over the terminal alphabet{a, b} and letK = L(A). Let Σ =
{0, 1, a, b, $1, $2} and fix the following order onΣ:

$1 < 0 < 1 < $2 < a < b.

Under this order,({0, 1}∗1;≤lex) ∼= ({a, b}∗b;≤lex) ∼= η.
It is straightforward to construct fromA in logspace NFAs for the following lan-

guages:

L1 = {a, b}∗b $1

L2 = K b {0, 1}∗1

L3 = {a, b}∗b $2

L = L1 ∪ L2 ∪ L3 (6)

It follows that
(L;≤lex) ∼=

∑

w∈{a,b}∗b

L(w),

(the sum is taken over all words from{a, b}∗b in lexicographic order), where

L(w) ∼=

{
1+ η + 1 if w ∈ K

2 else.

Hence, ifK 6= {a, b}∗, then(L;≤lex) contains an interval isomorphic to2 and therefore
is not dense. Hence(L;≤lex) 6∼= η. On the other hand, ifK = {a, b}∗, then(L;≤lex) ∼=
(1+ η + 1) · η ∼= η. This proves the theorem. ⊓⊔

Remark 4.30.The proof of Theorem 4.29 shows that it isPSPACE-hard to check for a
given NFAA, whether(L(A);≤lex) ∼= η. In fact, this problem isPSPACE-complete,
since we can check in polynomial space whether(L(A);≤lex) ∼= η: In polynomial time,
we can construct an NFAB that accepts a convolution of two words6 u⊗ v if and only
if u, v ∈ L(A) and there exist wordsw1, w2, w3 ∈ L(A) such thatw1 <lex u <lex w2

and (v ≤lex u or u <lex w3 <lex v). Then,(L(A);≤lex) ∼= η if and only ifB accepts the
set of all convolutionsu⊗v with u, v ∈ L(A). The latter can be checked in polynomial
space.

Remark 4.31.In [9] it is shown that the problem, whether for a given context-free lan-
guageL the linear order(L;≤lex) is isomorphic toη, is undecidable. This result is
shown by a reduction from Post’s correspondence problem. Note that this result can be
also easily deduced using the technique from the above proof: If we start with a push-
down automaton forA instead of an NFA, then the languageL from (6) is context-free.
Hence,(L;≤lex) ∼= η if and only ifL(A) = {a, b}∗. The latter property is a well-known
undecidable problem.

6 The convolution of the words a1a2 · · · am and b1b2 · · · bn is the word
(a1, b1)(a2, b2) · · · (ak, bk), where k = max{m, n}, ai = # (a dummy symbol) for
m < i ≤ k andbi = # for n < i ≤ k.

43

In Section 3 we also studied the isomorphism problem for finite trees that are suc-
cinctly given by the prefix order on the finite language accepted by a DFA (resp., NFA).
To complete the picture, we will finally consider the isomorphism problem for linear
orders that consist of a lexicographically ordered finite language, where the latter is rep-
resented by a DFA (resp., NFA). Of course, this problem is somehow trivial, since two
finite linear orders are isomorphic if and only if they have the same cardinality. Hence,
we have to consider the problem whether two given acyclic DFAs (resp. NFAs) accept
languages of the same cardinality.

Proposition 4.32. It isC=L-complete (resp.C=P-complete) to check whether two given
acyclic DFAs (resp., acyclic NFAs) accept languages of the same size.

Proof. The upper bounds are easy: There exists a nondeterministic polynomial time
(resp., logspace) machine, which gets an NFA (resp. a DFA)A over an alphabetΣ as
input, and has precisely|L(A)| many accepting paths. Letn be the number of states
of n. The machine first branches nondeterministically for at most n · log(|Σ|) steps
and thereby produces a wordw ∈ Σ≤n. Then it checks whetherw ∈ L(A) and only
accepts it this holds. The checking step can be done in deterministic polynomial time
for an NFA and in deterministic logspace for a DFA.

For the lower bound, we first consider the DFA-case. Given twonondeterministic
logspace machinesM1,M2 (over the same input alphabet) together with an inputw we
can produce in logspace the configuration graphsG1 andG2 of M1 andM2, respec-
tively, on inputw. W.l.o.g. we can assume thatG1 andG2 are acyclic (one can add a
step counter toMi). Now, fromGi it is straightforward to construct an acyclic DFA
Ai such that|L(Ai)| is the number of paths inGi from the initial configuration to the
(w.l.o.g. unique) accepting configuration. The latter number is the number of accepting
computations ofMi on inputw.

Finally, C=P-hardness for NFAs follows from [16, Theorem 2.1], where it was
shown that counting the number of words accepted by an NFA is#P-complete. ⊓⊔

4.8 Ordered trees

Let us briefly discuss the isomorphism problem for ordered regular trees, i.e., regular
trees, where the children of a node are linearly ordered. An ordered tree can be viewed
as a triple(A;≤, R), where(A;≤) is a tree as defined in Section 2.3 and the binary
relationR is the disjoint union of relationsRa (a ∈ A), whereRa is a linear order
on the children ofa. Now, assume thatA is a (deterministic or nondeterministic) finite
automaton with input alphabetΣ and let≤Σ be a linear order onΣ. Assume that
ε ∈ L(A). Then, we can define a finitely branching ordered regular treeoT(A,≤Σ)
with A as follows:

oT(A,≤Σ) = (L(A); ≤pref ,
⋃

u∈L(A) Ru),

whereRu is the relation

Ru = {(v, w) | v, w are children ofu in (L(A);≤pref), v ≤lex w}.

44

This means that we order the children of a nodeu ∈ L(A) lexicographically. In the
following, we will omit the order≤Σ on the alphabet. The proof of the following result
combines ideas from the proof of Theorem 3.1 with Theorem 4.1.

Proposition 4.33. The following problem isP-complete:

INPUT: Two DFAsA1 andA2 with ε ∈ L(A1) ∩ L(A2).
QUESTION:oT(A1) ∼= oT(A2)?

Proof. Similarly to the proof of Theorem 3.1, it suffices to take a DFAA = (Q,Σ, δ, F)
without initial state and two statesp, q ∈ F , and to check in polynomial time, whether
oT(A, p) ∼= oT(A, q), whereoT(A, r) = oT(Q,Σ, δ, r, F) for r ∈ F . Define the
following equivalence relation onF :

iso = {(p, q) ∈ F × F | oT(A, p) ∼= oT(A, q)}.

We show thatiso can be computed in polynomial time. As in the proof of Theorem3.1,
this will be done with a partition refinement algorithm. We need a few definitions.

Recall from the proof of Theorem 3.1 the definition of the languagesL(A, p, C)
andK(A, p, C) ⊆ L(A, p, C) for p ∈ F andC ⊆ F . Assume thatR is an equivalence
relation onF and letm be the number of equivalence classes ofR. Fix an arbitrary
bijectionf between the the alphabet{1, . . . ,m} and the set of equivalence classes of
R. WithR andp ∈ F we associate a partitioned DFAA(p,R) as follows: Take the DFA
for the languageL(A, p, F) as defined in the proof of Theorem 3.1 and setFi = f(i)
(1 ≤ i ≤ m), which is the set of final states associated with symboli. Finally, define
the regular wordw(p,R) = w(A(p,R)) over the alphabet{1, . . . ,m}. We define the
new equivalence relatioñR onF as follows:

R̃ = {(p, q) ∈ R | w(p,R) ∼= w(q, R)}.

Thus,R̃ is a refinement ofR which, by Theorem 4.1, can be computed in polynomial
time fromR. Let us define a sequence of equivalence relationsR0, R1, . . . on F as
follows: R0 = F × F , Ri+1 = R̃i. Then, there existsk < |F | such thatRk = Rk+1.
We claim thatRk = iso.

For the inclusioniso ⊆ Rk, one shows, by induction oni, that iso ⊆ Ri for all
1 ≤ i ≤ k. The point is that for every equivalence relationR onF with iso ⊆ R, we
also haveiso ⊆ R̃. To see this, assume thatiso ⊆ R but there is(p, q) ∈ iso, which does
not belong toR̃. Since(p, q) belongs toR, we must havew(p,R) 6∼= w(q, R). On the
other hand, since(p, q) ∈ iso, it follows that the regular wordsw(p, iso) andw(q, iso)
are isomorphic. But sinceiso ⊆ R, w(p,R) is a homomorphic image ofw(p, iso)
and similarly forw(q, R). Thus, alsow(p,R) andw(q, R) are isomorphic, which is a
contradiction.

For the inclusionRk ⊆ iso, we show that ifR is an equivalence relation onF such
thatR = R̃ (this holds forRk), thenR ⊆ iso. For this, take a pair(p1, p2) ∈ R. Take
the treeoT(A, pi). We assign types in form of final states to the nodes ofoT(A, pi)
in the same way as in the proof of Theorem 3.1. We now constructan isomorphism
f : oT(A, p1) → oT(A, p2) as the limit of isomorphismsfn, n ≥ 1. Here,fn is an

45

isomorphism between the trees that result fromoT(A, p1) andoT(A, p2) by cutting off
all nodes below leveln. Let us call these treesoT(A, pi)↾n (i ∈ {1, 2}). Moreover, if
anfn maps a nodeu1 of typeq1 to a nodeu2 of typeq2, then we will have(q1, q2) ∈ R.
Assume thatfn is already constructed and letu1 of typeq1 be a leaf ofoT(A, p1)↾n.
Let u2 = f(u1) be of typeq2. Then we have(q1, q2) ∈ R and hence the regular
wordsw(q1, R) andw(q2, R) are isomorphic. Letg be an isomorphism. The elements
of these regular words correspond to the children ofu1 andu2, respectively. More
precisely, ifvi belongs to the domain ofw(qi, R), thenuivi is a child ofui and vice
versa. Clearly,g can be also viewed as an isomorphism between the lexicographical
orderings on the children ofu1 andu2, respectively. Moreover, by definition of the
regular wordsw(q1, R) andw(q2, R), if g maps someu1v1 of typer1 to u2v2 of type
r2, then(r1, r2) ∈ R. By choosing such an isomorphismg for every pair(u1, f(u1))
of leaves inoT(A, p1)↾n andoT(A, p2)↾n, respectively, we can extendfn to fn+1. ⊓⊔

Let us now consider prefix-closed automata. Here, we can improve the upper bound
from Theorem 4.33 toNL.

Proposition 4.34. The following problem isNL-complete:

INPUT: Two prefix-closed DFAsA1 andA2.
QUESTION:oT(A1) ∼= oT(A2)?

Proof. Again, it suffices to take a prefix-closed DFAA = (Q,Σ, δ,Q) without ini-
tial state, and two statesp, q ∈ Q, and two check inNL, whetheroT(Q,Σ, δ, p,Q) ∼=
oT(Q,Σ, δ, p,Q). By the complement closure ofNL, it suffices to check nondetermin-
istically in logarithmic space, whetheroT(Q,Σ, δ, p,Q) 6∼= oT(Q,Σ, δ, p,Q) This can
be done as follows: Leta1 < a2 · · · < am and b1 < b2 < · · · < bn the transi-
tion labels of the outgoing transitions ofp andq, respectively. Ifm 6= n then clearly
oT(Q,Σ, δ, p,Q) 6∼= oT(Q,Σ, δ, q,Q) and the algorithm can accept. Ifn = m, then
oT(Q,Σ, δ, p,Q) 6∼= oT(Q,Σ, δ, q,Q) if and only if there exists1 ≤ i ≤ m such that
oT(Q,Σ, δ, δ(p, ai), Q) 6∼= oT(Q,Σ, δ, δ(q, bi), Q). Hence, the algorithm will simply
guess1 ≤ i ≤ m and replace the state pair(p, q) by (δ(p, ai), δ(q, bi)). In this way, the
algorithm only has to store two states ofA, which is possible in logspace.

NL-hardness can be shown by a reduction from the complement of the graph acces-
sibility problem. Take a directed graphG = (V,E) and two nodess, t ∈ V . Add to
each node ofV loops, so that every nodev ∈ V \ {t} has outdegreen (wheren can be
taken as the maximal outdegree of a node ofG) andt has outdegreen+ 1. Then label
the edges of the resulting multigraph arbitrarily by symbols so that we obtain a DFAA
(the initial state iss and all states are final). Then there is no path froms to t in G if
and only if the treeoT(A) is a full n-ary tree. ⊓⊔

Corollary 4.35. The following problem isPSPACE-complete:

INPUT: Two prefix-closed NFAsA1 andA2.
QUESTION:oT(A1) ∼= oT(A2)?

Proof. The PSPACE upper bound follows from Proposition 4.34, using Lemma 2.1
and the obvious fact that the power set automaton of a given NFA can be produced by

46

DFA NFA

acyclic PSPACE-complete

arbitrary
P-complete

EXPTIME-complete

Table 1.Main results for the isomorphism problem for regular trees

DFA NFA

acyclic C=L-complete C=P-complete

arbitrary P-complete
PSPACE-hard,
in EXPTIME

Table 2.Main results for the isomorphism problem for regular linearorders

a PSPACE-transducer. For thePSPACE lower bound, note that for an NFAA over
an alphabetΣ we haveL(A) = Σ∗ if and only if oT(A) is a full |Σ|-ary tree. But
universality for NFAs isPSPACE-complete [28]. ⊓⊔

5 Conclusion and open problems

Table 1 (Table 2) summarizes our complexity results for the isomorphism problem for
regular trees (regular linear orders). Let us conclude withsome open problems. As can
be seen from Table 2, there is a complexity gap for the isomorphism problem for regu-
lar linear orders that are represented by NFAs. This problembelongs toEXPTIME and
is PSPACE-hard. Another interesting problem concerns the equivalence problem for
straight-line programs (i.e., succinct expressions that generate finite words, or equiva-
lently, acyclic partitioned DFAs, or equivalently, context-free grammars that generate a
single word). Plandowski has shown that this problem can be solved in polynomial time.
Recall that this result is fundamental for our polynomial time algorithm for succinct ex-
pressions (Theorem 4.15). In [10], it was conjectured that the equivalence problem for
straight-line programs isP-complete, but this is still open.

References

1. V. Bárány, E. Grädel, and S.Rubin. Automata-based presentations of infinite structures. In
Finite and Algorithmic Model Theory, number 379 in London Mathematical Society Lecture
Notes Series. Cambridge University Press, 2011. to appear.

2. Stephen L. Bloom and ZoltáńEsik. The equational theory of regular words.Information
and Computation, 197(1-2):55–89, 2005.

3. Stephen L. Bloom and ZoltáńEsik. Algebraic linear orderings. Technical report, arXiv.org,
2010.http://arxiv.org/abs/1002.1624.

4. Ronald V. Book and Friedrich Otto.String–Rewriting Systems. Springer, 1993.

47

5. Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal of the
Association for Computing Machinery, 28(1):114–133, 1981.

6. Bruno Courcelle. Frontiers of infinite trees.ITA, 12(4), 1978.
7. Bruno Courcelle. The definability of equational graphs inmonadic second-order logic. In

Proceedings of the 16th International Colloquium on Automata, Languages and Program-
ming (ICALP 1989), number 372 in Lecture Notes in Computer Science, pages 207–221.
Springer, 1989.

8. ZoltánÉsik. Representing small ordinals by finite automata. InProceedings ofthe Twelfth
Annual Workshop on Descriptional Complexity of Formal Systems, DCFS 2010, volume 31
of EPTCS, pages 78–87, 2010.

9. ZoltánÉsik. An undecidable property of context-free linear orders. Information Processing
Letters, 111(3):107–109, 2011.

10. Leszek Gasieniec, Alan Gibbons, and Wojciech Rytter. Efficiency of fast parallel pattern
searching in highly compressed texts. In M. Kutylowski, L. Pacholski, and T. Wierzbicki,
editors,Proceedings of the 24th International Symposium on Mathematical Foundations of
Computer Science (MFCS’99), Szklarska Poreba (Poland), number 1672 in Lecture Notes in
Computer Science, pages 48–58. Springer, 1999.

11. Leszek Gasieniec, Marek Karpinski, Wojciech Plandowski, and Wojciech Rytter. Efficient
algorithms for Lempel-Ziv encoding (extended abstract). In Rolf G. Karlsson and Andrzej
Lingas, editors,Proceedings of the 5th Scandinavian Workshop on Algorithm Theory (SWAT
1996), Reykjavı́k (Iceland), number 1097 in Lecture Notes in Computer Science, pages 392–
403. Springer, 1996.

12. Leslie M. Goldschlager. The monotone and planar circuitvalue problems are log space
complete for P.SIGACT News, 9(2):25–99, 1977.

13. Stephan Heilbrunner. An algorithm for the solution of fixed-point equations for infinite
words. ITA, 14(2):131–141, 1980.

14. Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. Completeness results
for graph isomorphism.Journal of Computer and System Sciences, 66(3):549–566, 2003.

15. Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence.Information and Computation, 86(1), 1990.

16. Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney. Counting and random generation
of strings in regular languages. InProceedings of SODA’95, pages 551–557, 1995.

17. Bakhadyr Khoussainov, André Nies, Sasha Rubin, and Frank Stephan. Automatic structures:
richness and limitations.Logical Methods in Computer Science, 3(2):2:2, 18 pp. (electronic),
2007.

18. Dietrich Kuske, Jiamou Liu, and Markus Lohrey. The isomorphism problem on classes
of automatic structures. Technical report, arXiv.org, 2010. http://arxiv.org/abs/
1001.2086.

19. Dietrich Kuske, Jiamou Liu, and Markus Lohrey. The isomorphism problem on classes of
automatic structures with transitive relations. submitted for publication, extended version of
a paper presented at LICS 2010, 2011.

20. Yury Lifshits. Processing compressed texts: A tractability border. In Bin Ma and Kaizhong
Zhang, editors,Proceedings of the 18th Annual Symposium on Combinatorial Pattern Match-
ing (CPM 2007), London (Canada), number 4580 in Lecture Notes in Computer Science,
pages 228–240. Springer, 2007.

21. Steven Lindell. A logspace algorithm for tree canonization (extended abstract). InProceed-
ings of STOC’92, pages 400–404. ACM Press, 1992.

22. Masamichi Miyazaki, Ayumi Shinohara, and Masayuki Takeda. An improved pattern match-
ing algorithm for strings in terms of straight-line programs. In Alberto Apostolico and Jotun
Hein, editors,Proceedings of the 8th Annual Symposium on Combinatorial Pattern Matching

48

(CPM 97), Aarhus (Denmark), number 1264 in Lecture Notes in Computer Science, pages
1–11. Springer, 1997.

23. C. H. Papadimitriou.Computational Complexity. Addison Wesley, 1994.
24. Wojciech Plandowski. Testing equivalence of morphismson context-free languages. In

Jan van Leeuwen, editor,Second Annual European Symposium on Algorithms (ESA’94),
Utrecht (The Netherlands), number 855 in Lecture Notes in Computer Science, pages 460–
470. Springer, 1994.

25. Wojciech Plandowski and Wojciech Rytter. Complexity oflanguage recognition problems
for compressed words. In Juhani Karhumäki, Hermann A. Maurer, Gheorghe Paun, and
Grzegorz Rozenberg, editors,Jewels are Forever, Contributions on Theoretical Computer
Science in Honor of Arto Salomaa, pages 262–272. Springer, 1999.

26. J. Rosenstein.Linear Ordering. Academic Press, 1982.
27. Wojciech Rytter. Grammar compression, LZ-encodings, and string algorithms with implicit

input. In J. Diaz, J. Karhumäki, A. Lepistö, and D. Sannella, editors,Proceedings of the 31st
International Colloquium on Automata, Languages and Programming (ICALP 2004), Turku
(Finland), number 3142 in Lecture Notes in Computer Science, pages 15–27. Springer, 2004.

28. Larry J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (prelim-
inary report). InProceedings of the 5th Annual ACM Symposium on Theory of Computing
(STOCS 73), pages 1–9. ACM Press, 1973.

29. Wolfgang Thomas. On frontiers of regular trees.ITA, 20(4):371–381, 1986.

49

