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Abstract. The languages of infinite timed words accepted by timed au-
tomata are traditionally defined using Büchi-like conditions. These ac-
ceptance conditions focus on the set of locations visited infinitely often
along a run, but completely ignore quantitative timing aspects. In this
paper we propose a natural quantitative semantics for timed automata
based on the so-called frequency, which measures the proportion of time
spent in the accepting locations. We study various properties of timed
languages accepted with positive frequency, and in particular the empti-
ness and universality problems.

1 Introduction

The model of timed automata, introduced by Alur and Dill in the 90’s [2] is
commonly used to represent real-time systems. Timed automata consist of an
extension of finite automata with continuous variables, called clocks, that evolve
synchronously with time, and can be tested and reset along an execution. De-
spite their uncountable state space, checking reachability, and more generally
ω-regular properties, is decidable via the construction of a finite abstraction,
the so-called region automaton. This fundamental result made timed automata
very popular in the formal methods community, and lots of work has been done
towards their verification, including the development of dedicated tools like Kro-
nos or Uppaal.

More recently a huge effort has been made for modelling quantitative aspects
encompassing timing constraints, such as costs [3, 6] or probabilities [11, 5]. It is
now possible to express and check properties such as: “the minimal cost to reach
a given state is smaller than 3”, or “the probability to visit infinitely often a given
location is greater than 1/2”. As a consequence, from qualitative verification, the
emphasis is now put on quantitative verification of timed automata.

In this paper we propose a quantitative semantics for timed automata based
on the proportion of time spent in critical states (called the frequency). Contrary
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from the National Bank of Belgium.
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to probabilities or volume [4] that give a value to sets of behaviours of a timed
automaton (or a subset thereof), the frequency assigns a real value (in [0, 1])
to each execution of the system. It can thus be used in a language-theoretic
approach to define quantitative languages associated with a timed automaton,
or boolean languages based on quantitative criteria e.g., one can consider the
set of timed words for which there is an execution of frequency greater than a
threshold λ.

Similar notions were studied in the context of untimed systems. For finite au-
tomata, mean-payoff conditions have been investigated [10, 1, 9]: with each run is
associated the limit average of weights encountered along the execution. Our no-
tion of frequency extends mean-payoff conditions to timed systems by assigning
to an execution the limit average of time spent in some distinguished locations.
It can also be seen as a timed version of the asymptotic frequency considered
in quantitative fairness games [7]. Concerning probabilistic models, a similar
notion was introduced in constrained probabilistic Büchi automata yielding the
decidability of the emptiness problem under the probable semantics [14]. Last,
the work closest to ours deals with double-priced timed automata [8], where the
aim is to synthesize schedulers which optimize on-the-long-term the reward of a
system.

Adding other quantitative aspects to timed automata comes often with a
cost (in terms of decidability and complexity), and it is often required to restrict
the timing behaviours of the system to get some computability results, see for
instance [13]. The tradeoff is then to restrict to single-clock timed automata.
Beyond introducing the concept of frequency, which we believe very natural, the
main contributions of this paper are the following. First of all, using a refinement
of the region graph, we show how to compute the infimum and supremum values
of frequencies in a given single-clock timed automaton, as well as a way to
decide whether these bounds are realizable (i.e., whether they are minimum and
maximum respectively). The computation of these bounds together with their
realizability can be used to decide the emptiness problem for languages defined
by a threshold on the frequency. Moreover, in the restricted case of deterministic
timed automata, it allows to decide the universality problem for these languages.
Last but not least we discuss the universality problem for frequency-languages.
Even under our restriction to one-clock timed automata, this problem is non-
primitive recursive, and we provide a decision algorithm in the case of Zeno
words when the threshold is 0. Our restriction to single-clock timed automata
is crucial since at several points the techniques employed do not extend to two
clocks or more. In particular, the universality problem becomes undecidable for
timed automata with several clocks.

2 Definitions and preliminaries

In this section, we recall the model of timed automata, introduce the concept of
frequency, and show how those can be used to define timed languages. We then
compare our semantics to the standard semantics based on Büchi acceptance.
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2.1 Timed automata and frequencies

We start with notations and useful definitions concerning timed automata [2].
Given X a finite set of clocks, a (clock) valuation is a mapping v : X → R+.

We write RX
+ for the set of valuations. We note 0 the valuation that assigns 0 to

all clocks. If v is a valuation over X and t ∈ R+, then v+ t denotes the valuation
which assigns to every clock x ∈ X the value v(x) + t. For X ′ ⊆ X we write
v[X′←0] for the valuation equal to v on X \X ′ and to 0 on X ′.

A guard over X is a finite conjunction of constraints of the form x ∼ c where
x ∈ X, c ∈ N and ∼ ∈ {<,≤,=,≥, >}. We denote by G(X) the set of guards
overX . Given g a guard and v a valuation, we write v |= g if v satisfies g (defined
in a natural way).

Definition 1. A timed automaton is a tuple A = (L,L0, F,Σ,X,E) such that:
L is a finite set of locations, L0 ⊆ L is the set of initial locations, F ⊆ L is the
set of accepting locations, Σ is a finite alphabet, X is a finite set of clocks and
E ⊆ L×G(X)×Σ × 2X × L is a finite set of edges.

The semantics of a timed automaton A is given as a timed transition system
TA = (S, S0, SF , (R+ × Σ),→) with set of states S = L × RX

+ , initial states
S0 = {(ℓ0, 0) | ℓ0 ∈ L0}, final states SF = F × RX

+ and transition relation

→ ⊆ S × (R+ × Σ)× S, composed of moves of the form (ℓ, v)
τ,a
−−→ (ℓ′, v′) with

τ > 0 whenever there exists an edge (ℓ, g, a,X ′, ℓ′) ∈ E such that v+ τ |= g and
v′ = (v + τ)[X′←0].

A run ̺ of A is an infinite sequence of moves starting in some s0 ∈ S0, i.e.,

̺ = s0
τ0,a0
−−−→ s1 · · ·

τk,ak−−−→ sk+1 · · · . A timed word over Σ is an element (ti, ai)i∈N
of (R+ ×Σ)ω such that (ti)i∈N is increasing. The timed word is said to be Zeno
if the sequence (ti)i∈N is bounded from above. The timed word associated with ̺
is w = (t0, a0) . . . (tk, ak) . . . where ti =

∑i
j=0 τj for every i. A timed automaton

A is deterministic whenever, given two edges (ℓ, g1, a,X
′
1, ℓ
′) and (ℓ, g2, a,X

′
2, ℓ
′)

in E, g1 ∧ g2 cannot be satisfied. In this case, for every timed word w, there is
at most one run reading w. An example of a (deterministic) timed automaton is
given in Fig. 1. As a convention locations in F will be depicted in black.

ℓ0 ℓ1 ℓ2

x<1,a,x:=0

x<1,a

x=1,a,x:=0

Fig. 1. Example of a timed automaton A with L0 = {ℓ0} and F = {ℓ1}.

Definition 2. Given A = (L,L0, F,Σ,X,E) a timed automaton and a run ̺ =

(ℓ0, v0)
τ0,a0
−−−→ (ℓ1, v1)

τ1,a1
−−−→ (ℓ2, v2) · · · of A, the frequency of F along ̺, denoted

freqA(̺), is defined as lim supn→∞(
∑

i≤n|ℓi∈F τi)/(
∑

i≤n τi).
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Note that the choice of lim sup is arbitrary, and the choice of lim inf would be
as relevant. Furthermore notice that the limit may not exist in general.

A timed word w is said accepted with positive frequency by A if there exists
a run ̺ which reads w and such that freqA(̺) is positive. The positive-frequency
language of A is the set of timed words that are accepted with positive frequency
by A. Note that we could define more generally languages where the frequency
of each word should be larger than some threshold λ, but even though some of
our results apply to this more general framework we prefer focusing on languages
with positive frequency.

Example 3. We illustrate the notion of frequency on runs of the determinis-
tic timed automaton A of Fig. 1. First, the only run in A ‘reading’ the word

(1, a).((13 , a).(
1
3 , a))

∗ has frequency 1
2 because the sequence n/3

1+(2n)/3 converges to
1
2 . Second, the Zeno run reading (1, a).((( 1

2k , a).(
1
2k , a))

k)k≥1 in A has frequency

1
3 since the sequence

∑

k≥1
1/2k

1+
∑

k≥1
1/2k−1

converges to 1
3 . Finally, the run in A reading

the word (1, a).(((12 , a).(
1
4 , a))

22k .((14 , a).(
1
2 , a))

22k+1

)k≥1 has frequency 4
9 . Note

that the sequence under consideration does not converge, but its lim sup is 4
9 .

2.2 A brief comparison with usual semantics

The usual semantics for timed automata considers a Büchi acceptance condi-
tion. We naturally explore differences between this usual semantics, and the
one we introduced based on positive frequency. The expressiveness of timed au-
tomata under those acceptance conditions is not comparable, as witnessed by the
automaton represented in Fig. 2(a): on the one hand, its positive-frequency lan-
guage is not timed-regular (i.e. accepted by a timed automaton with a standard
Büchi acceptance condition), and on the other hand, its Büchi language can-
not be recognized by a timed automaton with a positive-frequency acceptance
condition.

ℓ0 ℓ1

x=1,a,{x}

x=1,b,{x}

x=1,a,{x}

(a) Expressiveness.

ℓ0 ℓ1

Σ

Σ

(b) Universality (non-Zeno).

ℓ0 ℓ1
Σ

Σ

(c) Universality (Zeno).

Fig. 2. Automata for the comparison with the usual semantics.

The contribution of this paper is to study properties of the positive-frequency
languages. We will show that we can get very fine information on the set of
frequencies of runs in single-clock timed automata, which implies the decidability
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of the emptiness problem for positive-frequency languages. We also show that
our technics do not extend to multi-clock timed automata.

We will also consider the universality problem and variants thereof (restric-
tion to Zeno or non-Zeno timed words). On the one hand, clearly enough, a (non-
Zeno)-universal timed automaton with a positive-frequency acceptance condition
is (non-Zeno)-universal for the classical Büchi-acceptance. The timed automaton
of Fig. 2(b) is a counterexample to the converse. On the other hand, a Zeno-
universal timed automaton under the classical semantics is necessarily Zeno-
universal under the positive-frequency acceptance condition, but the automaton
depicted in Fig. 2(c) shows that the converse does not hold.

3 Set of frequencies of runs in one-clock timed automata

In this section, we give a precise description of the set of frequencies of runs in
single-clock timed automata. To this aim, we use the corner-point abstraction [8],
a refinement of the region abstraction, and exploit the links between frequencies
in the timed automaton and ratios in its corner-point abstraction. We fix a
single-clock timed automaton A = (L,L0, F,Σ, {x}, E).

3.1 The corner-point abstraction

Even though the corner-point abstraction can be defined for general timed au-
tomata [8], we focus on the case of single-clock timed automata.

If M is the largest constant appearing in the guards of A, the usual region
abstraction of A is the partition RegA of the set of valuations R+ made of the
singletons {i} for 0 ≤ i ≤ M , the open intervals (i, i + 1) with 0 ≤ i ≤ M − 1
and the unbounded interval (M,∞) represented by ⊥. A piece of this partition
is called a region. The corner-point abstraction refines the region abstraction
by associating corner-points with regions. The singleton regions have a single
corner-point represented by • whereas the open intervals (i, i + 1) have two
corner-points •– (the left end-point of the interval) and –• (the right end-point
of the interval). Finally, the region ⊥ has a single corner-point denoted α⊥. We
write (R,α) for the region R pointed by the corner α and (R,α) + 1 denotes its
direct time successor defined by:

(R,α) + 1 =















((i, i+ 1), •–) if (R,α) = ({i}, •) with i < M,
((i, i+ 1), –•) if (R,α) = ((i, i+ 1), •–),
({i+ 1}, •) if (R,α) = ((i, i+ 1), –•),
(⊥, α⊥) if (R,α) = ({M}, •) or (⊥, α⊥).

Using these notions, we define the corner-point abstraction as follows.

Definition 4. The (unweighted) corner-point abstraction of A is the finite au-
tomaton Acp = (Lcp, L0,cp, Fcp, Σcp, Ecp) where Lcp = L×RegA×{•, •–, –•, α⊥}
is the set of states, L0,cp = L0 × {0} × {•} is the set of initial states, Fcp =
F × RegA × {•, •–, –•, α⊥} is the set of accepting states, Σcp = Σ ∪ {ε}, and
Ecp ⊆ Lcp ×Σcp × Lcp is the finite set of edges defined as the union of discrete
transitions and idling transitions:
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– discrete transitions: (ℓ, R, α)
a
−→ (ℓ′, R′, α′) if α is a corner-point of R and

there exists a transition ℓ
g,a,X′

−−−−→ ℓ′ in A, such that R ⊆ g and (R′, α′) =
(R,α) if X ′ = ∅, otherwise (R′, α′) = ({0}, •),

– idling transitions: (ℓ, R, α)
ε
−→ (ℓ, R′, α′) if α (resp. α′) is a corner-point of

R (resp. R′) and (R′, α′) = (R,α) + 1.

We decorate this finite automaton with two weights for representing frequencies,
one which we call the cost, and the other which we call the reward (by analogy
with double-priced timed automata in [8]). The (weighted) corner-point abstrac-
tion AF

cp is obtained from Acp by labeling idling transitions in Acp as follows:

transitions (ℓ, R, α)
ε
−→ (ℓ, R, α′) with (R,α′) = (R,α) + 1 (α′ = α+ 1 for short)

are assigned cost 1 (resp. cost 0) and reward 1 if ℓ ∈ F (resp. ℓ /∈ F ), and all
other transitions are assigned both cost and reward 0. To illustrate this defini-
tion, the corner-point abstraction of the timed automaton in Fig. 1 is represented
in Fig. 3.

ℓ0,{0}, • ℓ0,(0,1), •— ℓ0,(0,1), —• ℓ0,{1}, • ℓ0,⊥, ⊥

ℓ1,{0}, • ℓ1,(0,1), •— ℓ1,(0,1), —• ℓ1,{1}, • ℓ1,⊥, ⊥

ℓ2,{0}, • ℓ2,(0,1), •— ℓ2,(0,1), —• ℓ2,{1}, • ℓ2,⊥, ⊥

ε,0/1

ε,1/1

ε,0/1

ε,0/0

ε,0/0 ε,0/0

ε,0/0 ε,0/0

ε,0/0 ε,0/1 ε,0/0

ε,0/0 ε,1/1

ε,0/0 ε,0/1

a,0/0 a,0/0

a,0/0

a,0/0 a,0/0

Fig. 3. The corner-point abstraction AF
cp of A represented Fig. 1.

There will be a correspondence between runs in A and runs in Acp. As time
is increasing in A we forbid runs in Acp where two actions have to be made in

0-delay (this is easy to do as there should be no sequence . . .
σ
−→ (ℓ, R, α)

σ′

−→ . . . ,
where both σ and σ′ are actions and R is a punctual region).

Given π a run in AF
cp the ratio of π, denoted Rat(π), is defined, provided

it exists, as the lim sup of the ratio of accumulated costs divided by accumu-
lated rewards for finite prefixes. Run π is said reward-converging (resp. reward-
diverging) if the accumulated reward along π is bounded (resp. unbounded).
Reward-converging runs in AF

cp are meant to capture Zeno behaviours of A.

Given ̺ a run in A we denote by Projcp(̺) the set of all runs in AF
cp compati-

ble with ̺ in the following sense. We assume ̺ = (ℓ0, v0)
τ0,a0
−−−→ (ℓ1, v1)

τ1,a1
−−−→ · · · ,
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where move (ℓi, vi)
τi,ai
−−−→ (ℓi+1, vi+1) comes from an edge ei. A run4 π =

(ℓ0, R
1
0, α

1
0) → (ℓ0, R

2
0, α

2
0) → · · · → (ℓ0, R

k0

0 , αk0

0 ) → (ℓ1, R
1
1, α

1
1) → · · · →

(ℓ1, R
k1

1 , αk1

1 ) · · · of AF
cp is in Projcp(̺) if for all indices n ≥ 0:

– for all i ≤ kn, α
i
n is a corner-point of Ri

n,
– for all i ≤ kn − 1, (Ri+1

n , αi+1
n ) = (Ri

n, α
i
n) + 1,

– (R1
n+1, α

1
n+1) is the successor pointed-region of (Rkn

n , αkn
n ) by transition en

(that is (R1
n+1, α

1
n+1) = ({0}, •) if en resets the clock x and otherwise

(R1
n+1, α

1
n+1) = (Rkn

n , αkn
n )),

– vn ∈ R1
n and if Rkn

n 6= ⊥, vn + τn ∈ Rkn
n ,

– if Rkn
n = ⊥, the sum µn of the rewards since region {0} has been visited for

the last time has to be equal to ⌊vn + τn⌋ or ⌈vn + τn⌉.5 Note that µn can
be seen as the abstraction of the valuation vn.

Remark 5. As defined above, the size of AF
cp is exponential in the size of A

because the number of regions is 2M (which is exponential in the binary encoding
of M). We could actually take a rougher version of the regions [12], where only
constants appearing in A should take part in the region partition. This partition,
specific to single-clock timed automata is only polynomial in the size of A. We
choose to simplify the presentation by considering the standard unit intervals.

We will now see that the corner-point abstraction is a useful tool to deduce
properties of the set of frequencies of runs in the original timed automata.

3.2 From A to AF
cp
, and vice-versa

We first show that given a run ̺ of A, there exists a run in Projcp(̺), whose
ratio is smaller (resp. larger) than the frequency of ̺.

Lemma 6 (From A to AF
cp). For every run ̺ in A, there exist π and π′ in

AF
cp that can effectively be built and belong to Projcp(̺) such that:

Rat(π) ≤ freqA(̺) ≤ Rat(π′).

Run π (resp. π′) minimizes (resp. maximizes) the ratio among runs in Projcp(̺).

Such two runs of AF
cp can be effectively built from ̺, through the so-called

contraction (resp. dilatation) operations. Intuitively it consists in minimizing
(resp. maximizing) the time elapsed in F -locations.

Note that the notion of contraction cannot be adapted to the case of timed
automata with several clocks, as illustrated by the timed automaton in Fig. 4.
Consider indeed the run alternating delays (12 + 1

n ) and 1 − (12 + 1
n ) for n ∈ N,

and switching between the left-most cycle (ℓ1− ℓ2− ℓ1) and the right-most cycle
(ℓ3− ℓ4− ℓ3) following the rules: in round k, take 22k times the cycle ℓ1− ℓ2− ℓ1,
then switch to ℓ3 and take 22k+1 times the cycle ℓ3 − ℓ4 − ℓ3 and return back to

4 For simplicity, we omit here the transitions labels
5 Roughly, in the unbounded region ⊥, the number of times an idling transition is
taken should reflect how ‘big’ the delay τn is.
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ℓ1 and continue with round k+1. This run cannot have any contraction since its
frequency is 1

2 , whereas all its projections in the corner-point abstraction have
ratio 2

3 , the lim sup of a non-converging sequence. This strange behavior is due
to the fact that the delays in ℓ1 and ℓ3 need to be smaller and smaller, and this
converging phenomenon requires at least two clocks.

ℓ1 ℓ2 ℓ4ℓ3

x<1,a,x:=0

y=1,a,y:=0

x<1,a,x:=0

y=1,a,y:=0

x<1,a,x:=0

y=1,a,y:=0

Fig. 4. A counterexample with two clocks for Lemma 6.

We now want to know when and how runs in AF
cp can be lifted to A. To that

aim we distinguish between reward-diverging and reward-converging runs.

Lemma 7 (From AF
cp to A, reward-diverging case). For every reward-

diverging run π in AF
cp, there exists a non-Zeno run ̺ in A such that π ∈

Projcp(̺) and freqA(̺) = Rat(π).

Proof (Sketch). The key ingredient is that given a reward-diverging run π in AF
cp,

for every ε > 0, one can build a non-Zeno run ̺ε of A with the following strong
property: for all n ∈ N, the valuation of the n-th state along ̺ǫ is ǫ

2n -close to
the abstract valuation in the corresponding state in π. The accumulated reward
along π diverges, hence freqA(̺ε) is equal to Rat(π). �

The restriction to single-clock timed automata is crucial in Lemma 7. Indeed,
consider the two-clocks timed automaton depicted in Fig. 5(a). In its corner-point
abstraction there exists a reward-diverging run π with Rat(π) = 0, however every
run ̺ satisfies freqA(̺) > 0.

ℓ0 ℓ1 ℓ2
0<x<1,a,y:=0

x>1,a,x:=0

y=1,a,y:=0

(a) A counterexample with two clocks.

ℓ0 ℓ1 ℓ2
x=1,a,x:=0x=1,a,x:=0

x>0,a,x:=0

(b) Zeno case.

Fig. 5. Counterexamples to extensions of Lemma 7.

Lemma 8 (From AF
cp to A, reward-converging case). For every reward-

converging run π in AF
cp, if Rat(π) > 0, then for every ε > 0, there exists a Zeno

run ̺ε in A such that π ∈ Projcp(̺ε) and |freqA(̺ε)− Rat(π)| < ε.
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Proof (Sketch). A construction similar to the one used in the proof of Lemma 7
is performed. Note however that the result is slightly weaker, since in the reward-
converging case, one cannot neglect imprecisions (even the smallest) forced e.g.,
by the prohibition of the zero delays. �

Note that Lemma 8 does not hold in case Rat(π) = 0, where we can only
derive that the set of frequencies of runs ̺ such that π ∈ Projcp(̺) is either
{0} or {1} or included in (0, 1). Also an equivalent to Lemma 7 for Zeno runs
(even in the single-clock case!) is hopeless. The timed automaton A depicted
in Fig. 5(b), where F = {ℓ0, ℓ2} is a counterexample. Indeed, in AF

cp there is

a reward-converging run π with Rat(π) = 1
2 , whereas all Zeno runs in A have

frequency larger than 1
2 .

3.3 Set of frequencies of runs in A

We use the strong relation between frequencies in A and ratios in AF
cp proven in

the previous subsection to establish key properties of the set of frequencies.

Theorem 9. Let FA = {freqA(̺) | ̺ run of A} be the set of frequencies of runs
in A. We can compute inf FA and supFA. Moreover we can decide whether these
bounds are reached or not. Everything can be done in NLOGSPACE.

The above theorem is based on the two following lemmas dealing respectively
with the set of non-Zeno and Zeno runs in A.

Lemma 10 (non-Zeno case). Let {C1, · · · , Ck} be the set of reachable SCCs
of AF

cp. The set of frequencies of non-Zeno runs of A is then ∪1≤i≤k[mi,Mi]
where mi (resp. Mi) is the minimal (resp. maximal) ratio for a reward-diverging
cycle in Ci.

Proof (Sketch). First, the set of ratios of reward-diverging runs in AF
cp is exactly

∪1≤i≤k[mi,Mi]. Indeed, given two extremal cycles cm and cM of ratios m and
M in an SCC C of AF

cp, we show that every ratio m ≤ r ≤ M can be obtained
as the ratio of a run ending in C by combining in a proper manner cm and cM .
Then, using Lemmas 6 and 7 we derive that the set of frequencies of non-Zeno
runs in A coincides with the set of ratios of reward-diverging runs in AF

cp. �

Lemma 11 (Zeno case). Given π a reward-converging run in AF
cp, it is decid-

able whether there exists a Zeno run ̺ such that π is the contraction of ̺ and
freqA(̺) = Rat(π).

Proof (Sketch). Observe that every fragment of π between reset transitions can
be considered independently, since compensations cannot occur in Zeno runs:
even the smallest deviation (such as a delay ε in A instead of a cost 0 in π) will
introduce a difference between the ratio and the frequency. A careful inspection
of cases allows one to establish the result stated in the lemma. �
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Using Lemmas 10 and 11, let us briefly explain how we derive Theorem 9.
For each SCC C of the corner-point abstraction AF

cp, the bounds of the set of
frequencies of runs whose contraction ends up in C can be computed thanks to
the above lemmas. We can also furthermore decide whether these bounds can
be obtained by a real run in A. The result for the global automaton follows.

Remark 12. The link between A and AF
cp differs in several aspects from [8].

First, a result similar to Lemma 6 was proven, but the runs π and π′ were
not in Projcp(̺), and more importantly it heavily relied on the reward-diverging
hypothesis. Then the counter-part of Theorem 9 was weaker in [8] as there was
no way to decide whether the bounds were reachable or not.

4 Emptiness and Universality Problems

The emptiness problem. In our context, the emptiness problem asks, given a
timed automaton A whether there is a timed word which is accepted by A with
positive frequency. We also consider variants where we focus on non-Zeno or
Zeno timed words. As a consequence of Theorem 9, we get the following result.

Theorem 13. The emptiness problem for infinite (resp. non-Zeno, Zeno) timed
words in single-clock timed automata is decidable. It is furthermore NLOGSPACE-
Complete.

Note that the problem is open for timed automata with 2 clocks or more.

The universality problem. We now focus on the universality problem, which asks,
whether all timed words are accepted with positive frequency in a given timed
automaton. We also consider variants thereof which distinguish between Zeno
and non-Zeno timed words. Note that these variants are incomparable: there are
timed automata that, with positive frequency, recognize all Zeno timed words
but not all non-Zeno timed words, and vice-versa.

A first obvious result concerns deterministic timed automata. One can first
check syntactically whether all infinite timed words can be read (just locally
check that the automaton is complete). Then we notice that considering all
timed words exactly amounts to considering all runs. Thanks to Theorem 9, one
can decide, in this case, whether there is or not a run of frequency 0. If not, the
automaton is universal, otherwise it is not universal.

Theorem 14. The universality problem for infinite (resp. non-Zeno, Zeno) timed
words in deterministic single-clock timed automata is decidable. It is furthermore
NLOGSPACE-Complete.

Remark 15. Note that results similar to Theorems 13 and 14 hold when consid-
ering languages defined with a threshold λ on the frequency.

If we relax the determinism assumption this becomes much harder!

Theorem 16. The universality problem for infinite (resp. non-Zeno, Zeno) timed
words in a single-clock timed automaton is non-primitive recursive. If two clocks
are allowed, this problem is undecidable.

10



A

c

Σ∪{c} Σ

Fig. 6.

Proof (Sketch). The proof is done by reduction
to the universality problem for finite words in
timed automata (which is known to be undecid-
able for timed automata with two clocks or more [2]
and non-primitive recursive for one-clock timed au-
tomata [13]). Given a timed automaton A that ac-
cepts finite timed words, we construct a timed au-
tomaton B with an extra letter c which will be inter-
preted with positive frequency. From all accepting
locations of A, we allow B to read c and then accept everything (with positive
frequency). The construction is illustrated on Fig. 6. It is easy to check that A
is universal over Σ iff B is universal over Σ ∪ {c}. ✷

Theorem 17. The universality problem for Zeno timed words with positive fre-
quency in a one-clock timed automaton is decidable.

Proof (Sketch). This decidability result is rather involved and requires some
technical developments for which there is no room here. It is based on the idea
that for a Zeno timed word to be accepted with positive frequency it is (necessary
and) sufficient to visit an accepting location once. Furthermore the sequence of
timestamps associated with a Zeno timed word is converging, and we can prove
that from some point on, in the automaton, all guards will be trivially either
verified or denied: for instance if the value of the clock is 1.4 after having read
a prefix of the word, and if the word then converges in no more than 0.3 time
units, then only the constraint 1 < x < 2 will be satisfied while reading the
suffix of the word, unless the clock is reset, in which case only the constraint
0 < x < 1 will be satisfied. Hence the algorithm is composed of two phases: first
we read the prefix of the word (and we use a now standard abstract transition
system to do so, see [13]), and then for the tail of the Zeno words, the behaviour
of the automaton can be reduced to that of a finite automaton (using the above
argument on tails of Zeno words). �

5 Conclusion

In this paper we introduced a notion of (positive-)frequency acceptance for timed
automata and studied the related emptiness and universality problems. This se-
mantics is not comparable to the classical Büchi semantics. For deterministic
single-clock timed automata, emptiness and universality are decidable by inves-
tigating the set of possible frequencies based on the corner-point abstraction.
For (non-deterministic) single-clock timed automata, the universality problem
restricted to Zeno timed words is decidable but non-primitive recursive. The
restriction to single-clock timed automata is justified on the one hand by the
undecidability of the universality problem in the general case. On the other
hand, the techniques we employ to study the set of possible frequencies do not
extend to timed automata with several clocks. A remaining open question is the
decidability status of the universality problem for non-Zeno timed words, which

11



is only known to be non-primitive recursive. Further investigations include a
deeper study of frequencies in timed automata with multiple clocks, and also
the extension of this work to languages accepted with some frequency larger
than a given threshold.
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Technical appendix

In this appendix, we present all proofs omitted in the core of the paper.

Proofs for Section 3.2

Definition of F -dilatation. Let A be a timed automaton, F ⊆ L a set of locations, and

̺ = (ℓ0, 0)
τ0,a0
−−−→ (ℓ1, v1) · · · an initial run in A. We note e0, e1, · · · the edges fired along ̺. We

define the F -dilatation (or simply dilatation) of ̺ as the run π = (ℓ0, R
1
0 = {0}, α1

0 = •) →
(ℓ0, R

2
0, α

2
0) → · · · → (ℓ0, R

k0

0 , αk0

0 ) → (ℓ1, R
1
1, α

1
1) → · · · → (ℓ1, R

k1

1 , αk1

1 ) · · · ∈ Projcp(̺) in

AF
cp defined inductively as follows. Assume n transitions of ̺ are reflected in π: π starts with

(ℓ0, R
1
0, α

1
0) → · · · → (ℓ0, R

k0

0 , αk0

0 ) → (ℓ1, R
1
1, α

1
1) → · · · → (ℓn, R

1
n, α

1
n) with vn ∈ R1

n and
α1
n corner-point of R1

n.

– if vn + τn ≤ M :
• if vn + τn ∈ R1

n = (c, c + 1), α1
n = •– and ℓn ∈ F , then we let time elapse as much

as possible and choose in AF
cp the portion of path (ℓn, R

1
n, •–) → (ℓn, R

1
n, –•) →

(ℓn+1, R
1
n+1, α

1
n+1) where (R1

n+1, α
1
n+1) is the successor pointed region of (R1

n, –•)
by transition en.

• if vn + τn ∈ R1
n = (c, c + 1), α1

n = •– and ℓn /∈ F , we choose to fire en as soon as
possible by selecting the following portion of path: (ℓn, R

1
n, •–) → (ℓn+1, R

1
n+1, α

1
n+1)

where (R1
n+1, α

1
n+1) is the successor pointed region of (R1

n, •–) by transition en.
• if vn + τn ∈ R1

n = (c, c + 1) and α1
n = –• is the last corner of R1

n (that is the
second one), we need to immediately fire en in AF

cp and thus choose (ℓn, R
1
n, –•) →

(ℓn+1, R
1
n+1, α

1
n+1) where (R1

n+1, α
1
n+1) is the successor pointed region of (R1

n, –•)
by transition en.

• if vn+ τn /∈ R1
n and ℓn /∈ F , we fire en as soon as possible, that is, we let time elapse

until region Rkn
n with vn + τn ∈ Rkn

n and its first corner-point αkn
n , and then fire

en: (ℓn, R
1
n, α

1
n) → · · · → (ℓn, R

kn
n , αkn

n ) → (ℓn+1, R
1
n+1, α

1
n+1) where (R1

n+1, α
1
n+1)

is the successor pointed region of (Rkn
n , αkn

n ) by transition en.
• if vn + τn /∈ R1

n and ℓn ∈ F , we fire en as late as possible, that is, we let time elapse
until region Rkn

n with vn + τn ∈ Rkn
n and its last corner-point αkn

n , and then fire
en: (ℓn, R

1
n, α

1
n) → · · · → (ℓn, R

kn
n , αkn

n ) → (ℓn+1, R
1
n+1, α

1
n+1) where (R1

n+1, α
1
n+1)

is the successor pointed region of (Rkn
n , αkn

n ) by transition en.
– if vn + τn > M :

• if R1
n 6= ⊥, we let time elapse until region ⊥ and add a delay to respect the defini-

tion of the projection in AF
cp which depends on ℓn and then fire en: (ℓn, R

1
n, α

1
n) →

· · · → (ℓn, R
i
n, α

i
n) → (ℓn,⊥,⊥)

(

→ (ℓn,⊥,⊥)
)νn → (ℓn+1, R

1
n+1, α

1
n+1) where

νn =

ß

⌈vn + τn⌉ −M if ℓn ∈ F
⌊vn + τn⌋ −M if ℓn /∈ F

and (R1
n+1, α

1
n+1) is the successor pointed region

of (⊥,⊥) by transition en.
• if R1

n = ⊥, respecting the definition of the projection give two possible delays, our
choice depends on ℓn, then we fire en: (ℓn,⊥,⊥)

(

→ (ℓn,⊥,⊥)
)νn → (ℓn+1, R

1
n+1, α

1
n+1)

where νn =

ß

⌈vn + τn⌉ − νn−1 if ℓn ∈ F
⌊vn + τn⌋ − νn−1 if ℓn /∈ F

and (R1
n+1, α

1
n+1) is the successor pointed

region of (⊥,⊥) by transition en.
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Similarly, we define the F -contraction of ̺ as its F̄ -dilatation, i.e. the run π ∈ Projcp(̺) of

AF
cp which fires transition en as soon as possible when ℓn ∈ F and as late as possible when

ℓn /∈ F .

Lemma 6 (From A to AF
cp). For every run ̺ in A, its contraction π and dilatation π′ in

AF
cp can effectively be built, they are in Projcp(̺) and they satisfy:

Rat(π) ≤ freqA(̺) ≤ Rat(π′).

Run π (resp. π′) minimizes (resp. maximizes) the ratio among runs in Projcp(̺).

Proof. The proof is based on the following intuitive lemma, whose proof is tedious but not

difficult. Given a run ̺ = (ℓ0, v0)
τ0,a0
−−−→ (ℓ1, v1) · · · , in the sequel we abusevely denote by

freqA(̺n) the quantity given by (
∑

i≤n|ℓi∈F τi)/(
∑

i≤n τi). In the same spirit, given π a run in

AF
cp, we abusively denote by Rat(πn), the ratio of accumulated costs divided by accumulated

rewards for the finite prefix of length n.

Lemma A Let ̺ be a run of A, and πn be the dilatation of ̺n (for n ∈ N). For all n ∈ N,
if freqA(̺n) =

cn
rn

and Rat(πn) =
Cn

Rn
then Cn ≥ cn and (Rn − Cn) ≤ (rn − cn).

Assuming the latter lemma, it is easy to conclude that freqA(̺) ≤ Rat(π) for π the
dilatation of ̺. Indeed, given n ∈ N, Rn − Cn ≤ rn − cn and cn > 0 (the case cn = 0 is
straightforward) imply Rn−Cn

cn
≤ rn−cn

cn
. Moreover, Cn ≥ cn. Hence

Rn−Cn

Cn
≤ Rn−Cn

cn
. All

together, this yields Rn

Cn
− 1 ≤ rn

cn
− 1 which is equivalent to Cn

Rn
≥ cn

rn
. When n tends to

infinity, we obtain Rat(π) ≥ freqA(̺).

Using the fact that the F -contraction of ̺ is the F̄ -dilatation of ̺, one obtains Rat(π′) ≤
freqA(̺) for π

′ the contraction of ̺. �

Proof (of Lemma A). The proof is by induction on n. The base case, for n = 0 is trivial,
since the R0, C0, r0, c0 are all set to 0 by convention. Note that an initialization at step
n = 1 would also be possible using cases 1 to 3 in the following cases enumeration.

Assume now that the lemma holds for n ∈ N, and let us prove it for n+ 1. Consider the

prefix of length n + 1 of ̺: ̺n+1 = (ℓ0, 0)
τ0,a0
−−−→ (ℓ1, v1) · · · (ℓn, vn)

τn,an
−−−→ (ℓn+1, vn+1). We

note e0, e1, ... the edges fired along ̺. Let us detail a careful inspection of cases, depending
on the value of vn + τn and whether ℓn ∈ F .

Case 1 frac(vn) = 06, ℓn ∈ F , and vn + τn /∈ N.
In this case, τn = Tn−τ ′ with Tn ∈ N and τ ′ ∈ (0, 1). By definition of the dilatation, πn+1

is built from πn by firing Tn idling transitions weighted 1/1 in Acp (possibly interleaved
with idling transitions weighted 0/0) followed by the discrete transition weighted 0/0
that corresponds to en. Thus, Cn+1 = Cn+Tn, Rn+1 = Rn+Tn, whereas cn+1 = cn+τn
and rn+1 = rn + τn. In particular, Cn ≥ cn (induction hypothesis) and τn < Tn imply
Cn+1 ≥ cn+1. Moreover, Rn+1 − Cn+1 = Rn − Cn and rn+1 − cn+1 = rn − cn, and by
induction hypothesis Rn − Cn ≤ rn − cn. Hence Rn+1 − Cn+1 ≤ rn+1 − cn+1.

6
frac(v) denotes its fractional part
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Tn

vn vn+τn

(a) Case 1 (Tn > τn).

Tn

vn vn+τn

(b) Case 2 (Tn < τn).

Fig. 7. Cases 1 and 2.

Case 2 frac(vn) = 0, ℓn /∈ F , and vn + τn /∈ N.
Here, τn = Tn+τ ′ with Tn ∈ N and τ ′ ∈ (0, 1). In the dilatation, Tn transitions weighted
0/1 will be fired before taking the transition corresponding to en. Thus Rn+1 = Rn+Tn,
Cn+1 = Cn, whereas cn+1 = cn and rn+1 = rn + Tn + τ ′. We immediately deduce that
Cn+1 ≥ cn+1. Morevoer Rn+1−Cn+1 = Rn+Tn−Cn ≤ rn−cn+Tn < rn+Tn+τ ′−cn =
rn+1 − cn+1, where the second step uses the induction hypothesis.

Case 3 frac(vn) = 0, and vn + τn ∈ N.
In this case, τn = Tn ∈ N and exactly Tn transitions with reward 1 will be taken in
Acp before firing the transition that corresponds to en. In other words, the costs and
rewards are exactly matched in the corner-point abstraction: Cn+1 − Cn = cn+1 − cn
and Rn+1 − Rn = rn+1 − rn. Notice that the last equalities hold regardless whether
ℓn ∈ F . Using the induction hypothesis (Cn ≥ cn and Rn − cn ≤ rn − cn) we easily
conclude: Rn+1 −Cn+1 = Rn −Cn + rn+1 − cn+1 + cn − rn ≤ rn+1 − cn+1, and Cn+1 =
cn+1 + Cn − cn ≥ cn+1.

Tn

vn vn+τn

(a) Case 3 (Tn = τn).

Tn

vn vn+τn

(b) Case 4.1 (Tn > τn).

Fig. 8. Cases 3 and 4.1.

Case 4 frac(vn) 6= 0 and ℓn ∈ F
Case 4.1 Assume first that the corner in the last state of πn is •–. Then letting Tn =

⌈vn + τn−⌊vn⌋⌉, in the dilatation, Tn idling transitions weighted 1/1 will be fired in
Acp before firing the discrete transition corresponding to en. Thus Cn+1 = Cn + Tn,
Rn+1 = Rn+Tn, whereas cn+1 = cn+τn and rn+1 = rn+τn. We immediately obtain
Cn+1 ≥ cn+1 using the induction hypothesis and the fact that Tn > τn. Moreover,
Rn+1 − Cn+1 = Rn − Cn ≤ rn − cn = rn+1 − cn+1.
Note that the picture on Fig. 8(b) represents the case vn+τn /∈ N, but the reasoning
is valid for vn + τn ∈ N as well.

Case 4.2 Assume now that the corner in the last state of πn is –•. In this situation,
we cannot conclude immediately, since Cn+1 = Cn + Tn and cn+1 = cn + τn, with
Tn = ⌈vn + τn − ⌈vn⌉⌉ is incomparable to τn in general. Instead, we need to reason
in a more global way, taking into account some previous steps in ̺ and π. Let us
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consider the least index i such that the corner of the last state in πn−i is not –•. For
this index, πn−i ends either with the pointed region ((⌊vn−i⌋, ⌈vn−i⌉), •–) or with
({vn−i}, •). We then consider the suffix of path πn+1 after πn−i. Notice that the
clock x was not reset along this suffix (since no pointed region of the form (·, ·, •)
was reached). For this part, the accumulated reward is Tn,i = ⌈vn+τn−⌊vn−i⌋⌉. The
corresponding part in ̺ has an accumulated delay τn,i = vn+τn−vn−i =

∑n
j=n−i τj

(since the clock has not been reset). Note that Tn,i ≥ τn,i.
Let us now discuss the cost accumulated along the suffix of path πn+1 after πn−i.
By definition of the dilatation, no idling transition can be fired from a state with
an F -location along this suffix, else the last state of πn−i+1 has not the corner –•.
Thus, the accumulated cost along the suffix of path πn+1 after πn−i is equal to Tn,i.
However, the corresponding part in ̺ has an accumulated cost cn,i smaller than τn,i
(due to the potential time spent in locations not in F ).
The above discussion can be summarised as follows: Rn+1 = Rn−i + Tn,i, Cn+1 =
Cn−i + Tn,i, rn+1 = rn−i + τn,i and cn+1 = cn−i + cn,i with Tn,i ≥ τn,i ≥ cn,i. We
can thus derive that Cn+1 ≥ cn+1, using both the induction hypothesis stating that
Cn−i ≥ cn−i and the fact that Tn,i ≥ cn,i. It remains to prove that Rn+1 − Cn+1 ≤
rn+1 − cn+1. By the above equalities, this is equivalent to prove that Rn+i−Cn+i ≤
(rn+i − cn+i) + (τn,i − cn,i) which is true by the induction hypothesis stating that
(Rn+i − Cn+i) ≤ (rn+i − cn+i) and the fact that τn,i ≥ cn,i.

Tn,i

vn−i vn vn+τn

Fig. 9. Case 4.2

Case 5 frac(vn) 6= 0 and ℓn /∈ F
Case 5.1 Symmetrically to what precedes, the easy case is when the corner in the

last state of πn is –•. Then, letting Tn = ⌊vn + τn⌋ − ⌈vn⌉ < τn, we can write
Rn+1 = Rn + Tn and Cn+1 = Cn. Since cn+1 = cn and rn+1 = rn + τn, we deduce
the desired inequalities.

Tn

vn vn+τn

Fig. 10. Case 5.1 (Tn < τn).

Case 5.2 Assume now that the corner in the last state of πn is •–. Therefore, the last
pointed region in πn is ((⌊vn⌋, ⌈vn⌉), •–), and we let Tn = ⌊vn + τn − ⌊vn⌋⌋. By
definition of the dilatation, this can only happen if ℓn−1 /∈ F . We then consider the
least index i such that the last corner in πn−i is not •–. For this index, the last
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pointed region in πn−i is either ((⌊vn−i⌋, ⌈vn−i⌉),–•) or ({vn−i}, •). Moreover, all
locations ℓj for n− i ≤ j ≤ n are not in F . We define Tn,i = ⌊vn+τn⌋−⌈vn−i⌉. Note
that Tn ≤

∑n
j=n−i τj . Using this notation, Rn+1 = Rn−i + Tn,i, and Cn+1 = Cn−j .

In A, rn+1 = rn−j +
∑n

j=n−i τj and cn+1 = cn−i. We trivially derive Cn+1 ≥ cn+1

using the analogous induction hypothesis at rank n − i. Moreover, Rn+1 − Cn+1 =
Rn−i+Tn,i−Cn−i < Rni

+
∑n

j=n−i τj−Cn−i ≤ rn−i+
∑n

j=n−i τj−cn−i = rn+1−cn+1,
using the induction hypothesis at rank n− i in the next to last step.

Tn,i

vn−i vn vn+τn

Fig. 11. Case 5.2.

Let us notice that we ignored the unbounded region through the all proof. However it can
be treated exactly in the same way. Indeed, we can consider the accumulated reward since
the last reset and its difference with the valuation in ̺ instead of the corner-point.

Note that in cases 4.2 and 5.2, the induction relies on other cases (4.1, 5.1, and 1, 2, 3).
However, the induction is well-founded since those cases are treated independently. �

Lemma 7 (From AF
cp to A, reward-diverging case). For every reward-diverging run π

in AF
cp, there exists a non-Zeno run ̺ in A such that π ∈ Projcp(̺) and freqA(̺) = Rat(π).

Proof. Given ̺ a run and n ∈ N, we denote by ̺[n] the valuation of the n-th state along the
run. Similarly, if π belongs to Projcp(̺), we consider the states of π which correspond with a
state of ̺ (those which are just before a discrete transition) and we note π[n] the valuation
of the corner of the n-th state if the region is bounded. Otherwise, π[n] is the sum of all the
rewards since the last region {0}. Lemma 7 relies on the following lemma:

Lemma B For every reward-diverging run π in AF
cp, for all ε > 0, there exists a run ̺ε of

A such that, for all n ∈ N, |π[n]− ̺ǫ[n]| ≤
ǫ
2n .

Let us assume the Lemma B and consider apart the cases where Rat(π) = 0 and Rat(π) > 0.

Assume first that π is a reward-diverging run inAF
cp with Rat(π) = 0. Given ε > 0, let ̺ be

a run of A such that, for all n ∈ N, |π[n]−̺[n]| < ε
2n . If Cn and Rn are the accumulated costs

and rewards in the first n steps of π in AF
cp, then Rat(π) = lim supn→∞

Cn

Rn
and freqA(̺) =

lim supn→∞
Cn+

∑

i≤n
αiε/2

i

Rn+
∑

i≤n
βiε/2i

where for every i, αi ∈ {−1, 0, 1} and βi ∈ {−1, 1}. Hence

freqA(̺) ≤ lim supn→∞
Cn+ε
Rn−ε

(because Rn > ε for n large enough). Since limn→∞
Cn

Rn
= 0

and limn→∞Rn = ∞, we deduce lim supn→∞
Cn+ε
Rn−ε

= 0 which means freqA(̺) = 0 = Rat(π).
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Assume now that π is a reward-diverging run in AF
cp with Rat(π) > 0. Using the same

notations as in the previous case, |Cn

Rn
−

Cn+
∑

i≤n
αiε/2

i

Rn+
∑

i≤n
βiε/2i

| ≤ Cnε+Rnε
Rn(Rn−ε)

. The latter term tends

to 0 as n tends to infinity. As a consequence freqA(̺) = Rat(π). �

Proof (of Lemma B). We show that given a reward-diverging run π in AF
cp, we can build

a run ̺ such that π ∈ Projcp(̺) and the ̺[i] are as close as we want of the π[i]. More
precisely, we show that we can choose suitable delays. In the case where π[i] is different
than π[i + 1], the choice of the delay allows to be as close as wanted of π[i + 1]. If π[i] and
π[i+ 1] are equal but an upper bound of a region, we can move nearer to π[i+ 1] = π[i] by
the new delay. If the region is unbounded, and π[i + 1] larger than the maximal constant,
it is again a good case. The only difficulty is the case where the new delay force us to move
further than π[i + 1] = π[i]. The solution is to consider globally the sequence of the delays
in the same corner together with the delay leading to it. Thanks to the non-Zenoness, this
sequence is necessarily finite. Therefore, we can effectively choose suitable delays to respect
the condition at the end of the sequence and thus all along the sequence. Note this lemma
is a simpler version of the Lemma 3 in [3]. �

Details on the counterexample Fig.5(a). We explicit here a reward-diverging run π in AF
cp

of zero ration and explain why every run ̺ in A has a positive frequency. First, π consists
(omitting idling transitions weighted 0/0) in the following sequence of transitions :

(ℓ0, {0}
2, •)

ε,0/1
−−−→ (ℓ0,−,−)

a,0/0
−−−→

(

(ℓ1,−,−)
a,0/0
−−−→ (ℓ2,−,−)

ε,0/1
−−−→ (ℓ2,−,−)

a,0/0
−−−→

)ω
.

The ratio of π is thus zero because the accumulated cost of π is zero whereas the reward
diverges. On the other hand, let us consider a run ̺ of A and prove that its frequency is
positive. Indeed, ̺ reads necessarily a word of the form (1− τ0, a).

(

(τi, a).(1− τi)
)

1≤i
where

τ0 ∈ (0, 1) and τi+1 > τi for all 0 ≤ i. The frequency of F = {ℓ1} in ̺ is thus given by:

freqA(̺) = lim sup
n→∞

∑

i≤n τi
∑

i≤n 1
> lim sup

n→∞

∑

i≤n τ0
∑

i≤n 1
.

Hence, freqA(̺) > τ0 > 0.

Lemma 8 (From AF
cp to A, reward-converging case). For every reward-converging run

π in AF
cp, if Rat(π) > 0, then for every ε > 0, there exists a Zeno run ̺ε in A such that

π ∈ Projcp(̺ε) and |freqA(̺ε)− Rat(π)| < ε.

Proof. Lemma 8 uses the following lemma:

Lemma C For every reward-converging run π in AF
cp, for all ε > 0, there exists a Zeno

run ̺ε in A such that π ∈ projcp(̺ε) and for all n ∈ N, |π[n]− ̺ε[n]| < ε.

Assuming Lemma C and that Rat(π) > 0, let nπ be the length of the smallest prefix of π
such that there is no transition with non-Zero reward after. Thanks to the convergence of
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the reward of π, nπ is necessarily finite. Given ε > 0, the run ̺ε′ given by the Lemma C
with ε′ = ε

nπ+1 satisfies the desired property. �

Remark D Note that if π is a contraction, then π is the contraction of ̺ε defined in the
proof of Lemma C.

Remark that, if π is of ratio 0, three cases are possible:

– only F -locations are along π and the reward of π is 0, then if π is the contraction of ̺,
freqA(̺) = 1,

– only F̄ -locations are along π, the frequency of each run ̺ whose contraction is π, is 0
– otherwise, neither 1 nor 0 can be the frequency of an run ̺ of contraction π.

These results follow immediately from the prohibition of zero-delays.

Proof (of Lemma C). Let π be a reward-converging run in AF
cp, and ε ∈ (0, 1). As π is

reward-converging, it ends with transitions weighted 0/0 and its longest prefix π′ not ending
with a transition weighted 0/0 exists. To prefix π′, one can associate a finite run ̺′ of A,
as we did for reward-diverging runs (see proof of Lemma B): for all indices i less than the
length of π′, |π′[i] − ̺′[i]| < ε

2i . For the suffix of π, composed only of transitions weighted
0/0, we define a corresponding run in A with total duration less than ε. This can, e.g., be
achieved by taking successive delays of ε

2k
for k ≥ 1. Concatenating ̺′ and the run defined

above yields a run in A always ε-close to π. �

Proofs for Section 3.3

Lemma 10 (non-Zeno case). Let {C1, · · · , Ck} the set of reachable SCCs of AF
cp. The

set of frequencies of non-Zeno runs of A is then ∪1≤i≤k[mi,Mi] where mi (resp. Mi) is the
minimal (resp. maximal) ratio for a reward-diverging cycle in Ci.

Proof. The lemma is based on the following lemma which expresses the set of ratios in AF
cp

for reward-diverging runs ending up in a given SCC.

Lemma E Let Ci be an SCC of AF
cp. If Ri denotes the set of ratios of reward-diverging

simple cycles in Ci, then the set of ratios of reward-diverging runs of AF
cp ending in Ci is

the interval [mi,Mi], where mi = min(Ri) and Mi = max(Ri).

Admitting the lemma for now, we conclude as follows. The set of ratios for the reward-
diverging runs in AF

cp is thus ∪1≤i≤k[mi,Mi], where mi is the minimal frequency for a
simple reward-diverging cycle in SCC Ci, and Mi the maximal one. By the Lemma 7, we
know that ∪1≤i≤k[mi,Mi] is included in FnZ , the set of frequencies of non-Zeno runs in A.
Moreover, thanks to the Lemma 6 and the convexity of the intervals [mi,Mi], we can show
the other inclusion FnZ ⊆ ∪1≤i≤k[mi,Mi] as follows. Let ̺ be a non-Zeno run in A. We
distinguish between two cases:

– if the contraction and the dilatation of ̺ are both reward-diverging, then either the clock
is reset infinitely often along ̺ or from some point on, the value of the clock along ̺ lies in
the unbounded region forever. In the first case, there is some state of the form (ℓ, {0}, •)
in Acp which is visited infinitely often by both the contraction and the dilatation. In the
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second case, from some point on, they will follow the same transitions between states of
the form (ℓ,⊥, α⊥) (within the unbounded region). In both cases, the contraction and
the dilatation both end up in the same SCC, say Ci. Their frequencies, and that of ̺
(thanks to Lemma 6) thus lie in the interval [mi,Mi].

– if the contraction (resp. dilatation) of ̺ is reward-converging, the frequency of ̺ is 1
(resp. 0), in this case, the dilatation (resp. contraction) is reward-diverging and of ratio
1 (resp. 0), therefore 1 (resp. 0) is in ∪1≤i≤k[mi,Mi].

As a consequence, the set FnZ of frequencies of non-Zeno runs of A is equal to the set
∪1≤i≤k[mi,Mi] of frequencies of the reward-diverging runs of AF

cp. �

Proof (of Lemma E). Let π be a reward-diverging run of AF
cp. To π we associate the SCC

Cπ of AF
cp where π ends up in. First observe that the influence of the prefix leading Cπ is

negligible in the computation of the ratio because π is reward-diverging. Precisely, the ratio
of the prefix of length n (for n large enough) is:

Rat(π|n) =
ppref + Pn

qpref +Qn

where ppref /qpref is the ratio of the shortest prefix of π leading to Cπ . The sequence Qn

diverges when n tends to infinity because π is reward-diverging. Hence limn→∞ Rat(π|n) =

limn→∞
Pn

Qn
. As a consequence, without loss of generality, we assume that AF

cp is restricted
to Cπ and π starts in some state of Cπ .

Observe now that reward-converging cycles in AF
cp necessarily have reward (and hence

cost) 0, and thus do not contribute to the ratio Rat(π). Hence we can assume w.l.o.g.
that π does not pass through reward-converging cycles. Following the proof of [3, Prop. 4],
we can decompose π into (reward-converging) cycles and prove that Rat(π) lies between
m = min(RCπ

) and M = max(RCπ
). Note that the extremal values (m and M) are obtained

by a run reaching a cycle with extremal ratio, and iterating it forever.
Let us now show that any value in the interval [m,M ] is the ratio of some run in AF

cp which
ends up in the SCC Cπ. The arguments are inspired by [4]. Given λ ∈ (0, 1), we explain how
to build a run with ratio rλ = (1−λ)m+λM . To do so, for (an) ∈ (Q∩(m,M))N a sequence
of rational numbers converging to λ, we build an run π such that |Rat(π|f(n))− an| <

1
n for

some increasing function f ∈ NN.

le M=αM/βMαm/βm=m

(a) Case 1

le le M=αM/βMαm/βm=m

(b) Case 2

Fig. 12. The two possible cases.

Case 1. We first assume for simplicity that in Cπ two cycles of respective ratio m and M
share a state, as depicted in Fig. 12(a), and prove a stronger result: we build a run π such
that Rat(π|f(n)) = an. Since two cycles, one of minimal ratio, and the other of maximal ratio
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share a common state, it suffices to explain how to combine these two cycles to obtain ratio
rλ.

Assume a0 = p0/q0 with (p0, q0) ∈ N2. Let us show how to build a finite run π of ratio
ra0

= (1−p0/q0)m+(p0/q0)M . Assume m = αm/βm where αm is the cost of the cycle, and
βm its reward, and similarly M = αM/βM . Taking (q0 − p0)βM times the cycle of ratio m
and then p0βm times the cycle of ratio M yields an finite run π0 with the desired property
(this will be π|f(0)). Indeed:
(

(q0 − p0)βM

)

αm +
(

p0βm

)

αM
(

(q0 − p0)βM

)

βm +
(

p0βm

)

βM

=
(q0 − p0)βMαm + p0βmαM

q0βMβm
=

q0 − p0
q0

m+
p0
q0

M = ra0
.

To build an infinite run with ratio rλ, we incrementally build prefixes πn (which will be
π|f(n)) of ratio ran

, starting with π0, as depicted in the picture below.

. . . . .m∗.M∗ m∗.M∗ m∗.M∗ m∗.M∗

π1, (Rat(π1) = ra1
)

π0, (Rat(π0) = ra0
)

π2, (Rat(π2) = ra2
)

π3, (Rat(π3) = ra3
)

Run πn+1 has πn as prefix, then iterates the cycle of minimal ratio, and finally iterates
the cycle of maximal ratio in order to compensate ran

and reach ratio ran+1
. We assume

an = pn/qn with (pn, qn) ∈ N2. In πn+1 the number of iterations of the cycle of ratio m
(resp. the cycle of ratio M) is globally bn+1(qn+1 − pn+1)βM (resp. bn+1pn+1βm) for some
bn+1 ∈ N>0. This construction ensures that rλ is an accumulation point of the set of ratios
for the prefixes πn. Moreover, since each path fragment starts with iterations of the cycle
of minimal ratio first, rλ is the largest accumulation point of the sequence of the ratios
of prefixes after each cycle. The sequence of the prefixes’ ratios is schematized below. The
oscillations during a cycle become negligible when the length of the run increases. In the
picture below, they are represented by shorter and shorter dashes.

ra0

ra1

ra2

ra3

ra4

Case 2 In the general case, in the SCC Cπ of AF
cp the cycles with minimal and maximal

ratios do not necessarily share a common state: two finite runs connect the two cycles, as
represented on Fig 12(b). We fix two cycles of minimal and maximal ratios, and two finite
paths πmM and πMm that connect those cycles in Cπ. Similarly to the first case, we show
how to build a sequence of finite runs (πn) with |Rat(πn) − ran

| < 1
n , and prove that the

influence of the finite paths linking the cycles is negligible when n tends to infinity. The run
πn+1 is defined as the concatenation of πn with πMm then iterations of the cycle of minimal
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ratio m then πmM and ending with iterations of the cycle with maximal ratio M . If p̃ and q̃
are respectively the cost and the reward of πmM and πMm together, then the ratio of πn+1

is:

Rat(πn+1) =
bn+1(qn+1 − pn+1)βMαm + bn+1pan+1

βmαM + (n+ 1)p̃

bn+1(qn+1 − pn+1)βMβm + bn+1pan+1
βmβM + (n+ 1)q̃

Since this value tends to ran+1
when bn+1 tends to infinity, bn+1 can be chosen such that

|Rat(πn+1)− ran+1
| < 1/(n+1). This way, limn→∞ Rat(πn) agrees with limn→∞ ran

, that is
limn→∞ Rat(πn) = rλ. The function f is defined by ‘f(n) is the length of πn’. �

Lemma 11 (Zeno case). Given π a reward-converging run in AF
cp, it is decidable whether

there exists a Zeno run ̺ such that π is the contraction of ̺ and freqA(̺) = Rat(π).

Proof. This proof is composed of two parts. First, we study how to detect if the reward-
converging execution π in AF

cp is a contraction, that is if there exists an execution in A whose
contraction is π. If π is a contraction, then by Lemma 8, we can construct a Zeno execution
̺ in A whose contraction is π (in particular freqA(̺) ≥ Rat(π)) and such that freqA(̺) is as
near as we want from Rat(π). The second step is to decide if we can construct an optimal ̺
in A, that is a Zeno execution ̺ whose contraction is π and such that freqA(̺) = Rat(π). To
do so, we see that we can study π independently on each fragment between its resets. For
each of these fragments of π, we provide necessary and sufficient conditions for them to be
exactly reflected in A. Thus, there exists an optimal ̺ if and only if all of these fragments
respect these conditions. Indeed, a tiny difference between the ratio of a fragment and the
corresponding frequency on ̺ is never neglected because on the one hand ̺ is Zeno and on
the other hand the contraction minimizes the frequency.

Let π be a reward-converging run in AF
cp. By definition of contractions, we easily verify

whether π is the contraction of some run in A. It is the case if and only if the two following
conditions are satisfied by π:

(i) from each state of π of the form (ℓ, (i, i + 1), •–) where ℓ /∈ F , π follows an idling
transition to (ℓ, (i, i+ 1), –•);

(ii) after each move (ℓ, (i, i+1), •–)
1/1
−−→ (ℓ, (i, i+1), –•) where ℓ ∈ F , π goes to (ℓ, {i+1}, •)

by an idling transition.

We first consider two simple cases:

– If Rat(π) = 0, then there exists a Zeno run ̺ in A whose contraction is π, such that
freqA(̺) = Rat(π) = 0 if and only if there are only (non F )-locations along π. Otherwise,
because of the Zenoness of ̺ and the positivity of all the delays, freqA(̺) > 0.

– If Rat(π) = 1 and π is the contraction of some run ̺, then freqA(̺) ≤ Rat(π) hence by
definition of the contraction freqA(̺) = Rat(π).

We now assume that 0 < Rat(π) < 1. For any run ̺ such that π is the contraction of ̺,
Rat(π) ≤ freqA(̺). Thus in order to have equality we will have to minimize delays spent in
F -locations when building ̺.

Note that resets of the clock are not reflected in the corner-point abstraction, but could
easily be. Therefore, in the sequel, we abusively speak of resets in π. In the rest of the
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proof, we will work independently on the reset-free parts of π, let us shortly argue why this
reasoning holds in this context. Let ̺ be a path containing finitely many resets and such that
̺ = ̺1

a1−→ ̺2
a2−→ · · · ̺n where all the ̺i’s are reset-free. Let π be the contraction of ̺, let us

notice that π can be written as π1 a1−→ π2 a2−→ · · ·πn where πi corresponds to the contraction
of ̺i (for 1 ≤ i ≤ n). By definition of the contraction, we know that Rat(πi) ≤ freqA(̺

i) for
each 1 ≤ i ≤ n. In particular, if there exists i such that Rat(πi) 6= freqA(̺

i), it is necessarily
the case that Rat(πi) < freqA(̺

i). In this situation, it is clearly impossible to have that
Rat(π) = freqA(̺).

Let us now detail the different cases that can arise:

– Assume there is an unbounded number of resets along π, and assume ̺ is a run such that
π is the contraction of ̺ and that Rat(π) = freqA(̺). Because π is reward-converging,
after some point, all rewards are 0. Hence, only the prefix of π before this point con-
tributes to the ratio. By construction of the contraction, the ratio of π up to this point
(say it is a/b, which is by assumption < 1) is smaller or equal to the frequency of ̺ up
to that point, there must be equality as Rat(π) = freqA(̺). We will prove now that from
this point on, π only visits F -states. Due to condition (i) above, if a state (ℓ, (i, i+1), •–)
is visited, then ℓ ∈ F (otherwise there should be a reward of 1 on the next edge). If
(ℓ, {i}, •) is visited, then this is because we have just seen a reset, thus i = 0, and the
next move should be an idling move (time is strictly increasing), leading to (ℓ, (0, 1), •–).
For the same reason we also get that ℓ ∈ F . Since zero-delays are forbidden in A, the run
̺ necessarily spends some positive delay in the F -locations. As a consequence the equal-
ity Rat(π) = freqA(̺) cannot hold because Rat(π) = a/b < (a + c)/(b + c) = freqA(̺)
for some c > 0 (the duration of the tail of ̺). There is no run ̺ such that π is the
contraction of ̺ and Rat(π) = freqA(̺).

– Assume now that the number of resets along π is finite. The run π can be split into
fragments between resets. As explained at the beginning of the proof, each fragment has
to be fairly reflected in ̺ to not hinder the optimality of the construction. There is finite
fragments and an infinite one. The finite fragments of π are treated as follows. The two
conditions that they have to satisfy in order to not block the construction of an optimal
̺ are:

• a discrete transition of π going from an F -location (resp. F -location) to an F -location
(resp. F -location) has to be fired from a punctual region ({i}) or from the region
⊥, moreover this discrete transition has to occur after a sub-fragment in F -location
(resp. F -location) whose reward is positive.

• the same way, the end of the fragment has to go from a punctual region or from the
region ⊥.

These conditions are necessary and sufficient, the proof is based on the disjunction of
cases of the proof of Lemma A. In the disjunction, we seen that for every F -fragment
(resp. F̄ -fragment) of π, the ratio is smaller or equal to the frequency of the corresponding
fragment in ̺. Furthermore, the equality holds only for the case 3 and the cases 4.2 and
5.2 whether vn−i and vn + τn belong to N. Then every sub-fragment (F -fragment or
F̄ -fragment) of a finite fragment (separated by resets) has to correspond to one of these
cases. This is clearly equivalent to the two above conditions.

If no finite fragment hinders the minimization, the infinite suffix of π without resets has
to be considered. The conditions for this infinite fragment are:
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• as above, a discrete transition of π going from an F -location (resp. F̄ -location) to
an F̄ -location (resp. F -location) has to be fired from a punctual region or from
the region ⊥ after a sub-fragment in F -location (resp. F̄ -location) whose reward is
positive.

• moreover, the fragment has to end in F̄ -locations.
First, in this infinite fragment the reward is finite. Hence, if there is an unbounded
alternation of F - and F̄ -locations, then there is (at least) an F -fragment of reward 0
and there is no optimal ̺. Else, as above, the first condition is necessary and ensures
the good behaviors before stabilization of π in F or F̄ . Moreover, if π ends in F̄ , then ̺
can be constructed choosing delays to minimize the frequency by tending to the reward
corresponding in π. Otherwise, π ends in F with a pointed region ((i, i+1), α) or (⊥, α⊥):
• ((i, i+ 1), •–): the sum of the delays can at best tend to i+ ε,
• ((i, i + 1), –•): either the last fragment in F̄ does not end in a suitable region, or π
is not a contraction,

• (⊥, α⊥): the sum of the delays can at best tend to the reward of the fragment +ε
because this reward has to be always smaller or equal to the sum of the delay to π
be the contraction of the built ̺.

To conclude, a careful inspection of the corner-point abstraction allows us to decide whether
there exists a run ̺ in A whose contraction is π and such that Rat(π) = freqA(̺). �

A similar lemma holds for dilatations:

Lemma F Given π a reward-converging run of AF
cp, it is decidable whether there exists a

Zeno run ̺ such that π is the dilatation of ̺ and freqA(̺) = Rat(π).

Theorem 9. Let FA = {freqA(̺) | ̺ run of A} be the set of frequencies of runs in A. We
can compute inf FA and supFA. Moreover we can decide whether these bounds are reached
or not. Everything can be done in NLOGSPACE.

Proof. With each run π of the corner-point abstraction AF
cp is associated the SCC it ends

up in. Let us argue that given C an SCC of AF
cp:

1. the infimum of the frequencies of runs of A whose contraction ends up in C can be
computed, and

2. it is decidable whether the bound is reached.

First of all, if there is no reward-converging (simple) cycle in C, then all runs in AF
cp ending

up in C are reward-diverging. For each such run π, there exists a non-Zeno run ̺ in A with
Rat(π) = freqA(̺), thanks to Lemma 7. In this case, Lemma 10 allows us to conclude.

Assume now that C contains a reward-converging cycle, and let Src be the set of states
in AF

cp that belong to a reward-converging cycle. The set S of cycle-free finite runs in AF
cp

ending up in a state of Src is finite and therefore contains a run πmin with minimal ratio rmin.
The infimum r∗ of the ratios of runs of AF

cp ending up in C is thus min(rmin,m) where m is
the minimal ratio of reward-diverging simple cycles co-reachable from C. Moreover, it is also
the infimum of the frequencies of runs of A whose contraction ends up staying in C. This
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bound is reached by a non-Zeno run of A whose contraction ends up staying in C if and only
if m = r∗ and there is a reward-diverging cycle of ratio m in C (Lemma 10). We do not need
to consider non-Zeno runs whose contraction is reward-converging because their frequency is
necessarily equal to 1. On the other hand, the infimum may be reached by a Zeno run whose
contraction ends up staying in C. This contraction may be reward-converging or diverging.
We distinguish three cases: rmin > m, rmin < m and rmin = m.

Case rmin > m The infimum of ratios of runs in AF
cp ending up in C is then m: iterating

the cycle of minimal ratio m many times and then going to a reward-converging cycle
in C yields a ratio which tends to this infimum. However, the infimum of the ratios is
not reached by runs of AF

cp ending up in C. A fortiori, frequency m cannot be realized

by a run in A whose contraction is reward-converging and ends up in AF
cp.

Case rmin < m The infimum of ratios of runs in AF
cp ending up in C is rmin. Note that

considering only runs whose contraction is reward-converging suffices. Indeed, a con-
traction reward-diverging of a Zeno run is necessarily of ratio 0, therefore its existence
would imply that m = 0. Using the proof of Lemma 11, we can decide if there exists
a reward-converging run π of AF

cp ending up in C such that there exists a Zeno run ̺
whose contraction is π and such that freqA(̺) = Rat(π) = rmin.

In this case, π can be decomposed either as follows:

1) : π = π0.πp.(ℓ
F̄ , {i}, •)

0/0
−−→ (ℓF̄ , (i, i+ 1), •—)

0/1
−−→ (ℓF̄ , (i, i+ 1),—•)

( 0/0
−−→ (ℓF̄i , (0, 1),—•)

)

i∈N

or as follows :

2) : π = π0.πp.(ℓ
F̄ ,⊥, α⊥)

( 0/0
−−→ (ℓF̄i ,⊥, α⊥)

)

i∈N

where, first π0 ends up resetting the clock and its fragments between resets satisfy the
good conditions that is the ones to be a contraction and the ones of the proof of the
Lemma 11 over finite fragments, second the suffix contains only F̄ -locations and no resets
and finally the factor πp satisfies the good conditions over the beginning of a fragment.
Note that πp can ends in an F -location or an F̄ -location. If there exists such a run π
taking several cycles in the suffix, the same run π̃ whose suffix simply consists in the
infinite iteration of the first cycle taken by π satisfies the required properties. Therefore,
the set of states of AF

cp from which a suitable suffix runs is computable. The set of
cycle-free prefixes satisfying the conditions and ending up in this set is also computable.
Moreover, adding cycle iterations to the prefix cannot help to meet the conditions. As a
consequence, the existence of such a π is decidable.

Case rmin = m The infimum of the ratios can be the frequency of some Zeno run whose
contraction is reward-diverging only if rmin = m = 0. In this case, the infimum is reached
by a Zeno run whose contraction ending up in C is reward-diverging if and only if there
is a reward-diverging contraction ending up in C visiting only locations of F̄ , resetting
infinitely often the clock and visiting finitely often the region {1}. On the other hand,
the Zeno runs with reward-converging contraction can be treated similarly to the case
rmin < m since the introduction of a finite number of minimal or reward-converging
cycles in the minimal prefix cannot help to reach the bound.
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We can thus decide whether the infimum is reached for a run ofA by considering the question
in subsets of runs (sorted with respect to the SCC in which the contraction ends up) forming
a partition of the set of the runs of A.

Similarly given C an SCC of AF
cp:

1. the supremum of the frequencies of runs of A whose dilatation ends up in C can be
computed, and

2. it is decidable whether the bound is reached.

Let us now conclude the proof. If the infimum (resp. supremum) of the frequencies of runs
in A is reached by some run, then the ratio of its contraction (resp. dilatation) is equal to this
infimum (resp. supremum) frequency. By considering the bounds of the sets of frequencies
for runs of A whose contraction (resp. dilatation) end up in each SCC, the bounds of the set
of frequencies of runs of A are respectively the minimum and the maximum of these latter.
Moreover, the two bounds are reached if and only if they are reached for some SCC. �

Proofs for Section 4

The different variants of the universality problems for timed automata under frequency-
acceptance are incomparable, as illustrated by the following examples:

ℓ0 ℓ1 ℓ2
Σ

Σ

Σ

(a) A1.

ℓ0 ℓ1
Σ,{x}

x≤1,ΣΣ

(b) A2.

ℓ0 ℓ1
x≥1,Σ

ΣΣ

(c) A3.

Fig. 13. Counterexamples for the comparison between universality problems.

Let us explain why the universality problems with positive-frequency acceptance are not
comparable when considering respectively finite timed words, Zeno timed words or non-Zeno
timed words. The three timed automata of Fig. 13 illustrate this. The timed automaton A1

is universal for finite timed words but neither for the Zeno ones or the non-Zeno ones. In the
same way, A2 and A3 are universal respectively for Zeno timed words and non-Zeno timed
words but not for the other types of words.

Theorem 16. The universality problem for infinite (resp. non-Zeno, Zeno) timed words
in a one-clock timed automaton is non-primitive recursive. If two clocks are allowed, this
problem is undecidable.

Proof. We want to check whether A is universal for Zeno timed words with positive fre-
quency. We first check that every Zeno timed word can be read in A: this is equivalent to
checking that all finite timed word can be read in A, and this can be done [8]. Thus, w.l.o.g.

26



we assume that A reads all Zeno timed words, and we now only need to take care of the
accepting condition.

From A we build the timed automaton B composed of two copies of A, one with a tag w

and one with a tag b. The symbol w (resp. b) is for white (resp. black). If ℓ′ ∈ F , then for all
transitions leading to ℓ′, we will have transitions from the w-copy to the b-copy. All others
are maintained. In B once the b-copy is entered, it is never left, and for Zeno timed words,
the Büchi condition can be reduced to “enter the b-copy and read the rest of the word”.

More formally, we define B = (L′, L′0, F
′, Σ, {x}, E′) as follows:

– L′ = L× {w, b}, L′0 = L0 × {w} and F ′ = L× {b};

– if ℓ
g,a,X′

−−−−→ ℓ′ is in E, then the following edges are in E′:

• (ℓ, b)
g,a,X′

−−−−→ (ℓ′, b) and (ℓ,w)
g,a,X′

−−−−→ (ℓ′,w);

• (ℓ,w)
g,a,X′

−−−−→ (ℓ′, b) if ℓ′ ∈ F ;

The correctness of the transformation is stated in the following straightforward lemma.

Lemma G A is universal with positive frequency for Zeno timed words iff B is universal
with positive frequency for Zeno timed words.

In the following we will write configurations of B as triples (ℓ, tag, v) where ℓ is a location
of A, tag ∈ {w, b} and v is a value for the clock. Furthermore we let M be the maximal
constant the clock is compared with in B, and if 0 ≤ c < M , Ic denotes the interval (c; c+1)
whereas IM denotes the interval (M ; +∞).

An infinite execution (ℓ0, tag0, v0) → (ℓ1, tag1, v1) · · · → (ℓp, tagp, vp) → . . . in B stabi-
lizes after n0 steps whenever there exists some integer c such that for every n ≥ n0, either
vn ∈ Ic, or vn = 0, or vn ∈ I0. Note that every infinite run which reads a Zeno word
stabilizes.

Given a Zeno timed word w, our aim is to analyze all runs that read w, so that we will
be able to detect whether w is accepted or not. Therefore we need to be able to compute
a uniform bound after which all runs which read w stabilizes. This is the aim of the next
lemma.

Lemma H (Uniform stabilization) Let w be a Zeno timed word (which can be read in
B by assumption). Then, there exists some integer n0 such that every execution that reads
w stabilizes after n0 steps.

To prove this lemma we need the notion of duration of a timed word. If w = (t0, a0) . . . (tk, ak)
is a finite timed word, the duration of w is tk and is denoted duration(w). If w is an infinite
timed word, we let w≤n be the n-th prefix of w, then the duration of w is duration(w) =
limn→∞ duration(w≤n). Note that this is a finite value if and only if w is a Zeno timed word.

Proof. Let D be the duration of w, and for every n, dn be the duration of w≤n (the prefix
of length n of w). We fix some integer N such that D − dN < 1, and we write VN for the
set of possible valuations for clock x after having read prefix w≤n in B. The set VN is finite.

Let ̺ = (ℓ0, tag0, v0) → (ℓ1, tag1, v1) . . . be a run that reads w in B. Then vN ∈ VN , and
either ̺ stabilizes after N steps, or ̺ stabilizes after N + k steps, where k is the smallest
integer such that ⌊vN⌋ + 1 = ⌊vN + dN+k − dN⌋. This property does not depend on the

27



choice of the execution, but only on the value vN . Since there are finitely many vN , as VN

is finite, we can find a maximal k, denoted k0 which will work for all the vN . We choose n0

either as N (in case ⌊vN⌋ = ⌊vN +dN+k−dN⌋ for every k), or as N +k0 where k0 is defined
as above. By the previous analysis, we are done, every run ̺ which reads w stabilizes after
n0 steps. �

Example 17. Take for instance the following timed automaton:

ℓ1 ℓ2
a,x:=0

x≥2,a a

and the Zeno timed word w = (a, 2)(a, 2+ 1/2)(1, 2+ 3/4)... whose duration is 3. There are
infinitely many runs that read w, each one depends on the time where it takes the transition
to ℓ2. We have that all runs that read w stabilize after 2 steps.

Hence a Zeno word that is read in B will have a prefix (up to n0 steps) and a Zeno tail
that will satisfy clock constraints in a “straightforward” manner. We will take advantage of
this structure to draw an algorithm for deciding whether there is a Zeno word that is not
accepted by B.

Tail of Zeno words. We construct a finite automaton Bf that will somehow recognize
the tail of Zeno behaviours. We build the automaton as follows: the set of states is Q =
L× {w, b} × ({0, 1, . . . ,M − 1,M}).

– There is a transition (ℓ, tag, c)
a
−→ (ℓ′, tag′, 0) whenever there is a transition (ℓ, tag)

g,a,{x}
−−−−−→

(ℓ′, tag′) in B with Jx ∈ IcK ⊆ JgK;

– There is a transition (ℓ, tag, c)
a
−→ (ℓ′, tag′, c) whenever there is a transition (ℓ, tag)

g,a,∅
−−−→

(ℓ′, tag′) in B with Jx ∈ IcK ⊆ JgK

A state (ℓ, tag, c) is accepting if tag = b, and we assume a Büchi condition. We parameterize

Bf with the set of initial states Q0 ⊆ Q, and we then write BQ0

f .
This abstraction is a region abstraction for tails of Zeno behaviours in the following

sense:

Lemma I Let q = (ℓ, tag, c) be a state of Bf , and u be an infinite (untimed) word. There
is an equivalence between the two following properties:

1. u can be read along some path ̟ from q in Bf ;
2. for every v ∈ {c} ∪ Ic, for every increasing timestamps sequence τ which is convergent,

and such that v + duration(τ) ∈ Ic ∩ (v; v + 1), the timed word w = (u, τ) can be read
along some path π in B.

In this equivalence we can furthermore assume the sequence of locations and tags encountered
along ̟ coincide with the sequence of locations and tags encountered along π.

Proof. We first prove the implication 2 ⇒ 1. Assume w is a Zeno timed word read along

the path π = (ℓ, tag)
g0,a0,Y0
−−−−−→ (ℓ1, tag1)

g1,a1,Y1
−−−−−→ . . . from configuration (ℓ, tag, v). The

corresponding run has the form (ℓ, tag, v)
τ0,a0
−−−→ (ℓ1, tag1, v1)

τ1,a1
−−−→ . . . and by assumption

for every j ≥ 0, v +
∑j

i=0 τi ∈ Ic.

28



– Assume the clock x is never reset along π (all Yk’s are empty), then for every k ≥ 1,
vk = v +

∑

0≤i<k τi and thus vk ∈ Ic, which implies Jx ∈ IcK ⊆ JgkK. In that case, by

construction of Bf , we get that there is path (ℓ, tag, c)
a0−→ (ℓ1, tag1, c)

a1−→ . . . in Bf .
– Assume the clock x is reset along π, and that Yk = {x} is the first time x is reset along

π. Then the same argument as before applies to the prefix of π up to ℓk−1. Then we
have that for every j > k, vj is either 0 (in case Yj−1 = {x}) or lies in (0; 1), and that
Jx ∈ (0; 1)K ⊆ JgjK in any case (time is supposed to be strictly monotonic). Thus we can
build a path ̟ in the finite automaton which reads the untiming of w.

We now prove the implication 1 ⇒ 2. Assume that u = a0a1 . . . is an infinite (untimed)

word which is read along some path ̟ = (ℓ0, tag0, c0)
a0−→ (ℓ1, tag1, c1)

a1−→ . . . in Bf with
(ℓ0, tag0, c0) = (ℓ, tag, c). Take now a value v ∈ {c} ∪ Ic for clock x and take an increasing
timestamps sequence (ti)i≥0 that is convergent and such that v + supi ti ∈ Ic ∩ (v; v + 1).

By construction of Bf there is a path π = (ℓ0, tag0, c0)
g0,a0,Y0
−−−−−→ (ℓ1, tag1, c1)

g1,a1,Y1
−−−−−→ . . .

that corresponds to ̟. In particular, if Yi = ∅, then ci+1 = ci, and if Yi = {x}, then ci+1 = 0.
We distinguish between two cases:

– the clock x is never reset (for all i ≥ 0, Yi = ∅), in which case for all i, ci = c. We define
for every i ≥ 1, vi = v + ti−1. By assumption on (ti)i, it holds that vi ∈ Ic = Ici . Thus,
the following run reads the timed word w = ((ti)i≥0, u):

(ℓ, tag, v) = (ℓ0, tag0, v0)
t0,a0
−−−→ (ℓ1, tag1, v1)

t1−t0,a1
−−−−−→ . . .

– the clock x is reset along π, and i0 is the smallest index such that Yi0 = {x}. We then
define I = {i0 < i1 < . . . } the set of index of sets Yi’s where Yi = {x}. We then define

vj+1 =







v + tj if j < i0
0 if j ∈ I
tj − tik if ik < j < ik+1

Then, the following run reads the timed word w = ((ti)i≥0, u):

(ℓ, tag, v) = (ℓ0, tag0, v0)
t0,a0
−−−→ (ℓ1, tag1, v1)

t1−t0−−−→ . . .

because the values of the clock never exceeds 1 after having reset the clock for the first
time (and time is increasing, hence the constraint x ∈ I0 is then always satisfied when
firing a transition).

This concludes the proof of the second implication. �

Lemma J Let Q0 ⊆ Q be a set of initial states for Bf . Then we can decide in polynomial

space whether BQ0

f is universal.

Proof. Bf is a Büchi automaton, this result is thus standard, see [7]. �

Handling the prefix. We use an abstraction which is now standard in the context of
single-clock timed automata, see [1, 2, 8, 5, 9, 6, 10] This is a symbolic transition system as-
sociated with B, which is denoted AbstB and defined as follows. We let Γ be the finite set
2L×{b,w}×{0,1,...,M}. The states of AbstB are tuples (γ, h, γ′) where γ, γ′ ∈ Γ and h ∈ Γ ∗

is a finite word over alphabet Γ . Informally an abstract state (γ, h, γ′) represents a set of
configurations of B, where γ are those states where the value of x is an integer, γ′ are those
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states where the value of x is larger than M , and h encodes the order on the fractional part
of the other states. More precisely, an abstract state (γ, h = γ1 . . . γm, γ′) represents a set of
states of B S = {(ℓj, tagj , vj) | j ∈ J} such that:

– γ = {(ℓj , tagj , vj) | vj ∈ {0, 1, . . . ,M}}
–

⋃m
l=1 γl = {(ℓj, tagj , vj) | j ∈ J, vj ∈ Icj , cj < M}

– γ′ = {(ℓj , tagj ,M) | vj > M}
– if (ℓi, tagi, vi) ∈ γi and (ℓj , tagj , vj) ∈ γj , i ≤ j iff frac(vi) ≤ frac(vj)

We then write abstr(S) = (γ, h, γ′), and S ∈ concr((γ, h, γ′)).
We omit the definition of the abstract transitions in AbstB, which is rather tedious and

can be found for instance in [9].
This abstraction ‘computes’ the set of executions that can read finite timed words in B

in the following sense.

Lemma K Let Conf = (γ, h, γ′) be an abstract configuration. Then Conf is reachable in
AbstB iff there exists a finite timed word w such that Conf = abstr(Sw), where Sw is the set
of configurations that are reached after reading w in B.

Proof. This is proven in close terms for instance in [9] (where the point-of-view of alternating
timed automata is taken). �

Gluing everything. We define Z the set of all sets of states Q0 ⊆ Q such that AQ0

f is
universal. This set can be computed thanks to Lemma J. If (γ, h, γ′) is an abstract state of
the above symbolic transition system, we write set((γ, h, γ′)) for the set γ ∪ γ′ ∪

⋃m
l=1 γl,

assuming h = γ1 . . . γm.

Proposition L There is a Zeno timed word not accepted by B iff in AbstB, it is possible to
reach a configuration Conf such that set(Conf ) 6∈ Z.

Proof. Assume that B is not universal, and consider a Zeno timed word w which is not
accepted by B. By assumption it can be read in B. Also there exists some integer n0 such
that any run in B which reads w stabilizes after n0 steps (Lemma H). Assume w1 is the n0-th
prefix of w and that w = w1 · w2. Let Conf = abstr(Sw1

). We will prove that writing Q0

for set(Conf ), it is the case that BQ0

f does not accept untime(w2). Towards a contradiction

assume it is not the case. Then let π2 be a path that accepts untime(w2) in BQ0

f . It starts
from some q0 ∈ Q0. We have that q0 ∈ set(abstr(Sw1

)), and thus there is some configuration
(ℓ, tag, v) ∈ Sw1

which corresponds to q0, and there is some run in B which reads w1 and
reaches (ℓ, tag, v). We can then apply Lemma I and lift π2 into a run ̟2 that accepts w2 (it
visits the same locations and the same tags as π2, which is accepting). This is the expected
contradiction.

Assume now that in AbstB, it is possible to reach a configuration Conf such that Q0 =
set(Conf ) 6∈ Z. Let w1 be a finite timed word such that Conf = abstr (Sw1

) (Lemma K).

As BQ0

f is not universal, there is an infinite (untimed) word u2 which is not accepted by

BQ0

f . Let α be the largest fractional part involved in Sw1
, and T be the largest timestamp

of w1. We define the (Zeno) timed word w = w1 ·w2 where the untiming of w2 is u2 and the
timestamps of w2 are T + ǫ ·

(

1
2

)

, T + ǫ ·
(

1
2 + 1

4

)

, ..., T + ǫ ·
(

1
2 + 1

4 + · · ·+ 1
2k

)

, ... where ǫ
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is chosen such that 0 < ǫ < 1− α. It is then obvious that any infinite run in B that reads w
stabilizes after n0 = |u1| steps (because any infinite run which reads w starts with a prefix
reading w1, hence after |u1| steps, it is in a configuration of Sw1

).
Towards a contradiction, consider a run ̺ in B which accepts w. The suffix w2 of w

satisfies the second condition of Lemma I. Applying the equivalence stated in this lemma,
the first condition is also satisfied, and this corresponds to the untimed word u2. The cor-
responding path in Bf , which starts from some q ∈ Q0, is accepting because ̺ is accepting,

and tags and locations are preserved. Hence it is the case that B
{q}
f accepts u2. It is then

the case that BQ0

f accepts u2, which contradicts the assumption. �

The set Z is upward-closed, hence we can decide the reachability problem w.r.t. Z in
the well-structured transition system AbstB (see for instance [9]). Hence, as a consequence
of Proposition L above, we get Theorem 17.

Remark M The construction made in the proof of the above theorem can be adapted to
prove that the universality problem for Zeno timed words in one-clock timed automata with
a standard Büchi acceptance condition is decidable.

References

1. P. A. Abdulla, J. Deneux, and P. Mahata. Multi-clock timed networks. In Proc. 19th Annual
Symp. on Logic in Computer Science (LICS’04), p. 345–354. IEEE Comp. Soc. Press, 2004.

2. P. A. Abdulla, J. Deneux, P. Mahata, and A. Nylen. Forward reachability analysis of timed
Petri nets. In Proc. Joint Conf. on Formal Modelling and Analysis of Timed Systems and
Formal Techniques in Real-Time and Fault Tolerant System (FORMATS+FTRTFT’04), LNCS
3253, p. 343–362. Springer, 2004.

3. P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal infinite scheduling for multi-priced timed
automata. Formal Methods in System Design, 32(1):3–23, 2008.

4. K. Chatterjee, L. Doyen, H. Edelsbrunner, Th. A. Henzinger, and Ph. Rannou. Mean-payoff
automaton expressions. In Proc. 21th Intl Conf. on Concurrency Theory (CONCUR’10), LNCS
6269, p. 269–283. Springer, 2010.

5. S. Lasota and I. Walukiewicz. Alternating timed automata. In Proc. 8th Intl Conf. on Founda-
tions of Software Science and Computation Structures (FoSSaCS’05), LNCS 3441, p. 250–265.
Springer, 2005.

6. S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Transactions on Computational
Logic, 9(2:10), 2008.

7. S. Miyano and T. Hayashi. Alternating finite automata on omega-words. Theorerical Computer
Science, 32:321–330, 1984.

8. J. Ouaknine and J. Worrell. On the language inclusion problem for timed automata: Closing a
decidability gap. In Proc. 19th Annual Symp. on Logic in Computer Science (LICS’04), p. 54–63.
IEEE Comp. Soc. Press, 2004.

9. J. Ouaknine and J. Worrell. On the decidability of Metric Temporal Logic. In Proc. 20th Annual
Symp. on Logic in Computer Science (LICS’05), p. 188–197. IEEE Comp. Soc. Press, 2005.

10. J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal logic over
finite words. Logical Methods in Computer Science, 3(1:8), 2007.

31


	Emptiness and Universality Problems in Timed Automata with Positive Frequency

