
ar
X

iv
:1

10
4.

23
15

v3
 [

cs
.D

S]
 1

3
D

ec
 2

01
1

Linear Programming in the Semi-streaming Model with Application

to the Maximum Matching Problem

Kook Jin Ahn and Sudipto Guha∗

May 29, 2018

Abstract

In this paper we study linear programming based approaches to the maximum matching
problem in the semi-streaming model. The semi-streaming model has been considered as one of
the models for efficient processing massive graphs. In this model edges are presented sequentially,
possibly in an adversarial order, and we are only allowed to use a small space. The allowed space
is near linear in the number of vertices (and sublinear in the number of edges) of the input graph.

In recent years, there have been several new and exciting results in the semi-streaming model.
However broad techniques such as linear programming have not been adapted to this model.
In this paper we present several techniques to adapt and optimize linear programming based
approaches in the semi-streaming model. We use the maximum matching problem as a foil to
demonstrate the effectiveness of adapting such tools in this model and as a consequence we
improve almost all previous results on the semi-streaming maximum matching problem. We
also prove new results on interesting variants.

1 Introduction

Analyzing massive data sets has been one of the key motivations for studying streaming algorithms.
In the streaming model we have sequential access to the input data and the random accessible mem-
ory is sublinear in the input size. In recent years, there has been significant progress in analyzing
distributions in a streaming setting (see for example [25]), but similar progress has been elusive in
the context of processing graph data. Massive graphs arise naturally in many disparate domains,
for example, information retrieval, traffic and billing records of large networks, large scale scientific
experiments, to name only a few. To help process such large graphs efficiently we need to develop
techniques that work for broad class of problems. Combinatorial optimization problems provide an
example of such a class of problems. Moreover in many emerging data analysis applications, large
graphs are defined based on implicit relationship between objects [4, 21]. Subsequently, the goal
is to find suitable combinatorial structure in this large implicit graph, e.g., maximum b-matchings
were considered in [21]. Such edges are often generated through “black box” transducers which
have ill understood structure (or are based on domain specific information) and are prohibitive to
store explicitly. Therefore in either case, whether the edges are explicitly provided as input or are
implicit, it is an useful goal to design algorithms and techniques for graph problems, and in particu-
lar combinatorial optimization problems, without storing the edges. The reader would immediately
observe the connection to “in place algorithms”, which also poses the question of solving a problem

∗Department of Computer and Information Science, University of Pennsylvania, USA. Email

{kookjin,sudipto}@cis.upenn.edu. Research supported in part by an NSF Award CCF-0644119, IIS-0713267 and

a gift from Google.

1

http://arxiv.org/abs/1104.2315v3

using as small a space as possible excluding the input. In many massive data settings, or when
the input is implicitly defined, we are faced with the task of designing in place algorithms with no
random access or writes to the input. Multipass streaming algorithms seem well placed to answer
these types of questions; putting together the two threads of graph streaming and of combinatorial
optimization problems. it is natural to ask: how well can we solve maximum matching problem and
its variants using small additional (to the input) space where we only make a few passes over the
(possibly adversarial) list of edges?

Graph problems were one of the early problems considered in the streaming model, and it was
shown that even simple problems such as determining the connectedness of a graph requires Ω(n)
space [19] (throughout this paper n will denote the number of vertices and m will denote the
number of edges). This result holds even if a constant number of passes were allowed. However,
for problems which are even slightly more involved than connectivity, it is often not clear how to
solve them in space O(Cεn poly log n), that is, even if we allow the space to be larger than the
lower bound by a polylogarithmic factor and allow the constants in the algorithm to depend on an
accuracy parameter 0 < ε ≪ 1. Observe that this space bound is still sublinear in the in the size
of the input stream (of m edges).

The semi-streaming model [10, 25] has emerged to be a model of choice in the context of graph
processing – by allowing O(Cεn poly log n) space for an input stream of m edges defining a graph
over n vertices, arriving in any (including adversarial) order. In recent years there have been
several new results in this semi-streaming model, for example see [10, 11, 23, 1, 8, 7]. Several of
these papers address fundamental graph problems including matchings. These papers demonstrate
a rich multidimensional tradeoff between the quality of the solution, the space required and the
number of passes over the data (and of course, the running time). Many of these results are likely
to be used as a building block for other algorithms. Yet, as with many emerging models, it is
natural to ask: are there broad techniques that can be adapted to the semi-streaming model?

Our results: In this paper we answer both the questions posed previously in the affirmative. In
particular we investigate primal–dual based algorithms for solving a subclass of linear programming
problems on graphs. The maximum weighted matching (MWM) is a classic example of such. Al-
though augmentation based techniques exist for matching problems in the semi-streaming model,
they become significantly difficult in the presence of weights (since we need to find shortest aug-
menting paths to avoid creating negative cycles) and the best previous result for the maximum
weighted matching problem is a 1

2 − ε approximation using O(1
ε3
) passes [23] for any ε > 0. Note

that the input for weighted problems in the semi-streaming model is a sequence of tuples {(i, j, wij)}
and the weights do not have to be stored. Since the maximum weighted matching problem is one of
the most celebrated combinatorial optimization problems that can be solved optimally, it is natural
to ask if we can achieve an efficient approximation scheme, that is, an approximation ratio of (1−ε)
for any ε > 0? The use of linear programming relaxation allows us to design such a approximation
scheme, as well as improve the number of passes. See Table 1 for a summary of the results in
this paper. We also improve the number of passes for finding the maximum cardinality matching
(MCM) in bipartite graphs by a significant amount. The technique extends to several variants such
as the b-matching problem and matching in general graphs. However, the results for general graphs
in this paper have unappealing running times, such as nO(1

ε
).

Subsequent Results: The question of designing an FPTAS (an approximation scheme where the
running time is polynomial in both n, 1ε) for matching problems in general graphs, while using a
small number of passes was left open in this paper. In a recent article [2] we show that such a result
is possible using a slightly augmented version of the fractional packing framework of [28] (which
allows us to control tight sets), based on the ideas of Cunningham-Marsh proof of the laminarity

2

of tight sets [31]. The result in [2] shows that the non-bipartite matching problem reduces (after
many non-trivial steps, including finding minimum odd cuts in a space efficient manner) to an LP
which corresponds to bipartite matching using “effective weights”, and uses the result in this paper
for that part. The main ideas and techniques in [2] are orthogonal to this paper.

Problem Approx. No. of Passes τ space paper

Bipartite MCM

(see all below)

2
3
(1− ε) O(ε−1 log ε−1) [10]

1− ε O(ε−5) [7]

1− ε O(1
ε2

log log 1
ε
) O (n′(τ + logn′)) here

MCM

(see MWM below)

1/2 1

1− ε
(

1
ε

)1/ε
[23]

Bipartite MWM 1− ε O(ε−2 log ε−1) O
(

n
(

τ + log n
ε

))

here

Bipartite

b-Matching
1− ε O(ε−3 logn) Õ

(

B
ε3

)

here

MWM

1/6 1 O(n) [10]

1/5.82 1 [23]

1/5.58 1 [35]

1/4.91 1 [9]
1
2
(1− ε) O(ε−3) [23]

2
3
(1− ε) O(ε−2 log ε−1) O

(

n
(

τ + log n
ε

))

here

1− ε * O(ε−4 logn) O
(

n
(

τ + log n
ε

))

here

1− ε O(ε−7 log ε−1 logn) O(nτ
ε
) [2]

Table 1: Summary of results: The required time is O(m poly(1ε , log n)) for all results, except *.
The space bounds of results presented elsewhere were not always obvious, and we have omitted
reporting them. Note n′ = min{n, |OPT | log 1

ε} and B = n for the uncapacitated case; otherwise
B =

∑

i bi. Please note that the result in [2] is subsequent to this paper and builds on the results
herein.

Our Techniques: The matching problem has a rich literature, see [6, 16, 20, 24], as well as fast,
near linear time approximation algorithms [22, 29, 33, 27, 5]. However, these results use random
access significantly and do not translate to results in the semi-streaming model, and newer ideas
were used in [10, 23, 35, 9, 8, 7] to achieve results in the semi-streaming model. To improve upon
the results in these papers, we need new and more powerful techniques.

In this paper we use the multiplicative-weights update meta-method surveyed in [3]. Over many
years there has been a significant thrust in designing fast approximation schemes for packing and
covering type linear programming problems [28, 34, 13, 17, 12, 3], to name a few. Such a thrust
has existed even outside of theoretical computer science, see the excellent survey in [3]. The meta-
method uses the oracle to progressively improve the feasibility of the dual linear program, but uses
a (guessed) value of the optimal solution. If the oracle does not fail to provide these improvements
within in a predetermined number of iterations, we are guaranteed an approximately feasible dual
solution. If the failure of the oracle can be appropriately modified and interpreted to give us
a feasible primal solution, we can use that to verify the guess of the optimal solution and as
a consequence have an overall scheme. While the key intuition in this paper can be viewed as
designing a “streaming separation oracle”, it is not clear how to implement (or even define) such
an oracle. There are a super-linear (in n) number of conditions (constraints, verification of various
assumptions) involving the input that need to be satisfied (even though the number of variables
are n) which mandate random access. Designing an efficient separation oracle is not always trivial

3

even without any constraint on space — one of the interesting contributions of our paper is to
show that semi-streaming algorithms for maximal matching can be bootstrapped to achieve a near-
optimal matching within a few iterations. However, even if we could design an efficient oracle, the
overall scheme to obtain a good semi-streaming algorithm faces a number of roadblocks. First,
the multiplicative update method typically requires super-constant number of iterations (to prove
feasibility) — this translates to super-constant number of passes. Reducing the number of passes
to a constant requires that we recursively identify small and critical subgraphs. Second, for the
weighted variants, it is non-trivial to simultaneously ensure that enough global progress is being
made per pass, yet the computation in a pass is local (and in small space). Given the fundamental
nature of these roadblocks, we expect the different ideas developed herein will find use in other
settings as well.

Other Related Work: The result in [26], is related but somewhat orthogonal to our discussion
in this paper.

Roadmap: We revisit the multiplicative weights update method in Section 2. We then demon-
strate the simplest possible (but suboptimal in space and the number of passes) application of this
framework in Section 3, but in this process we develop the basic oracles. We subsequently show
in Section 4 how to (i) improve the space requirement by “simulating” multiple guesses of the
optimum solution in parallel as well as (ii) reduce the number of passes by “simulating” multiple
iterations of the multiplicative weights update method in a single pass. We show how to remove
the dependency on n in Section 5. We finally show some extensions of the maximum matching
problem in Section 6 which also demonstrate the generality of our approach.

2 The Multiplicative Weights Update Meta-Method

In this section, we briefly explain the multiplicative weights update method; we follow the discussion
presented by Arora, Hazan, and Kale [3]. Suppose that we are given the following LP, its dual LP,
and a guess of the optimal solution α, where A ∈ R

n×m,b ∈ R
n, c ∈ R

m:

LP:

{

min bTx
s.t ATx ≥ c, x ≥ 0

Dual LP:

{

max cTy
s.t Ay ≤ b, y ≥ 0

The algorithm proceeds along the weak separation framework [18]. Suppose that the optimal
solution is α. The violation of dual constraint i is Aiy − bi. The complementary slackness
conditions mandate that for an optimal solution the xi(Aiy − bi) = 0. One way to express the
complementary slackness conditions into a single condition is to interpret the primal variables
(which are always maintained as positive) as probabilities, and ask: Is there a vector y which
satisfies cTy = α, such that the expected dual violation is at most δ? The vector y, which is the
answer to the question, is termed as a dual witness.

If the answer to the question posed to an oracle is “yes”, and the probabilities were chosen such
that constraints which had larger violations had larger probability mass; then we have a direction
in which the feasibility of the dual solution can be improved. The improvement is measured by a
potential function, which is akin to the notion of dual gap.

If the answer is “no” (referred to as the failure of the oracle) — then we know that there is no
“good direction” to improve the solution. This serves as a certificate that the dual LP (with the
additional constraint that the dual solution is at least α) is not feasible. For example, a feasible
primal solution which is less than α can be one such certificate. However since we are asking
questions to the oracle that have an approximation parameter, the certificate is also approximate
at best.

4

But, note that, neither of the above does not give us a solution to the dual. However we can
produce a dual solution if we achieve two things, in addition to designing an oracle.

• First, if we are careful in choosing the probabilities (which is what the multiplicative update
framework achieves), then we have a way to extract a dual solution which approximately
satisfies all the dual constraints. In fact the solution will be the average of the dual witnesses
found, and this average will approximately satisfy the dual constraints. It is easy to see that
the average satisfies cTy = α. Now in many situations, and for the problems in this paper,
a simple scaling (multiplying each coordinate by of this average vector by a constant c) can
ensure dual feasibility and we have a c approximate dual solution.

• Second, note that the approximation also depends on the appropriate guess of α. Therefore
we need a way of verifying the guess α. In this paper we will achieve this by creating a
primal feasible solution which is at most (1 + O(δ))α. Observe that the value of a feasible
primal solution (minimization) is an upper bound of any feasible dual solution (maximization).
Therefore we need to focus on the largest guess of α for which the oracle has not failed.

Since this paper is regarding the application of the multiplicative weights update method in stream-
ing and not about the framework itself, we refer the reader to the original article of [3] for further
discussion of the intuition behind the framework. In what follows, we provide a brief review of
the main definitions and notation (Definition 1), the meta-algorithm (Algorithm 1), and a restate-
ment of the main result (Theorem 1) in [3]. We also require a minor extension (Corollary 2), and
therefore we restate the proof of the main result in [3] for the sake of completeness.

Algorithm 1 The Multiplicative Weights Update Meta-Method [3]

1: u1i = 1 for all i ∈ [n].
2: for t = 1 to T do
3: Given ut, the oracle returns an admissible dual witness yt. Note that yt is not required to

be feasible.
4: Let M(i,yt) = Aiy

t − bi (for all i).

5: For all i, set ut+1
i =

{

uti(1 + ǫ)M(i,yt)/ρ if M(i,yt) ≥ 0

uti(1− ǫ)−M(i,yt)/ρ if M(i,yt) < 0
6: end for
7: Output ỹ =

(

mini
bi

bi+4δ

)

1
T

∑

t y
t. Note, for use in this paper bi ≥ 1. This step is dependent

on the specific problem.

Definition 1. The Algorithm 1 proceeds in iterations and in iteration t finds a dual witness yt. We
define M(i,yt) = Aiy

t − bi to be the violation for dual constraint i in iteration t. The expected
violation M(Dt,yt) is the expected value of M(i,yt) when choosing i with probability proportional

to uti, i.e.,
∑

i
ut
i

∑

j u
t
j
M(i,yt). The dual witness yt is defined to be admissible if it satisfies

M(Dt,yt) ≤ δ, cTyt ≥ α, and M(i,yt) ∈ [−ℓ, ρ] ∀i ∈ [n] = {1, . . . , n}

for parameters of the oracle ℓ and ρ such that 0 < ℓ ≤ ρ The parameters ℓ, ρ will be constants for
the oracles in this paper; ρ is called the width parameter of the oracle. The parameters ǫ and T
depend on ρ, ℓ, and δ. Note that admissibility does not imply feasibility.

5

Theorem 1 (A slight rewording of Corollary 3 in [3]). Let δ > 0 be an error parameter and
ǫ = min{ δ

4ℓ ,
1
2}. Suppose that the oracle returns an admissible solution (See Definition 1) for T =

2ρ ln(n)
δǫ iterations in Algorithm 1, then for any constraint 1 ≤ i ≤ n we have: (1− ǫ)

∑

tM(i,yt) ≤
δT +

∑

tM(Dt,yt). Moreover ỹ is a feasible solution of the Dual LP.

Proof. We analyze the algorithm using a potential function Φt =
∑

j u
t
j. Let Υt

i = uti/Φ
t. We

assume we have an upper bound Ψi ≥ Υt
i. Note that Υt

i and Ψi are not used in [3]. In this
theorem, we use Ψi = 1 for all i — which is obvious from the fact that all weights uti are positive.
We will use a smaller value of Ψi to strengthen the theorem later.

We rewrite the proof of [3] using Υt
i and Ψi. Observe that (1− ǫ)−x and (1+ ǫ)x are convex (in

x) for 0 < ǫ ≤ 1
2 . Therefore it follows that

(1− ǫ)−x ≤ (1 + ǫx) for x ∈ [−1, 0] and (1 + ǫ)x ≤ (1 + ǫx) for x ∈ [0, 1]

since equality is achieved at the respective endpoints (x = −1, 0 for the first fact and x = 0, 1 for
the second fact). From M(i,yt)/ρ ∈ [−1, 1] (notice ℓ ≤ ρ) and the above facts we have:

Φt+1 =
∑

i

ut+1
i =

∑

i:M(i,yt)<0

ut
i(1− ǫ)−M(i,yt)/ρ +

∑

i:M(i,yt)≥0

ut
i(1 + ǫ)M(i,yt)/ρ

≤
∑

i

ut
i(1 + ǫM(i,yt)/ρ) = Φt +

ǫ

ρ

∑

i

ut
iM(i,yt) = Φt +

ǫΦt

ρ

∑

i

ut
i

Φt
M(i,yt)

= Φt(1 + ǫM(Dt,yt)/ρ)
(

Using the definition of M(Dt,yt)
)

≤ Φte(ǫM(Dt,yt)/ρ).

Therefore we can conclude that, ΦT+1 ≤ Φ1e(ǫ
∑T

t=1 M(Dt,yt)/ρ). From the algorithm and the defi-
nitions of Ψi,

u1i (1 + ǫ)

(

∑

t:M(i,yt)≥0 M(i,yt)/ρ
)

· (1− ǫ)
−
(

∑

t:M(i,yt)<0 M(i,yt)/ρ
)

= uT+1
i ≤ ΦT+1Ψi. (1)

From the definition of Φt,Υt
i,Ψi, we get Φ1 = u1i /Υ

1
i . Using ΦT+1/Φ1 in equation (1), we get,

u1i (1 + ǫ)

(

∑

t:M(i,yt)≥0 M(i,yt)/ρ
)

· (1− ǫ)
−
(

∑

t:M(i,yt)<0 M(i,yt)/ρ
)

≤
Ψi

Υ1
i

u1i e
(ǫ

∑T
t=1 M(Dt,yt)/ρ).

Applying the natural log function and simplifying we get:

ln(1 + ǫ)
∑

t:M(i,yt)≥0

M(i,yt)− ln(1− ǫ)
∑

t:M(i,yt)<0

M(i,yt) ≤ ρ ln
Ψi

Υ1
i

+ ǫ
T
∑

t=1

M(Dt,yt).

Now ln(1 + ǫ) − ǫ(1 − ǫ) ≥ 0; we have equality at ǫ = 0 and the first derivative of the left hand
side with respect to ǫ is positive for ǫ > 0. Likewise (using the derivative, but only over the
range 0 < ǫ ≤ 1

2) we have ln(1 − ǫ) + ǫ(1 + ǫ) ≥ 0. Therefore using ln(1 + ǫ) ≥ ǫ(1 − ǫ) and
ln(1− ǫ) ≥ −ǫ(1 + ǫ) we get:

6

ρ

ǫ
ln

Ψi

Υ1
i

+
T
∑

t=1

M(Dt,yt) ≥ (1− ǫ)
∑

t:M(i,yt)≥0

M(i,yt) + (1 + ǫ)
∑

t:M(i,yt)<0

M(i,yt)

= (1− ǫ)
T
∑

t=1

M(i,yt) + 2ǫ
∑

t:M(i,yt)<0

M(i,yt)

≥ (1− ǫ)

T
∑

t=1

M(i,yt)− 2ǫℓT
(

From M(i,yt) ≥ −ℓ
)

Selecting T = 2ρ
δǫ ln

Ψi

Υ1
i
, Ψi = 1, and ǫ = min

{

δ
4ℓ ,

1
2

}

, we obtain (1 − ǫ)
∑

tM(i,yt) ≤ δT +
∑

tM(Dt,yt). Note that ln(n) arises from ln Ψi

Υ1
i
. Since 1

T

∑

tM(i,yt) = M(i, 1
T

∑

t y
t) and M(Dt,yt) ≤

δ for all t, we have M(i, 1
T

∑

t y
t) ≤ (1− ǫ)−1(2δ) ≤ 4δ (dividing both the left and right side of the

inequality by T) or Ai

(

1
T

∑

t y
t
)

≤ bi+4δ. This translates to the fact that ỹ satisfies Aiỹ ≤ bi.

We also obtain Corollary 2, since we will assign different initial weights u1i on constraints and
use different values of Υi. In Section 5, we eliminate the dependency on ln(n) in Theorem 1 using
the Corollary.

Corollary 2. Let δ > 0 be an error parameter and ǫ = min{ δ
4ℓ ,

1
2}. Let Υt

i = uti/
∑

j u
t
j and

let Ψi ≥ Υt
i for all t. Suppose that the oracle returns an admissible solution (See Definition 1)

for T = 2ρ
δǫ lnmaxi

Ψi

Υ1
i
iterations in Algorithm 1, then for any constraint 1 ≤ i ≤ n we have:

(1− ǫ)
∑

tM(i,yt) ≤ δT +
∑

tM(Dt,yt). Moreover ỹ is a feasible solution of the Dual LP.

3 Warming Up: O(1
ε3 logn)-pass Algorithms

In this section, we provide a (1 − ε)-approximation algorithm for bipartite MCM and MWM that
uses O(1

ε3 log n) passes. We will use the multiplicative weights update method reviewed in Section 2.
Recall that the method provides a solution the dual problem. We formulate the primal LP (LP1
and LP3) to be the dual of the actual LP for MCM and MWM (LP2 and LP4) respectively. Note
that the edges are undirected in these LP formulations.

min
∑

i xi

s.t xi + xj ≥ 1 ∀(i, j) ∈ E
xi ≥ 0 ∀i ∈ V

(LP1)

max
∑

(i,j)∈E yij
s.t

∑

j:(i,j)∈E yij ≤ 1 ∀i ∈ V

yij ≥ 0 ∀(i, j) ∈ E

(LP2)

min
∑

i xi

s.t xi + xj ≥ wij ∀(i, j) ∈ E
xi ≥ 0 ∀i ∈ V

(LP3)

max
∑

(i,j)∈E wijyij
s.t

∑

j:(i,j)∈E yij ≤ 1 ∀i ∈ V

yij ≥ 0 ∀(i, j) ∈ E

(LP4)

The integrality gap of LP2 (and LP4) is one, since we have a bipartite graph [31]. We first present
an algorithm for MCM and then generalize the algorithm for MWM.

3.1 The Simple Case of MCM

We apply the multiplicative weights update method [3] with the oracle provided in Algorithm 2.
Recall that if the oracle does not fail, Algorithm 1 returns a feasible solution for LP2 after T
iterations.

7

We also make the observation that: we can compute a maximal matching in one pass in the
semi-streaming model in O(m) time and O(n) space. It is trivial to observe that any maximal
matching is a 2 approximation to the maximum cardinality matching.

Algorithm 2 Oracle for LP1. The input is {uti}i∈V , α.

1: Let xi =
α

∑

j u
t
j
uti. Let Eviolated = {(i, j)|xi + xj < 1}.

2: Find a maximal matching S in Eviolated. Let ∆ = |S|.
3: if ∆ < δα then
4: For each (i, j) ∈ S, increase xi and xj by 1. Observe that x is feasible for LP1.
5: Return x and report failure.
6: else
7: Return yij = α/∆ for (i, j) ∈ S and yij = 0 otherwise.
8: end if

Lemma 3. If ∆ ≥ δα, the oracle described in Algorithm 2 returns an admissible solution with
ℓ = 1 and ρ = 1/δ.

Proof. Note yij = α/|S| for (i, j) ∈ S and yij = 0 for (i, j) 6∈ S. Therefore, it is obvious that
∑

(i,j)∈E yij = α. Since the vector c is all 1, we have cTy ≥ α.
For each edge (i, j) ∈ S we have xi + xj < 1, and therefore we have

∑

(i,j)∈S yij(xi + xj) < α.
Therefore

∑

(i,j)∈E yij(xi+xj) =
∑

(i,j)∈S yij(xi+xj) < α. This rewrites to
∑

i xi
∑

j:(i,j)∈E yij < α.
Observe that

∑

i xi = α and therefore
∑

i xi(
∑

j:(i,j)∈E yij − 1) < 0.

Thus M(Dt,y) = 1
α

∑

i xiM(i,y) ≤ 0 < δ and the solution is admissible. Now M(i,y) =
∑

j:(i,j)∈E yij − 1 ≥ −1. Since S is a matching, for every i at most one yij 6= 0 and moreover
yij ≤ 1/δ (otherwise the oracle has failed). Therefore −1 ≤ M(i,y) ≤ 1/δ.

Lemma 4. If ∆ < δα, Algorithm 2 returns a feasible solution for LP1 with value at most (1+2δ)α.

Proof. Consider (i, j) ∈ E such that xi + xj < 1. Since S was maximal, there exists an edge
in S that is adjacent to either i or j. So xi or xj is increased by at least 1 and the constraint
corresponding to edge (i, j) is satisfied. For each edge (i′, j′) ∈ S, we increase the objective value
by 2 and |S| ≤ δα. Since we started with

∑

i xi = α, the solution returned has value at most
(1 + 2δ)α after the increase.

Theorem 5. For any ε ≤ 1
2 let T = O(1

ε3
log n). Using T + 1 passes and space O(nTε) and time

O(mT
ε) time we can find a (1− ε) approximation to the maximum cardinality matching in bipartite

graphs. This implies a 2
3(1−ε) result for general graphs using the integrality gap results of [14, 15].

Proof. We use the first pass to compute OPT to within factor 2 — this follows from the fact that
any maximal matching is a 2 approximation to the maximum cardinality matching. Suppose the
size of the maximal matching we found is q. We try all possible values of α = (1+ ε

3)
jq where j ≥ 0

and α ≤ 2q(1 + ε
3) in parallel. This corresponds to O(1ε) guesses of α.

Let δ = ε/12. Therefore ǫ = min{ δ4 ,
1
2} = ε/48 since ℓ = 1. Note, the parameters ǫ, ε are

different. We now apply the Algorithm 1 using Algorithm 2 as the oracle.

Let α0 to be the smallest value of α which is above OPT , i.e., α0 ≥ OPT > α0/(1+
ε
3). Consider

α ≤ α0/(1+
ε
3)

2 < OPT/(1+ ε
3). For any such value of α it is impossible that the oracle fails since

we return a feasible primal solution of value at most (1+2δ)α = (1+ε/6)α ≤ (1+ ε
6)OPT/(1+ ε

3) <
OPT . Therefore if we consider the largest value of α for which we do not return a feasible primal

8

solution, that value must satisfy α ≥ α0/(1 + ε
3)

2. Let this value be α∗. Using Theorem 1, after
T iterations we have a feasible dual solution ỹ. Note all bi = 1 and δ = ε/3. By construction
∑

(i,j)∈E ytij = α∗ for every t. Therefore

∑

(i,j)∈E

ỹij ≥
α∗

1 + ε
3

≥
α0

(1 + ε
3)

3
≥ (1− ε)α0 ≥ (1− ε)OPT

The time and space bounds follow easily. To find the actual matching: Let ε = ε′/2 and we
run the above steps to find a fractional solution. We find T matchings before we return the best
fractional solution, there are at most m′ = O(nT) non-zero entries in the solution. Focus on the
graph G′ defined by these edges only. The fractional solution of the original graph remains a
fractional solution in G′. We now have random access to these edges in G′ and can find a (1 − ε)
approximation to the best matching contained in these edges (which is at least the same value as
the fractional solution, we use the integrality of the bipartite matching polytope) in time Õ(m′)
using known algorithms [20, 24, 22]. The overall approximation is (1− ε)2 ≥ (1− ε′).

3.2 Abstracting the Oracle

The intuition behind the oracle, Algorithm 2 will be used for all the algorithms. Although it is
not difficult to see that the discussion about the oracle need not be limited to linear programs for
matching, we do not diverge from that topic in the interest of brevity. In Algorithm 2 we must
choose a subset S of edges which balances two critical properties:

Admissibility : Each vertex i is adjacent to at most one edge in S. The weights assigned to the
edges in S (note, they are identical for a specific iteration t) define the parameters ℓ, ρ. These
parameters determine the number of iterations.

Verification : Focusing on the violations in the primal solution allows us to produce a feasible
primal solution and verify α. For each violated edge (i, j) in the primal solution, we pick at
least one adjacent edge.

Any maximal matching in Eviolated satisfies both conditions. Since we consider the violated edges
only, the algorithm is natural. Observe that the multiplicative framework operates on dual vio-
lations whereas the oracle operated on primal violations. In a sense, the problem of finding the
maximum matching problem in bipartite graphs reduces to the problem of repeatedly finding max-
imal matchings in subgraphs defined by primal violations (corresponding to the edges). These
violations can be easily defined by a simple filtering conditions, for example, does the input edge
satisfy xi + xj < 1 using the current solution x of the primal, and can be implemented in the
semi-streaming model. We now proceed to discuss weighted graphs — observe that weights will
also arise naturally in the unweighted case as we improve Theorem 5.

3.3 The Not So Simple Case of MWM

Note that the input for weighted problems in the semi-streaming model is a sequence of tuples
{(i, j, wij)} and the weights do not have to be stored. We can easily compute a maximum matching
in a single pass using O(n) space and O(m) time. It is shown in [10] that we can compute a 1/6
approximation to the maximum weighted matching in a single pass using O(n) space and O(m)
time.

In a weighted graph, the verification condition must be strengthened to handle the complications
introduced by edge weights. In LP2, if we increase xi by 1, then all the edges adjacent to i are

9

satisfied. Therefore if only a few primal constraints were violated then we could produce a primal
feasible solution which is close to α. It is not true in LP4, we now have to increase xi by the amount
of violation. However trying to fix the verification condition by itself does not help, any change
also has to ensure the admissibility condition and a larger increase in xi corresponds to larger ρ.

Let w(S) =
∑

(i,j)∈S wij denote the total weight for any set of edges S. The oracle will search for
a set S of edges which satisfy the following:

Weighted Admissibility of S : There exists a matching S′ contained in S such that w(S′) =
Ω(w(S)). We use S′ to construct a dual witness. Since S′ is a matching we will have some
control over ℓ, ρ.

Weighted Verification of S : For each violated edge (i, j), we pick at least one edge adjacent to
it whose weight is Ω(wij). We need all of S to produce an upper bound of the primal solution.

Algorithm 3 Oracle for LP3.

1: Let xi =
α

∑

j u
t
j
uti.

2: Let Eviolated,k = {(i, j)|xi + xj < wij , α/2
k < wij ≤ α/2k−1}.

3: Find a maximal matching Sk in Eviolated,k for each k = 1, · · · , ⌈log n
δ ⌉ = O(log n).

4: Let S = ∪kSk,∆ = w(S).
5: if ∆ < δα then
6: For each (i, j) ∈ S, increase xi and xj by 2wij .
7: Further increase every xi by

δα
n . Return x and report failure.

8: else
9: S′ ← ∅.

10: repeat
11: Pick a heaviest edge (i, j) from S and add it to S′

12: Eliminate all edges adjacent to i or j from S.
13: until S = ∅
14: Return yij = α/w(S′) for (i, j) ∈ S′ and yij = 0 otherwise.
15: end if

In order to satisfy the modified conditions, we partition the edges depending on their weights.

Definition 2. An edge (i, j) is in tier k if α/2k < wij ≤ α/2k−1.

Algorithm 3 is the oracle for LP3. Before we prove the admissibility and verification conditions we
prove an useful lemma which is a property of the constraints.

Lemma 6. If y satisfies
∑

(i,j)∈E wijyij = α then for any weights ut, if we have xti = αuti/(
∑

j u
t
j)

then M(Dt,y) = 1
α

(

∑

(i,j)∈E yij(x
t
i + xtj − wij)

)

.

Proof. From the definition of M(Dt,y) we have:

αM(Dt,y) =
∑

i

xt
i(

∑

j:(i,j)∈E

yij − 1) =
∑

(i,j)∈E

yij(x
t
i + xt

j)−
∑

i

xt
i

=
∑

(i,j)∈E

yij(x
t
i + xt

j)−
∑

(i,j)∈E

wijyij =
∑

(i,j)∈E

yij(x
t
i + xt

j − wij)

The lemma follows.

10

Lemma 7. (Weighted Admissibility.) The matching S′ ⊆ S constructed by Algorithm 3 satisfies
w(S′) ≥ w(S)/5. As a consequence, if ∆ ≥ δα the Algorithm 3 returns an admissible dual witness
with ρ = 5

δ and ℓ = 1.

Proof. Observe that we choose at most one edge incident to i from each tier of weight. Consider
the matching S′ constructed by Algorithm 3. Suppose that (i, j) ∈ S′ is in tier k and consider the
edges Ai = {(i, j′)|(i, j′) ∈ S, j 6= j′} which are eliminated from S by the inclusion of this edge
(i, j) in S′. Each element in Ai has a lower weight than (i, j); otherwise we would have chosen that
eliminated edge instead of (i, j) (the weights cannot be equal since there cannot be any other edge
from tier k which is incident on i). Therefore the edges in Ai belong to tiers numbered k + 1 or
larger (since they have a lower weight). The weight of any ignored edge in tier k + q can be upper
bounded by wij/2

q−1. These weights add up to 2wij since we have at most one edge from each tier.
Therefore the sum of the weights of the edges in Ai, Aj amount to at most 4wij . Summing over all
(i, j) ∈ S′, w(S − S′) ≤ 4w(S′) and thus w(S′) ≥ w(S)/5.

For the second part of the lemma, observe that yij = α/w(S′) ≤ 5α/w(S) = 5α/∆ ≤ 5
δ . The

parameter ℓ remains 1 due to the same reason as in the proof of Lemma 3. We observe that (since
yij = 0 for (i, j) 6∈ S′);

cTy =
∑

(i,j)

wijyij =
∑

(i,j)∈S′

wijyij =
∑

(i,j)∈S′

wij
α

w(S′)
=

α

w(S′)
w(S′) = α

Applying Lemma 6 we immediately get αM(Dt,y) =
∑

(i,j)∈E yij(x
t
i+xtj−wij). Now if xti+xtj−wij ≥

0 then yij = 0 by construction. or in other words, M(Dt,y) ≤ 0 ≤ δ. The lemma follows.

Lemma 8. (Weighted Verification.) For every violated edge (i, j) in one of the O(log n) tiers, we
pick at least one edge in S adjacent to (i, j) whose weight is at least wij/2. As a consequence, if
∆ < δα then the algorithm returns a feasible primal solution for LP3 with value at most (1+ 5δ)α.

Proof. Suppose that (i, j) is violated in tier k. Then, since Sk is a maximal matching, we must
have chosen at least one edge in Sk which is adjacent to i or j. The weight of that chosen edge
in Sk has to be at least wij/2 since the weights of two edges that belong to the same tier differ at
most by a factor of 2.

For the second part of the proof we follow the argument in Lemma 4, with one change. Suppose
that xi + xj < wij for an edge (i, j) ∈ E. We have two cases, either the edge was chosen in one
of the tiers (say k) or wij ≤ δα/n. The second case is easier, since we increase each xi by at least
δα/n, we definitely satisfy the constraint for (i, j) in this case.

For the first case, observe that in the first part of the lemma we proved that we selected an
edge e ∈ S incident on i or j with weight we ≥ wij/2. Therefore we increased xi or xj by at least
2we ≥ wij. We satisfy the constraint for (i, j) in this case as well. Therefore x is feasible.

For each edge (i, j) ∈ S, we increase
∑

i xi by 4wij . Therefore over all the edges we increase
∑

i xi by 4w(S) = 4∆. Since we started with
∑

i xi = α we have
∑

i xi = α + 4∆ < (1 + 4δ)α
after we increase xi based on the edges. We now have an additional increase in xi which adds δα
to

∑

i xi. The lemma follows.

The rest of the argument is almost identical to MCM and proof of Theorem 5 with four changes:
(i) ρ increases to 5

δ from 1
δ (ii) we need to set δ = ε/30 since the primal feasible solution returned

is at most (1 + 5δ)α (iii) we start with the 1/6 approximation provided by [10] which uses O(n)
space and (iv) for the final rounding scheme we use the recent result of [5]. The space bound
increases since the oracle now uses O(n log n) space (and as before we have O(1ε) oracles being run
in parallel).

11

Theorem 9. For any ε ≤ 1
2 in T = O(1

ε3
log n) passes, and O(nTε + n

ε log n) space we can compute
a (1− ε) approximation for maximum weighted matching in bipartite graphs.

4 Reducing the Space Requirement and the Number of Passes

So far we have not used the fact that we are trying to solve the same LP for different guesses of the
parameter α. Moreover we have used one pass for each invocation of the oracle. The number of
passes is equal to the number of iterations plus one; the first pass is used to guess the values of α. In
this section, we first reduce the space required to manage the multiple guesses of α. Subsequently,
we reduce the number of passes by executing multiple iterations of the algorithm in one pass – this
can be viewed as making a “step” which is significantly larger than what is provided by the basic
analysis in the previous section. We focus on the weighted case.

4.1 Reducing the Space Requirement

In what follows we show how to preserve the admissibility condition across different values of the
guessed parameter α, and run the O(1ε) guesses (in Theorem 9) in parallel without increasing the
space requirement by a factor O(1ε). The key intuition is that we are trying to find feasible solutions
for the same instance of LP4 but different values of the objective function. If in a single iteration
we make progress for a large value of α then we also make progress for a smaller value of α.

Observe that the proofs of Theorem 5 and 9 use the largest value of α for which we have not
produced a feasible primal solution. Suppose that we can prove that we would make the same
choices for different values of α. Then, when we produce a feasible primal solution for some guess
of α (the oracle fails), it may be that for a smaller guess of α the oracle does not fail. We can
continue with the smaller guess of α, as if the larger guess was never made! Therefore we will avoid
running separate oracles for the different guesses of α and thereby save space. We begin with the
following definition:

Definition 3. A sequence y1,y2, · · · ,yt is admissible if all y are admissible when we apply
y1,y2, · · · ,yt in the given order.

Lemma 10. Let α,α′ be guesses of the optimal solution with α > α′. If a sequence y1,y2, · · · ,yt

is admissible for α, the sequence is also admissible for α′.

Proof. Consider running the two copies of the Algorithm 1: for the values of α and α′. Observe
that M(i,y) only depends on y and therefore the parameters ℓ, ρ do not depend on α,α′. Moreover
the actual weights of the edges do not change and therefore for any vector y if cTy ≥ α then
cTy > α′.

Therefore to show admissibility, it suffices to prove that M(Dq,yq) ≤ δ for all q ≤ t for the
smaller value α′ assuming that yq satisfied M(Dq,yq) ≤ δ for all q ≤ t for the larger value α. We
prove this using induction.

Initially u is same for both copies of the algorithm (as described so far, we have used ui1 = 1,
but we will be changing this in the next section). Now M(D1,y1) = 1

∑

j u
1
j

∑

i u
1
iM(i,y1) and is

independent of α. Therefore y1 is admissible for α′. This proves the base case.
Suppose that we have proven the hypothesis up to q = k and we apply y1, · · · ,yk to both the

algorithms corresponding to α and α′. Observe that ρ,M(i,y) are unchanged and therefore the
weights uk+1

i is the same for both α and α′. But M(Dk+1,yk+1) = 1
∑

j u
k+1
j

∑

i u
k+1
i M(i,yk+1) and

12

for all i both algorithms have the same value of 1
∑

j u
k+1
j

uk+1
i and M(i,yk+1) since these quantities

are independent of α. Therefore yk+1 is also admissible for α′. The lemma follows by induction.

The algorithm: We start with α being the upper bound of the maximum matching. Each time
the oracle fails, we reduce α by (1 + ε

3) factor while keeping the weights of constraints and {yt}
fixed. This is possible since the sequence of y remains admissible with the same width parameter.
The total number of successful iterations remains the same but we need an additional iteration for
each time the oracle reports failure. However we only have to provision for solving one copy of the
oracle.

Algorithm 4 Improved Algorithm for MWM (reducing space).

1: In one pass, find a 6 approximate maximum matching using [10] and let α0 be the weight of
the matching.

2: u1i = 1 for all i ∈ [n] and α = 6α0

3: for t = 1 to T do
4: Given uti, run the oracle (Algorithm 3).
5: If the oracle failed decrease α by factor (1 + ε

3) and repeat line 4.
6: Let M(i,yt) = Aiy

t − bi. (y is an admissible dual witness now)

7: ut+1
i =

{

uti(1 + ǫ)M(i,yt)/ρ if M(i,yt) ≥ 0

uti(1− ǫ)−M(i,yt)/ρ if M(i,yt) < 0
8: end for
9: Output 1

T
1

1+4δ

∑

t y
t.

We can now show that Theorem 9 holds with space O(n(T +log n)), but uses T ′ = T +O(1ε) passes.
Formally,

Theorem 11. For any ε ≤ 1
2 in T = O(1

ε3
log n) passes, and O(n(T +log n)) space we can compute

a (1− ε) approximation for maximum weighted matching in bipartite graphs.

4.2 Reducing the number of passes

Consider the two conditions for the oracle given in the previous section, and for the sake of example,
consider the cardinality case. Suppose that we just performed an update based on a dual witness
y. Observe that xt = x(ut) and for the next step, the admissibility condition (M(Dt,y) ≤ 0 ≤ δ)
remains satisfied as long as the edges (i, j) in y satisfy xti + xtj < 1. Therefore as a new approach,
we do not invoke the oracle again as long as we have such a solution. In other words, we can use the
same matching returned as a dual witness for multiple iterations or until one of its edges satisfies
the corresponding primal constraint xi + xj ≥ 1.

Therefore it appears that we can simulate multiple iterations in a single pass. But if xi + xj
is close to 1 then this idea need not be useful because we may satisfy that edge in a single step.
Observe that this idea automatically brings up the notion of weights even in the context of MCM.
The high-level idea for the oracle is similar to the construction in Section 3 – but there are significant
differences and two major issues arise.

• First, we cannot use uniform values for the entries of y as in Section 3, even in the setting of
MCM. Suppose that S contains (i, j) and (i′, j′) where 1−xi′−xj′ is greater than 1−xi−xj.
If we assign large values to yij and yi′j′ , it decreases the number of iterations per pass (due
to normalization the xi for the matched edges rise quickly, and we satisfy the constraint). If

13

we assign small values to yij and yi′j′, it increases the total number of iterations and it may
also result in inadmissible y, i.e., cTy < α.

• Second, we have to modify the verification condition in Section 3 so that the condition handles
the values of wij−xi−xj and keep the increase of the solution minimal. For example, (again
using the cardinality case as an example) increasing the value of xi and xj less than 1 in the
verification step can result in an infeasible primal solution. On the other hand, increasing xi
and xj by 1 can result in a larger approximation factor.

In what follows, we avoid both the issues by defining the tier of an edge based on the violation
instead of the edge weight. Moreover we ensure that for different edges (i, j) the yij values are
different — this can be viewed as setting wijyij proportional to the violation in (i, j). Therefore
the accounting for the admissibility and verification conditions are different.

Definition 4. Define vij = wij − xi − xj to be the (primal) violation of an edge (i, j) ∈ E (the
edge is not violated if vij < 0). An edge (i, j) is in violation-tier k if α/2k < vij ≤ α/2k−1.
Observe that if α ≥ maxi,j wij then vij ≤ wij. For any set of edges S, define V (S) =

∑

(i,j)∈S vij.
Define ṽij = max{vij/wij , 0}.

The improved oracle is given in Algorithm 5.

Algorithm 5 Improved Oracle for LP3.

1: Let xi =
α

∑

j u
t
j
uti.

2: Let Eviolated,k = {(i, j)|(i, j) is in violation-tier k}. for k = 1, · · · ,K = ⌈log2
n
δ ⌉

3: Find a maximal matching Sk in each Eviolated,k .
4: Let S = ∪kSkand ∆V = V (S).
5: if ∆V < δα then
6: For each (i, j) ∈ S, increase xi and xj by 2vij .
7: Further increase all xi by

δα
n . Return x and report failure.

8: else
9: S′ ← ∅.

10: repeat
11: Pick a edge (i, j) from S with largest vij and add it to S′

12: Eliminate all edges adjacent to i or j from S.
13: until S = ∅
14: Let ∆′

V = V (S′).
15: Return yij = ṽijα/∆

′
V for (i, j) ∈ S′ and yij = 0 otherwise.

16: end if

Lemma 12. In Algorithm 5, if ∆V ≥ δα then we have a matching y such that
∑

(i,j)∈E wijyij = α,

and for all i either M(i,y) = −1 or M(i,y) ≤ 5
δ ṽij − 1 where (i, j) ∈ S′. As a consequence if

∆V ≥ δα then Algorithm 5 returns an admissible solution with ℓ = 1 and ρ = 5
δ .

Proof. The proof is similar to the proof of Lemma 7, except that we will use violations (whereas
the proof of Lemma 7 used the weights). Observe that since yij = 0 if (i, j) 6∈ S′ we have

∑

(i,j)∈E

wijyij =
∑

(i,j)∈S′

wijyij =
∑

(i,j)∈S′

wij
ṽijα

∆′
=

α

∆′
V

∑

(i,j)∈S′

vij = α

Note
∑

i xi = α =
∑

(i,j)∈E wijyij (observe α is not changed within an iteration).

14

Now suppose that (i, j) ∈ S′ is in tier k and consider edges adjacent to i. All of them are in tier
k + 1 or higher and for each tier we have at most two edges (one adjacent to i and one adjacent
to j) because we pick a maximal matching for each tier. So the total violation of edges that are

eliminated by (i, j) is
∑∞

k′=1
2vij
2k′−1

≤ 4vij . This shows that V (S − S′) ≤ 4V (S′) and therefore

V (S′) ≥ V (S)/5. Hence α/∆′
V ≤ 5α/∆V ≤ 5/δ (otherwise the oracle has failed).

Now M(i,y) =
∑

j:(i,j)∈E yij − 1. Therefore if i is unmatched in S′ we have M(i,y) = −1.

Otherwise M(i,y) = yij − 1 = ṽijα/∆
′
V − 1 ≤ 5

δ ṽij − 1 where (i, j) ∈ S′. This proves the first part
of the lemma.

For the second part observe that cTy =
∑

(i,j)∈E wijyij = α. Using Lemma 6 we have

αM(Dt,y) ≤
∑

(i,j)∈E yij(x
t
i + xtj − wij). Now if xti + xtj − wij ≥ 0 then yij = 0 by construc-

tion. Therefore αM(Dt,y) ≤ 0 and so M(i,y) ≤ 0 ≤ δ. Finally 0 ≤ tvij ≤ 1 and therefore
−1 ≤ M(i,y) ≤ 5

δ . The lemma follows.

Lemma 13. If ∆V < δα, then Algorithm 5 returns a feasible solution for LP3 with value at most
(1 + 5δ)α.

Proof. The proof follows similar arguments as in the proof of Lemma 8; except that we use violations
in this proof instead of weights (as in the proof of Lemma 8). We consider the normalized weights x
as a primal candidate for LP3. If the oracle fails, we augment x to obtain a feasible primal solution
with a small increase.

Suppose that (i, j) is in violation-tier k. Since Sk was maximal, there exists an edge that is
adjacent to either i or j. So xi or xj is increased by at least α/2k−1 and the constraint is satisfied.
If (i, j) did not belong to any of the violation-tiers then its violation was less than δα/n and since
xi, xj are increased by δα/n this constraint is also satisfied.

For each edge (i, j) ∈ S, we increase the objective value by 2vij and
∑

(i,j)∈S vij = ∆V < δα.
Finally, we increase all xi by δα/n which increases the objective value by at most δα. So our primal
solution has value at most (1 + 5δ)α.

The next lemma is the central idea in this subsection. Consider running Algorithm 4, but with
Algorithm 5 as the oracle instead of Algorithm 3. Based on Lemmas 12 and 13, and Theorem 11
we know that in T = O(1

ε3
log n) iterations we will find a (1 − ǫ) approximation of the maximum

weighted matching. Surprisingly, we will now prove that even if we do not update the witness y
for 1

δ steps, the witness remains admissible!

Lemma 14. Consider running Algorithm 4, but with Algorithm 5 as the oracle instead of Algo-
rithm 3. If the dual witness y computed by the Algorithm 5) in iteration t is admissible, then y
remains admissible for all iterations t+ q where q ≤ 1/δ.

Proof. Since y was admissible (in any iteration) −ℓ ≤ M(i,y) ≤ ρ. Since y was computed in
iteration t we know from the proof of Lemma 12 that

∑

(i,j)∈E wijyij = α and M(i,y)/ρ ≤ ṽtij .

We use ṽtij to indicate that the fractional violation that was used to determine yij. Note that
wij(1− ṽij) = xti + xtj . Also note 0 < ṽij ≤ 1 for a violated edge.

Note that even though we are not updating y across the iterations, u,x are being updated
(using the same y at every step) and we need to prove M(Dt+q,y) ≤ δ for every t + q where
q ≤ 1/δ.

Then by Lemma 6,

Mq(D
t+q,y) =

1

α

∑

(i,j)∈E

wijyij
xt+q
i + xt+q

j − wij

wij

15

and since
∑

(i,j)∈E wijyij = α, it is sufficient to show that
xt+q
i +xt+q

j −wij

wij
≤ δ for yij 6= 0. This

means that we need to focus on the edges in the matching S′ only, since all other edges have yij = 0.

In the following xt+q refers to the iterations of Algorithm 4 using the witness y at every step.
Note ǫ = δ/4ℓ (since we will eventually set δ ≪ 1, and therefore ǫ≪ 1

2) and ℓ = 1. Note that

xt+1
i ≤

(1 + δ/4)ṽij

(1− δ/4)δ/5
xt
i =⇒ xt+q

i ≤ xt
i

(1 + δ/4)qṽij

(1− δ/4)qδ/5

The inequality on the left follows from ρ = 5/δ. Note that we have the 1/(1−δ/4)δ/5 term because
we decrease the weight of the unmatched vertices and then renormalize the total weight to α (we are
inductively assuming that we did not report failure up to iteration t+ q− 1). The renormalization
effectively increases the weight of the matched vertices by the same factor. For any δ > 0 and
q ≤ 1/δ, we have (1+ δ/4)q ≤ (1+ δ/4)1/δ < e1/4 < 2 and 1/(1− δ/4)qδ/5 ≤ 1/(1− δ/4)1/5 ≤ 1+ δ.
Therefore,

xt+q
i + xt+q

j ≤ (xt
i + xt

j)
(1 + δ/4)qṽij

(1− δ/4)qδ/5
≤ (xt

i + xt
j)2

ṽt
ij (1 + δ)

Since 2ṽ
t
ij ≤ 1 + ṽtij for 0 < ṽtij ≤ 1 and (xti + xtj) = wij(1− ṽtij) we have:

xt+q
i + xt+q

j ≤ wij(1− ṽij)(1 + ṽij)(1 + δ) ≤ wij(1 + δ)

This implies that
xt+q
i +xt+q

j −wij

wij
≤ δ for all yij 6= 0 and therefore Mq(D

t+q,y) ≤ δ. Now we can

claim using using induction that y remains admissible for all q ≤ 1/δ iterations (the inductive
hypothesis was necessary to ensure that α did not change). The lemma follows.

Algorithm 6 Overall Algorithm for MWM.

1: In one pass, find a 6 approximate maximum matching using [10] and let α0 be the weight of
the matching. Also ensure α0 ≥ wij for all (i, j) ∈ E.

2: u1i = 1 for all i ∈ [n] and α = 6α0

3: for t = 1 to T do
4: Given uti, run the oracle (Algorithm 5).
5: If the oracle failed decrease α by factor (1 + ε

3) and repeat line 4.
6: Let M(i,yt) = Aiy

t − bi. (y is an admissible dual witness now)

7: ut+1
i =

{

uti(1 + ǫ)M(i,yt)/5 if M(i,yt) ≥ 0

uti(1− ǫ)−M(i,yt)/5 if M(i,yt) < 0
8: end for
9: Output 1

T
1

1+4δ

∑

t y
t.

Theorem 15. Theorem 11 holds with T = O(1
ε2

log n) (and with T +1 passes) using Algorithm 6.

Proof. We use Lemma 14 repeatedly. We can compute y1 (using Algorithm 4 and Algorithm 5
as oracle and use it for the next 1

δ iterations. Observe that Lemma 14 shows that we cannot
report failure within these 1

δ iterations and α cannot change. Repeating the same argument we
compute the witness only for every 1

δ iterations. Observe that the overall algorithm simplifies to
the description given in Algorithm 6.

Therefore we have O(δ
ε3 log n) = O(1

ε2 log n) actual computations of the dual witness, we have
a (1 − ε) approximation, where δ = ε/30. Computation of each y requires a pass. Note that we
may need to repeat an iteration if the y was not admissible (as in Theorem 11) — but this only
adds O(1ε) iterations. The space requirement is O(n(T + log n)) since we need to only remember
the different y values we computed.

16

5 Removing the Dependency on n

In this section, we present algorithms for MCM and MWM where the number of passes does not
depend on the number of nodes. In each case we use the Algorithm 6 but we use a subgraph of the
input graph and apply further analysis to bound the number of iterations T . Moreover, instead of
starting from an initial state u1i = 1 we will start the algorithm with different values of u1i .

We will also need to use the Corollary 2 instead of Theorem 1. Recall that the number of iter-
ations of the multiplicative weight update framework is O(1

δ3
(lnmaxi

Ψi

Υ1
i
)) where Υt

i = uti/(
∑

j u
t
j)

and Ψi is the upper bound of Υt
i. Of these, 1

δ iterations can be performed in a single pass. In what

follows, we will reduce or bound the (lnmaxi
Ψi

Υ1
i
) term. The key observation we will use in this

regard is the following Lemma:

Lemma 16. If u1i ≥ wij for all (i, j) ∈ E then during the execution of Algorithm 6, xi ≤ 2u1i .

Proof. As the parameter α is decreased in Algorithm 6, (because a larger value of α ended up
returning a primal feasible solution and so we are now decreasing α) the value of xi decreases
because u remains unchanged but α decreases. Thus it suffices to analyze the case when we do not
change α.

We first observe that if xti ≥ wij for all (i, j) ∈ E then vertex i is not involved in any violations.
Then no edge adjacent to i can be chosen in y and we will have M(i,y) =

∑

j:(i,j)∈E yij − 1 = −1.

Then we will be setting ut+1
i = uti(1 − ǫ)1/5 (based on the subroutine Algorithm 6). Moreover

observe that
∑

j u
t+1
j ≥

∑

j(1− ǫ)1/5utj , since for every j we have M(j,y) ≥ −1. Therefore,

xt+1
i =

αut+1
i

∑

j u
t+1
j

=
αut

i(1− ǫ)1/5
∑

j u
t+1
j

≤
αut

i(1− ǫ)1/5
∑

j(1− ǫ)1/5ut
j

=
αut

i
∑

j u
t
j

= xt
i

Therefore xi can increase only if it is involved in some violation. But then xi < wij ≤ u1i . So the
maximum value xi can achieve is when it is increased in a single step of Algorithm 6 to above u1i .
The maximum value ut+1

i /uti in a step of Algorithm 6 is (1+ǫ)M(i,y)/5 ≤ (1+ǫ)1/δ . Note that ǫ ≤ δ
4ℓ

and therefore (1 + ǫ)1/δ ≤ e1/4. However we may also be decreasing
∑

i u
t
i; which can decrease by

a factor (1 − ǫ)1/5. Therefore xi, which is the relative contribution of ui to
∑

i ui can increase at
most by a factor of e1/4(1− ǫ)−1/5 which is at most 2 for ǫ ≤ 1

2 . The lemma follows.

In Algorithm 6 Υt
i = xti/α. Note α ≥ OPT/6 after the first pass where OPT is the maximum

weighted matching. Therefore if u1i ≥ wij for all (i, j) ∈ E then using Lemma 16 Ψi ≤
12u1

i
OPT and

Ψi

Υ1
i
≤

12(
∑

j u
1
j)

OPT = O(
(
∑

j u
1
j)

OPT); where the last fact follows from the fact that
∑

j u
1
j ≥ 2OPT since

each wij is less than u1i , u
1
j . Setting δ = ε/30 we get a variant of Theorem 15 as follows:

Theorem 17. If wij ≤ u1i for all edges (i, j) ∈ E then for any ε ≤ 1
2 in T passes where T =

O(1
ε2

log
(
∑

j u
1
j)

OPT), and O(n(T +log n)) space we can compute a (1− ε) approximation for maximum
weighted matching in bipartite graphs.

5.1 The Simple Case of MCM

In this context OPT denotes the size of the maximum cardinality matching in G. Consider the
Algorithm 7 and the following lemma:

Lemma 18. Let OPTS denote the size of maximum matching in the subgraph induced by the vertex
set S ⊆ V , then (using the notation of Algorithm 7), we have OPT−OPTSt+2 ≤

2
3(OPT −OPTSt).

This proof does not use bipartiteness.

17

Algorithm 7 A constant pass algorithm for maximum cardinality matching

1: Find a maximal matching and find a 2 approximation of OPT .
2: Let S0 be the set of vertices that are matched.

3: for t = 1 to
⌈

log(2/ε′)
log(3/2)

⌉

do

4: Find a maximal matching between St−1 and V − St−1. Let Tt be the set of vertices in the
maximal matching.

5: St = St−1 ∪ Tt.
6: end for
7: Let G′ be a subgraph induced by ST . This can be achieved by filtering the stream.
8: Run Algorithm 6 on G′

Proof. Fix an optimal solution in the original graph G and an optimal solution in the subgraph
induced by St. From the difference of two matchings, we can find OPT − OPTSt vertex disjoint
augmenting paths, say P. We show that at least 1

3 |P| vertex disjoint augmenting paths are included
in the graph induced by St+2.

Order the vertex disjoint augmenting paths P arbitrarily. Let i′ − i − Z − j − j′ be the first
path (where Z is some sequence of vertices in St). Then i′, j′ 6∈ St and i′ 6= j′. In what follows we
will show the condition C : we have an augmentation path i′′ − i−Z − j − j′′ available in St+2 for
some i′′ 6= j′′, i′′, j′′ ∈ V − St and i′′, j′′ ∈ St+2. (Note {i

′, j′} can intersect {i′′, j′′}.)
If we prove this condition C, then any augmentation path we find can remove at most two

additional paths in P (since i′′, j′′ are now unavailable). Therefore we can find at least 1
3 |P|

augmentations in St+2. This means that OPTSt+2 ≥ OPTSt +
1
3 (OPT −OPTSt) and therefore

OPT −OPTSt+2 ≤ OPT −

(

OPTSt
+

1

3
(OPT −OPTSt

)

)

Therefore if we prove this condition C the lemma follows. We now prove the condition C. If both
i′, j′ were included in the matching in step t+ 1 or t+ 2 then the condition holds with i′′ = i′ and
j′′ = j′ since we consider all edges in the induced subgraph. Therefore at least one of them, say i′,
was not included in any of the two maximal matching in steps t+ 1, t+ 2. This means that i was
matched to some ĩ1 in step t+ 1 and some ĩ2 in step t+ 2 with ĩ1 6= ĩ2. If j

′ 6= ĩ1 then j or j′ was
matched in step t+ 1 since the edge (j, j′) was available. If j′ was matched then the condition is
satisfied with i′′ = ĩ1 and j′′ = j′. Otherwise j was matched, say to j′′, in step t + 1 and j′′ 6= ĩ1
since i is matched to ĩ1 in the same matching. The condition is satisfied with i′′ = ĩ1. Therefore
the only remaining case is j′ = ĩ1, but then the condition is satisfied with i′′ = ĩ2 and j′′ = j′.
Therefore the lemma follows.

If Lemma 18 is repeated as many times as in Algorithm 7, the difference between OPT (the
size of the optimal matching in G) and the optimal solution in the subgraph G′ is at most
(

2
3

)(log 2
ε′
)/(log 3

2
)
= 2− log 2

ε′ = ε′/2 times OPT (notice that OPT −OPTS0 ≤ OPT since we started
with a 2 approximation). Therefore G′ now contains a (1 − ε′/2) approximation of the maximum
matching in G. The size of each maximal matching is O(|OPT |) and we repeat O(log 1

ε), the
subgraph contains at most O(|OPT | log 1

ε) vertices. The number of passes to find the subgraph is
O(log 1

ε) since we can find a maximal matching in one pass. Using Theorem 17 we have:

Theorem 19. For any ε ≤ 1
2 Algorithm 7 provides a (1 − ε) approximation for the maximum

cardinality matching problem in bipartite graphs using T = O(1
ε2

log log 1
ε) passes, and O(n′(T +

log n′)) space where n′ = min{n, |OPT | log 1
ε}. This implies a 2

3(1 − ε) result for general graphs

18

using the integrality gap results of [14, 15]. The size of the matching can be computed in O(n′ log n′)
space.

Observe that to estimate the size we only need to remember G′ and the u both of which can
be done using O(n′) space. The oracle (Algorithm 5) requires O(n′ log n′) space.

5.2 The Not So Simple Case of MWM

The weighted case is significantly more difficult than the unweighted case. The subgraph will now
be expressed implicitly using the vertex weights ui as proxy. In the language of Linear Programming
this means that, instead of staring from an uniform random sample of the constraints, we will start
from a weighted sample. Let the maximum weighted matching beM.

Before proceeding further, for the rest of this section we assume that the weights are discrete,
i.e., wij ∈ {1, (1 + ν), · · · , (1 + ν)L} where L = O(1ν log

n
ν) to simplify the analysis for ν ≤ 1/6.

This can be achieved in three steps and a single pass by: (i) using a single pass to find both a 1
6

approximation of w(M) using the algorithm of [10], and the maximum weight edge. Denote the
larger of these two values by w′ (which is a lower bound on the weight of M). (ii) deciding to
ignore all edges of weight νw′/n and (iii) deciding to multiply all edge weights by n/(νw′) and the
performing the discretization by rounding down. Given any matching in this scaled setting, we
have a matching in the original setting which is related by a simple scaling factor. Note that the
discretization of the weights reduces the optimal solution by at most (1− ν) factor.

Given a discretized set of edges we run Algorithm 8. The Algorithm 8 that computes the
weights of the vertices is similar to Algorithm 7, but is significantly non-trivial. Let M′ denote
the maximum weight matching in this new discretized setting and its weight be w(M′). We ensure
that:

C1:
∑

i u
1
i =

(

36
ν3

ln 1
ν

)

w(M′).

C2: Let G′ = (V,E′) be a subgraph that consists of edges (i, j) such that wij ≤ u1i , u
1
j . Then, G

′

contains a matching with weight at least (1− 3ν)w(M′).

Hence, using Theorem 17 we obtain an (1 − ε)-approximation of the maximum matching M′′ in
G′ in O(1

ε2
log 1

ν) passes. Then using C2 we would have a (1 − 3ν)(1 − ε) approximation for the
maximum weight matchingM′ in G′. This corresponds to a (1−3ν)(1−ε)(1−ν) approximation for
the maximum weight matchingM in G — the weights in the original graph are scaled differently,
but the relationship is one-to-one. Setting ν = ε′

8 and ε = ε′/2 we would get a (1−ε′) approximation
ofM (for all ε′ ≤ 1

2). We now proceed to ensure C1 and C2.

Lemma 20. (Condition C1.)
∑

i u
1
i =

(

36
ν3

ln 1
ν

)

w(M′). Bipartiteness is not used in this proof.

Proof. For a vertex i define k(i) to be the maximum k with i ∈ Sq
k. Therefore u1i = (1 + ν)k(i). In

what follows we will show a charging scheme where we charge u1i to different edges inM′. Consider
the edge ei = (i, j) that caused the inclusion of i to Sq

k(i). Note that |N (i′, k′)| ≤ q for all i′, k′.

At least one of i and j must be matched inM′, otherwiseM′ is not optimal. Moreover either
i or j must have an edge adjacent to it inM′ with weight at least 1

2(1 + ν)k(i) (otherwise we can
remove both those edges and add ei to increase the weight of M′). Let the edge with the larger
weight (between the two possible edges inM′ adjacent to i, j) be f(ei). We charge f(ei) the value
u1i . Note that f(ei), ei are adjacent.

Now consider an edge e = (i′, j′) ∈ M′ with we = (1 + ν)k. This collects a charge for any

vertex i in level k(i) such that 1
2(1 + ν)k(i) ≤ (1 + ν)k = we. In each such level k(i), we can have

19

Algorithm 8 A constant pass algorithm for maximum weighted matching.

1: (i, j) is in level k if wij = (1 + ν)k

2: for each level k = 0, 1, · · · , L in parallel do
3: Find a maximal matching E0

k .
4: Let Ck be the set of nodes matched in the maximal matching.
5: Let S1

k = Ck

6: for t = 1 to q = 8⌈ 1
ν2

ln 1
ν ⌉ do

7: Find a maximal matching Et
k between Ck and V − St

k.
8: Let T t

k be the set of nodes matched in the maximal matching.
9: St+1

k = St
k ∪ T t

k.
10: end for
11: Let N (i, k) denote the neighbors of vertex i in ∪qt=0E

t
k.

12: end for
13: Let u1i = (1 + ν)k for the maximum k with i ∈ Sq

k

14: Let G′ = (V,E′) where E′ = {(i, j) : wij ≤ u1i , u
1
j}.

15: Run Algorithm 6 on G′ with initial weights u1i and return its result.

e = f(ei) for at most 2q+2 different vertices i since ei, e must be adjacent. If ei = (i′, i) then there
are at most q + 1 possibilities for i (including i′). This is because either i = i′ or i ∈ N (i′, k(i))
and |N (i′, k(i))| ≤ q. Counting the ei that arise from j′ as well, we know that e = f(ei) for at
most 2q + 2 vertices i. Therefore the charge on e from vertices i with the largest value of k(i)

is 2(q + 1)2we. From the vertices that are in the immediately lower level, the charge is 4(q+1)we

(1+ν) .

Summing over all the levels, the charge is

4(q + 1)we

(

1 +
1

1 + ν
+

1

(1 + ν)2
+ · · ·

)

≤
4(q + 1)

ν
we

Summing over all edges inM′, since 4(q+1)
ν ≤ 36

ν3 ln
1
ν we have the desired result (we use the fact

that q + 1 ≤ 9q
8).

Lemma 21. (Condition C2.) G′ contains a matching with weight at least (1− 3ν)w(M′).

Proof. We start with M′ and modify it into a matching F so that F contains only the edges in
G′. We charge the loss induced by the modification to the edges inM′ ∪ F . We first describe the
modification procedure:

1. Initially M =M′. F = ∅. We will maintain M ∪ F to be a matching.

2. Pick the edge in M with the highest weight. Let this edge be e = (i, j) with weight we =
(1 + ν)k in level k. Since E0

k was a maximal matching, either i or j is in Ck. Without loss of
generality, let it be i. Thus k(i) ≥ k. If k(j) ≥ k then both u1i , u

1
j are at least we and e ∈ G′.

We add (i, j) to F and remove (i, j) from M . Therefore it suffices to consider k(j) < k and
j 6∈ Sq

k then i has at least q neighbors in Sq
k and N (i, k) = q; since the edge (i, j) was available

for potential inclusion in the q maximal matching.

(a) If there is i′ ∈ N (i, k) that is not matched in M or F . Then k(i′) ≥ k and (i, i′) ∈ G′.
Add (i, i′) to F and remove (i, j) from M .

(b) Otherwise all i′ ∈ N (i, k) is matched in M or F . If i′ is matched in M denote its partner
to be σ(i′,M). Otherwise i′ is matched in F and denote its partner as σ(i′,F).

20

i. If there exists at least q/2 vertices (q is even) in N (i, k) which are matched in F ,
then delete (i, j) from M and every (i′, σ(i′,F)) where i′ ∈ N (i, k) a red charge of
2
qwe.

ii. If there exists i′ ∈ N (i, k) which is matched in M and its weight w((i′, σ(i′,M))) <
νwe, then we delete both (i, j) and (i′, σ(i′,M)) from M and add (i′, i) to F . Note
(i′, i) ∈ G′. Then (i′, i) collects a green charge of w((i′, σ(i′,M))).

iii. Otherwise, there exists at least q/2 vertices in N (i, k) which are matched in M , let
this set be Qi. Find the smallest weight edge in M incident on a vertex in Qi, let
that vertex be i0. Delete both (i, j) and (i0, σ(i0,M)) from M and add (i, i0) to F .
Each edge (i′, σ(i′,M)) where i′ ∈ N (i, k) receives a blue charge of 2

qw0.

Observe that the sets N (i, k) are disjoint for a fixed k. This is because the matched vertices
St
k are ruled out from participating in step t + 1 or later. Observe that the edges are added to F

in non-increasing order of weight. Moreover, during the execution of the above procedure, at any
point we have the invariant I: that every edge in F has a weight at least at least as much as the
heaviest weight edge in M .

The red charges are collected by edges in F . Consider edge e ∈ F with we = (1 + ν)k. Edge e
collects a red charge from edge e′ if we′ ≤ we. This is a consequence of the invariant I. Moreover,
for each k′ ≤ k the edge e can collect 2 such red charges for edges e′. This is because the two
endpoints can be in N (i, k′) for at most 2 different choices of i (this is a consequence of N (i, k′)
being disjoint for a fixed k). The charge collected due to edges e′ in level k′ is 22

q (1 + ν)k
′
. The

the total red charge collected by e can be bound by
∑k

k′=0 2
2
q (1 + ν)k

′

≤ 4
νq (1 + ν)k = 4

νqwe. The

overall red charge sums to 4
νqw(F).

The green charges are collected by edges in F . Edge e ∈ F collects a green charge from edge
e′ if we′ ≤ νwe. Moreover, this charge is collected at most once. Therefore the total green charge
is νw(F).

The blue charges are collected by the edges inM′. Consider edge e ∈ M′ with we = (1 + ν)k

which collect a blue charge when edge e′ was the heaviest weight edge in M which was deleted
from M along with e′′. Observe that since we were considering the edges in M in decreasing order
of weight, we′ ≥ we. Moreover we ≥ we′′ , otherwise we would have deleted e and charged e′′ in
that step. And finally, we′′ ≥ νwe′ , otherwise we would be in the green case. Therefore we have
we ≥ νwe′ and the edge e is charged at most 2

qwe′ ≤
2
qwe.

Let we′ = (1+ν)k
′

then (1+ν)k
′

≥ (1+ν)k ≥ ν(1+ν)k
′

and we have 0 ≤ k′−k ≤
ln 1

ν
ln(1+ν) ≤

2
ν ln

1
ν .

The edge e can collect 2 such blue charges for edges e′ in level k′ (again follows from N (i, k′) being
disjoint). The total blue charge on edge e is at most (2ν ln

1
ν)2

2
qwe = (8

νq ln
1
ν)we. The overall blue

charge sums to at most
(

8
νq ln

1
ν

)

w(M).

Observe that we maintained that w(M′) = w(F) +A where A is the total charge. Putting the
charges together, we have

w(M′) ≤ w(F) +
4

νq
w(F) + νw(F) +

8

νq
ln

1

ν
w(M′)

21

Using q = 8⌈ 1
ν2

ln 1
ν ⌉ and rearranging we get

(1− ν)w(M′) ≤

(

1 +
ν

2 ln 1
ν

+ ν

)

w(F) ≤ (1 + 2ν)w(F)

This translated to w(F) ≥ 1−ν
1+2νw(M

′) ≥ (1− 3ν)w(M′) for all ν ≤ 1
6 and the lemma follows.

It takes q = O((1
ε′)

2 log 1
ε′) passes (for this setting of ν) and O(nL) = O(n logn

ε′) space to find the
subgraph G′. Therefore (changing variables), we have

Theorem 22. For any ε ≤ 1
2 in T = O(1

ε2
log 1

ε) passes, and O(n(T + logn
ε)) space we can compute

a (1− ε) approximation for the maximum weighted matching in bipartite graphs. This translates to
a 2

3(1− ε) approximation for general graphs using the integrality gap results of [14, 15]. The weight
can be estimated using O(nε log n) space.

Observe that to estimate the weight we need to compute and store the subgraph G′ which can
be done using O(nε log n) space since we need to remember O(n) vertices for each of the discretized
weight levels. If we are only interested in the weight, the computation of the Algorithm 6 only
needs O(n log n) space for the oracle and can remember u in space O(n).

6 Extensions: the b-Matching Problem and the Maximum Match-
ing Problem in General Graphs

In this section, we present algorithms for the b-matching problem and MWM in general graphs.
Both algorithms are based on the idea from Section 4.1. In Section 6.1, we present algorithms
for the capacitated b-matching problem in bipartite graphs (defined shortly). In Section 6.2 we
discuss the uncapacitated b-matching problem in bipartite graphs. In Section 6.3, we present an
approximation scheme for maximum weighted matching for general non-bipartite graphs.

6.1 The Maximum (Capacitated) bipartite b-Matching Problem

The stream is a sequence of tuples {(i, j, cij , wij)}(i,j)∈E . We assume cij , bi are all integers for all
i, j.

Definition 5. In the (capacitated) b-matching problem, each vertex i has demand bi and each edge
(i, j) has capacity cij and weight wij . A multiset of edges is a b-matching if the multiplicity of
each edge (i, j) is at most cij and i is the endpoint of at most bi edges (counting the multiplicity of
the edges) in the set. The maximum (capacitated) b-matching problem is to find a b-matching that
maximizes the total weight of edges (again, accounting the multiplicity of the edges).

We refer to bi as the capacity of a vertex i and let B =
∑

i bi be the total capacity of all vertices.
We assume that we have Õ(B) space since the solution can have O(B) edges in it. LP5 and LP6
are the primal and dual linear programs with integrality gap one [31]. Algorithm 9 is the oracle for
LP5.

max
∑

(i,j)∈E wijyij
s.t 1

bi

∑

(i,j)∈E yij ≤ 1 ∀i
1
cij

yij ≤ 1 ∀(i, j)

yij ≥ 0 ∀(i, j) ∈ E

(LP5)

min
∑

i xi +
∑

(i,j)∈E zij
s.t xi

bi
+

xj

bj
+

zij
cij
≥ wij ∀(i, j) ∈ E

xi ≥ 0 ∀i

(LP6)

22

Algorithm 9 Oracle for LP6.

1: Let xi =
α

∑

j uj+
∑

(i′,j′)∈E ui′j′
ui and let zij =

α
∑

j uj+
∑

(i′,j′)∈E ui′j′
uij .

2: Let Eviolated,k = {(i, j)|xi/bi + xj/bj + zij/cij < wij , α/2
k < wij ≤ α/2k−1}.

3: Find a maximal b-matching Sk in Eviolated,k for each k = 1, · · · , ⌈log(n/δ)⌉.
4: Let S = ∪kSk,∆ = w(S).
5: Let dij be the multiplicity of (i, j) in S.
6: if ∆ < δα then
7: For each (i, j) ∈ S, increase xi and xj by 2dijwij and zij by dijwij.
8: Further increase all xi by δα/n. Return x and report failure.
9: else

10: repeat
11: Pick the heaviest edge (i, j) from S.
12: Add (i, j) to S′.
13: Suppose that (i, j) ∈ Sk.
14: for k′ = k + 1, k + 2, · · · do
15: Reduce multiplicities of edges adjacent to i and j from Sk′ by dij in total.
16: end for
17: Remove (i, j) from S.
18: until S = ∅
19: Let d′ij be the multiplicity of (i, j) in S′.
20: Return yij = αdij/w(S

′) for (i, j) ∈ S′ and yij = 0 otherwise.
21: end if

Computing zij: The computation of zij is also not trivial since we cannot store all values of uij .
In one pass, we can count the number of edges and therefore, we know the number of constraints
in LP5. Observe that uij values are identical for all edges (i, j) that have never been selected for
S′. So if we remember uij values only for edges that have been in S′, we can compute zij for all
edges.

Lemma 23. If ∆ ≥ δα, Algorithm 9 returns an admissible solution y with ℓ = 1 and ρ = 5/δ.

Proof. We first observe that
∑

(i,j)∈E wijyij =
∑

(i,j)∈S′ wijyij and

∑

(i,j)∈S′

wijyij =
∑

(i,j)∈S′

αwijdij
w(S′)

=
α

w(S′)

∑

(i,j)∈S′

wijdij =
α

w(S′)
w(S′) = α

Now observe that (dropping the superscript t for this equation)

αM(Dt,y) =
∑

i

xi





1

bi

∑

j:(i,j)∈E

yij − 1



+
∑

(i,j)∈E

zij

(

1

cij
yij − 1

)

=
∑

(i,j)∈E

yij

(

xi

bi
+

xj

bj
+

zij
cij

)

−





∑

i

xi +
∑

(i,j)∈E

zij





=
∑

(i,j)∈E

yij

(

xi

bi
+

xj

bj
+

zij
cij

)

− α (By normalization.)

=
∑

(i,j)∈E

yij

(

xi

bi
+

xj

bj
+

zij
cij

)

−
∑

(i,j)∈E

wijyij =
∑

(i,j)∈E

yij

(

xi

bi
+

xj

bj
+

zij
cij
− wij

)

23

Now if
(

xi
bi

+
xj

bj
+

zij
cij
− wij

)

≥ 0 then yij = 0. Therefore αM(Dt,y) ≤ 0 ≤ δ.

Observe that −1 ≤ M(i,y) ≤ α
w(S′) since

∑

j dij ≤ bi. Likewise −1 ≤ M(ij,y) ≤ α
w(S′) since

dij ≤ cij .
Finally observe that for each edge (i, j) ∈ S′ we eliminate at most 2dij elements from each

higher tier k′ (which means weight is lower). Therefore the total elimination is at most 4dijwij

(same argument as in Lemma 7) which means w(S − S′) ≤ 4w(S′). Therefore w(S) ≤ 5w(S′) and
α/w(S′) = 5α/∆ ≤ 5/ρ. The lemma follows.

Lemma 24. If ∆ < δα, a feasible solution for LP6 with value at most (1 + 6δ)α is returned.

Proof. Suppose the edge (i, j) was considered in one of the tiers. For each (i, j) ∈ E with multiplicity
dij (dij = 0 for (i, j) /∈ S), the algorithm does not give a higher value of dij to (i, j) because (i, j), i
or j did not allow so in Sk. If (i, j) was the problem, that is dij = cij , we increase zij by cijwij and
the primal constraint for (i, j) is satisfied. Otherwise one of the vertices i, j had bi adjacent edges.
Suppose it is i. Then we increase xi by at least bijwij because all the edges adjacent to i contribute
twice their weight (times the respective multiplicity) and these edges are from tier from k or lower
(which means weight is at least half of wij). So the primal constraint is satisfied for (i, j).

If (i, j) was not considered in one of the tiers then wij ≤ δα/n. But then increasing xi by
δα/n makes this constraint satisfied as well. Therefore, the returned solution is feasible. For each
(i, j) ∈ S, we increase the objective value by 5dijwij = 5w(S) ≤ 5δα. In addition we increase each
xi by δα/n and the total increase is 6δα.

We can now apply Theorem 1, using ε/36 and the space saving idea of Section 4.1) of slowly
lowering the guess of α. Note |S′| = O(B) and |S| = O(B log n). In this case we do not have
an easy O(1) approximation. However we can easily guess a factor n approximation and run the
algorithm for O(1ε log n) guesses of the optimum solution. Observe that the number of iterations
is only additive in the number of guesses of the optimum solution (see Section 4.1). Since we only
need to provision for a single copy of the oracle, we have:

Theorem 25. For any ε ≤ 1
2 , in T = O(1

ε3
log n) passes and O(BT) space, Algorithm 9 and

Algorithm 1 together provide a (1− ε) approximation for the optimum b-matching problem.

Note that we only find a fractional solution in this case. Also note that the actual space
requirement depends on cij as well as bi. As the minimum value of cij increases, |S| decreases
and therefore we need less space. An extreme case of this is the uncapacitated problem, which we
discuss next.

6.2 The Maximum Uncapacitated b-Matching Problem

In this section, we present two algorithms for the maximum uncapacitated b-matching problem: a
constant pass algorithm that requires space that depends on B and a near linear space algorithm
that requires the number of passes that depends on log n. The uncapacitated b-matching problem
is a special case of the capacitated b-matching problem where all the capacities are infinite. LP7
and LP8 are the primal and dual LPs for the uncapacitated b-matching problem.

max
∑

(i,j)∈E wijyij
s.t 1

bi

∑

(i,j)∈E yij ≤ 1 ∀i

yij ≥ 0 ∀(i, j) ∈ E

(LP7)

min
∑

i xi
s.t xi

bi
+

xj

bj
≥ wij ∀(i, j) ∈ E

xi ≥ 0 ∀i

(LP8)

24

O(1
ε2

log 1
ε)-pass O(B(1

ε2
log 1

ε +
logn
ε))-space algorithm: The uncapacitated b-matching problem

reduces to the maximum matching problem with O(B) vertices [32, 30]. Each vertex i with duplicity
bi becomes bi vertices i1, i2, · · · , ibi . Each edge (i, j) becomes bibj edges (i1, j1), (i1, j2), · · · , (ibi , jbj).
Let the resulting graph be G′. It is easy to see that any b-matching in G corresponds to a matching
of the same weight in G′ and the converse also holds. Using Algorithm 8 for G′, we obtain the
following result. This transformation preserves bipartiteness.

Corollary 26 (Theorem 22). For any ε ≤ 1
2 in T = O(1

ε2 log
1
ε) passes, and O(B(T + logn

ε)) space
we can compute a (1 − ε) approximation for the maximum weighted uncapacitated b-matching in
bipartite graphs.

O(1
ε3 log n)-pass Õ(n

ε3)-space algorithm: Since the uncapacitated problem is a special case of the
capacitated b-matching problem, we can apply Algorithm 9. However, the uncapacitated problem
differs from the capacitated b-matching problem in that we can always find a maximal b-matching
with at most n − 1 (distinct) edges in the former. If we have a solution where

∑

(i,j)∈E yij = bi
we denote the vertex i to be saturated. Suppose that we are given an edge (i, j) and neither of
the vertices i, j are saturated. We can saturate i or j by increasing yij. This process saturates one
vertex while increases the number of edges in the b-matching. As a consequence it gives a maximal
b-matching of at most n− 1 edges which leads to the following corollary.

Corollary 27 (Theorem 25). For any ε ≤ 1
2 in T = O(1

ε3
log n) passes, and O(nT) space we can

compute a (1 − ε) approximation for the maximum weighted uncapacitated b-matching in bipartite
graphs.

6.3 The Maximum Weight Matching Problem for General Graphs

Algorithms in Sections 5 achieve (23 − ǫ)-approximations because the integrality gap of LP4 is 2
3

for general graphs [14, 15]. With additional constraints, we can write a linear program for MWM
in general graphs with integrality gap one. LP9 and LP10 are the primal and dual LP for general
graphs. In addition to the constraints in MWM, we have a constraint for each odd subset U of V .
The polytope determined by constraints in LP9 is the convex hull of all matchings [6, 30].

max
∑

(i,j)∈E wijyij
s.t

∑

(i,j)∈E yij ≤ 1 ∀i
∑

i,j∈U yij ≤ ⌊|U |/2⌋ ∀U

yij ≥ 0 ∀(i, j) ∈ E

(LP9)

min
∑

i xi +
∑

U zU
s.t xi + xj +

∑

i,j∈U
1

⌊|U |/2⌋zU ≥ wij ∀(i, j) ∈ E

xi ≥ 0 ∀i

(LP10)

The violation and weight that correspond to the odd-set constraints are

M(U, yt) =





1

⌊|U |/2⌋

∑

i,j∈U

ytij



− 1

ut
U =

∑

M(U,yt)≥0

(1 + ǫ)M(U,yt)/ρ ·
∑

M(U,yt)<0

(1 − ǫ)M(U,yt)/ρ

Since there are exponentially many odd sets U , we cannot store all weights utU . Instead, we
remember non-zero values of yt for all t. Then, we can recompute the values of utU given U without
reading data stream.

There is another problem due to the number of constraints. Since the number of constraints is
exponential in n, the number of iterations is linear in n where we want the number of iterations is

25

polynomial in log n and 1
ε . To reduce the number of constraints, we simply ignore all constraints

corresponding to U with |U | > 1
δ . Then, the number of constraints is O(nδ−1

) and therefore,
the number of iterations is O(1

δ4
log n). From a feasible solution for the modified formulation,

we obtain a feasible solution for LP9 by scaling yij. If constraints corresponding to vertices are
satisfied,

∑

i,j∈U yij ≤ (1 + δ)⌊|U |/2⌋ for |U | > 1
δ . Therefore, if we scale all yij by factor 1

1+δ , we
satisfy all the constraints in LP9.

Algorithm 10 Oracle for LP10.

1: Keep yt′ for all t′ = 1, 2, · · · , t− 1.
2: W ←

∑

i u
t
i

3: for each U ⊂ V, |U | is odd do
4: Compute utU where

ut
U = (1 +

δ

4
)

(

∑

M(U,yt
′
)≥0

δM(U,yt′)
)

· (1−
δ

4
)

(

∑

M(U,yt
′
)<0

δM(U,yt′)
)

5: W ←W + utU .
6: end for
7: Let xi =

α
W uti, zU = α

W utU . Instead of storing all zU , zU is recomputed for each (i, j) ∈ U .
8: Let Eviolated,k = {(i, j)|xi + xj +

∑

i,j∈U
1

⌊|U |/2⌋zU < wij ,
α
2k

< wij ≤
α

2k−1}.

9: Find a maximal matching Sk in Eviolated,k for each k = 1, · · · , ⌈log(n/δ)⌉.
10: Let S = ∪kSk,∆ = w(S).
11: if ∆ < δα then
12: For each (i, j) ∈ S, increase xi and xj by 2wij .
13: Further increase xi by δα/n. Return x.
14: else
15: repeat
16: Pick a heaviest edge (i, j) from S and add it to S′

17: Eliminate all edges adjacent to i or j from S.
18: until S = ∅
19: Return yij = α/w(S′) for (i, j) ∈ S′ and yij = 0 otherwise.
20: end if

Algorithm 10 is the oracle for LP10. It is similar to Algorithm 3. The proof of correctness
is almost identical to Section 3. We also use the ideas in Section 4.1 which hold in this case as
well. One drawback of this algorithm is its running time. For each (i, j), we have to enumerate
all U that contain (i, j). There are nO(ε−1) subsets that contain (i, j). For each U , it takes Õ(1

ε5)
time to compute the weight because there are at most O(1ε) edges for each t′. Therefore, it takes

Õ(n
O(ε−1)m

ε5
) time per pass. We obtain the following theorem:

Theorem 28. In T = O(1
ε4

log n) passes and Õ(n
O(ε−1)m

ε9
) time, we can compute a (1− ε) approx-

imation for maximum weighted matching in general graphs. The algorithm uses O(nT) space.

References

[1] K. J. Ahn and S. Guha. Graph sparsification in the semi-streaming model. In ICALP (2),
pages 328–338, 2009.

26

[2] K. J. Ahn and S. Guha. Laminar families and metric embeddings: Non-bipartite
maximum matching problem in the semi-streaming model. Manuscript, available at
http://arxiv.org/abs/1104.4058, 2011.

[3] S. Arora, E. Hazan, and S. Kale. The multiplicative weights up-
date method: a meta algorithm and applications. Available at
http:// www.cs. princeton.edu/ ~ arora/ pubs/MWsurvey.pdf , 2005.

[4] M. Belkin and P. Niyogi. Towards a theoretical foundation for laplacian based manifold meth-
ods. J. Comput. System Sci., page 12891308, 2008.

[5] R. Duan and S. Pettie. Approximating maximum weight matching in near-linear time. In
FOCS, pages 673–682, 2010.

[6] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of
the National Bureau of Standards, 69:125–130, 1965.

[7] S. Eggert, L. Kliemann, P. Munstermann, and A. Srivastav. Bipartite graph match-
ings in the semi-streaming model. Technical Report, Institut für Informatik, available at
http://arxiv.org/abs/1104.4058, 2011.

[8] S. Eggert, L. Kliemann, and A. Srivastav. Bipartite graph matchings in the semi-streaming
model. In ESA, pages 492–503, 2009.

[9] L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved approximation guarantees for weighted
matching in the semi-streaming model. Proc. of STACS, pages 347–358, 2010.

[10] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a
semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.

[11] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances in the
data-stream model. SIAM J. Comput., 38(5):1709–1727, 2008.

[12] L. K. Fleischer. Approximating fractional multicommodity flow independent of the number of
commodities. SIAM J. Discret. Math., 13(4):505520, 2000.

[13] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci. (JCSS), 55(1):119–139, 1997.

[14] Z. Füredi. Maximum degree and fractional matchings in uniform hypergraphs. Combinatorica,
1(2):155–162, 1981.

[15] Z. Füredi, J. Kahn, and P. D. Seymour. On the fractional matching polytope of a hypergraph.
Combinatorica, 13(2):167–180, 1993.

[16] H. N. Gabow. Data structures for weighted matching and nearest common ancestors with
linking. In SODA, pages 434–443, 1990.

[17] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and other
fractional packing problems. Proc. FOCS, page 300309, 1998.

[18] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization. Springer, 1993.

27

http://arxiv.org/abs/1104.4058
http://www.cs.princeton.edu/~arora/pubs/MWsurvey.pdf
http://arxiv.org/abs/1104.4058

[19] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams, 1998.

[20] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput., 2(4):225–231, 1973.

[21] T. Jebara, J. Wang, and S.-F. Chang. Graph construction and b-matching for semi-supervised
learning. In Proceedings of the 26th Annual International Conference on Machine Learning,
ICML ’09, pages 441–448, 2009.

[22] B. Kalantari and A. Shokoufandeh. Approximation schemes for maximum cardinality match-
ing. Technical Report LCSR-TR-248, Laboratory for Computer Science Research, Department
of Computer Science. Rutgers University, 1995.

[23] A. McGregor. Finding graph matchings in data streams. In APPROX-RANDOM, pages
170–181, 2005.

[24] S. Micali and V. V. Vazirani. An O(
√

|V ||E|) algorithm for finding maximum matching in
general graphs. In FOCS, pages 17–27, 1980.

[25] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in
Theoretical Computer Science, 1(2), 2005.

[26] K. Onak and R. Rubinfeld. Maintaining a large matching and a small vertex cover. Proc. of
STOC, pages 457–464, 2010.

[27] S. Pettie and P. Sanders. A simpler linear time 2/3-epsilon approximation for maximum weight
matching. Inf. Process. Lett., 91(6):271–276, 2004.

[28] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast approximation algorithms for fractional
packing and covering problems. In FOCS, pages 495–504, 1991.

[29] R. Preis. Linear time 1/2 -approximation algorithm for maximum weighted matching in general
graphs. In Proceedings of the 16th annual conference on Theoretical aspects of computer science,
STACS’99, pages 259–269, Berlin, Heidelberg, 1999. Springer-Verlag.

[30] A. Schrijver. Short proofs on the matching polyhedron. J. Comb. Theory, Ser. B, 34(1):104–
108, 1983.

[31] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency, volume 24 of Algorithms
and Combinatorics. Springer, 2003.

[32] W. T. Tutte. A short proof of the factor theorem for finite graphs. Canadian Journal of
Mathematics, 6:347–352, 1954.

[33] D. E. D. Vinkemeier and S. Hougardy. A linear-time approximation algorithm for weighted
matchings in graphs. ACM Transactions on Algorithms, 1(1):107–122, 2005.

[34] N. E. Young. Randomized rounding without solving the linear program. Proc. SODA, page
170178, 1995.

[35] M. Zelke. Weighted matching in the semi-streaming model. Proc. of STACS, pages 669–680,
2008.

28

	1 Introduction
	2 The Multiplicative Weights Update Meta-Method
	3 Warming Up: O(13logn)-pass Algorithms
	3.1 The Simple Case of MCM
	3.2 Abstracting the Oracle
	3.3 The Not So Simple Case of MWM

	4 Reducing the Space Requirement and the Number of Passes
	4.1 Reducing the Space Requirement
	4.2 Reducing the number of passes

	5 Removing the Dependency on n
	5.1 The Simple Case of MCM
	5.2 The Not So Simple Case of MWM

	6 Extensions: the b-Matching Problem and the Maximum Matching Problem in General Graphs
	6.1 The Maximum (Capacitated) bipartite b-Matching Problem
	6.2 The Maximum Uncapacitated b-Matching Problem
	6.3 The Maximum Weight Matching Problem for General Graphs

