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Abstract
Segmentation of brain images often requires a statistical atlas for providing prior information
about the spatial position of different structures. A major limitation of atlas-based segmentation
algorithms is their deficiency in analyzing brains that have a large deviation from the population
used in the construction of the atlas. We present an expectation-maximization framework based on
a Dirichlet distribution to adapt a statistical atlas to the underlying subject. Our model combines
anatomical priors with the subject’s own anatomy, resulting in a subject specific atlas which we
call an “adaptive atlas”. The generation of this adaptive atlas does not require the subject to have
an anatomy similar to that of the atlas population, nor does it rely on the availability of an
ensemble of similar images. The proposed method shows a significant improvement over current
segmentation approaches when applied to subjects with severe ventriculomegaly, where the
anatomy deviates significantly from the atlas population. Furthermore, high levels of accuracy are
maintained when the method is applied to subjects with healthy anatomy.

1 Introduction
Automated algorithms for the segmentation of magnetic resonance (MR) brain images
provide valuable tools for analyzing human brain structure. The incorporation of prior
information is often required in many of these algorithms. One of the most commonly used
types of prior information are statistical atlases that use a selection of training examples (i.e.
manual delineations) from multiple subjects to model the spatial variability of the structures
of interest [1, 22, 8, 17, 2]. These atlases can be utilized within a Bayesian framework to
guide the algorithm as to where a structure is likely to appear within the image. Such
approaches offer several advantages, including enhanced stability and convergence, as well
as providing the ability to distinguish between structures with similar intensities. However,
one of the major drawbacks of algorithms that use such statistical atlases is their inability to
accurately model subjects whose brain anatomy deviates from the atlas population to a great
extent. In some diseases and neurodegenerative conditions such as hydrocephalus, large
changes take place in the geometry of the brain, potentially resulting in wildly inaccurate
segmentations when using atlases derived from healthy populations.

Few methods have been proposed to effectively employ spatial atlases when population-
specific training data is unavailable. Bhatia et al. [3] proposed a combined segmentation-
registration method for atlas based brain segmentation in a group of subjects that are
anatomically different from the atlas subjects. Riklin-Raviv et al. [19] avoided the use of a
statistical atlas by introducing latent atlases generated from an image ensemble. The main
limitation of these approaches is their dependency on the existence of a group of images that
implicitly are needed to represent similar anatomy. Liu et al. utilize a generative
segmentation model combined with a discriminative classifier to reduce dependency on an
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atlas [10]. However, this method focused on diseases that possess relatively modest
geometric changes in brain structure.

Our approach for the segmentation of MR brain images is based on Gaussian Mixture
Models (GMMs), similar to many other approaches (cf. [1, 22]). In GMMs, the intensity
values of each cluster are assumed to have a Gaussian distribution whose parameters can be
estimated by maximum likelihood (ML) using the expectation maximization (EM) algorithm
[6]. The mixing coefficients of the GMM in brain segmentation algorithms can be given by
a statistical atlas registered to the image space [22]. Consequently, if the difference between
the subject and the training data used in the construction of the atlas can not be captured by
the registration algorithm, these algorithms are unable to generate an accurate segmentation
(Fig. 1). In other image processing applications, several approaches have been introduced to
derive the mixing coefficients from the image itself. The concept of spatially varying mixing
coefficients was first introduced by Sanjay-Gopal and Hebert [20]. In their work, a Gibss
MRF-based prior was assumed on the mixing coefficients whose maximum a posteriori
(MAP) estimates were computed by means of a generalized EM algorithm. Several other
approaches have been proposed based on this model(see [12, 13]). Although these
approaches are not biased to a statistical atlas, they can not effectively model separate
structures with similar intensity values, such as sulcal and ventricular cerebrospinal fluid
(CSF). This is a major advantage of methods employing a statistical atlas.

In this work, we propose a new framework that combines the desirable properties of both of
these models. We model the mixing coefficients by a Dirichlet distribution whose
parameters are derived from a statistical atlas of healthy subjects. Employing this model
within an EM framework, we estimate an “adaptive” atlas which is updated iteratively by
combining the original statistical atlas with information from the image under study. Since
the adaptive atlas is informed by a statistical atlas, clusters with similar intensities can be
embedded in our adaptive atlas. At the same time, the influence of the data on the adaptive
atlas removes the bias toward the statistical atlas to a great extent. The resulting adaptive
atlas is specific to the subject and therefore, does not limit the atlas based segmentation of
the image. Unlike the approaches of [3, 19], our model does not require an ensemble of
images and automatically adapts the statistical atlas to a single subject. It is worth
mentioning that two recent works have incorporated a Dirichlet model in image
segmentation algorithms in a different context [13, 11].

We test and validate our method both on subjects with normal brain anatomy and subjects
suffering from hydrocephalus. Hydrocephalus patients can have severe ventriculomegaly
which are not well modeled by statistical atlases generated from normal subjects. Because of
the specific interest in ventricular size and shape in hydrocephalus patients [18, 4],
traditional three-class brain segmentation approaches are not appropriate. For this
application, we employ a four tissue class model, consisting of gray matter (GM), white
matter (WM), sulcal CSF, and ventricular CSF. Our results demonstrate that our method
applied to brains with severe ventriculomegaly has superior performance over state-of-the-
art atlas-based methods, while it achieves similar accuracy in the segmentation of brains
with normal anatomy.

2 Methods
In this section, we first review the Gaussian mixture model (GMM) with spatially varying
mixing coefficients introduced in [20] before presenting our work on incorporating adaptive
atlases in the segmentation of brain MR images. In a standard atlas approach, the mixing
coefficients represent our atlas, providing the prior probability that a tissue class occurs at a
voxel. The central idea of this paper is to employ a Dirichlet distribution as a prior to the
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mixing coefficients, where the mode of the distribution is given by a statistical atlas
constructed from healthy subjects. In so doing, the estimated mixing coefficients can deviate
significantly from the original statistical atlas and adapt to the subject data.

2.1 Gaussian mixture model with spatially varying mixing coefficients
Our goal is to segment the brain into K structures. We assume that the intensity distribution
of each structure follows a Gaussian distribution. Hence the observed MR image(s) can be
modeled by a GMM. Let xj be the Cx1 vector of the observed intensities where j ∈ {1, 2, …,
N} represents the voxel location in the image and C represents the number of input channels.
Also let θk = {μk, Σk} be the parameters of the Gaussian distribution associated with
structure k (k ∈ {1, 2, …, K}). Here, μk is the Cx1 mean vector and Σk is the CxC
covariance matrix.

The label of each voxel j is denoted by a Kx1 vector zj. If voxel j belongs to structure k, zj =
ek where ek is a Kx1 vector whose kth component is 1 and all of its other components are 0.
We model the prior distribution of zj’s as a multinomial distribution with the Kx1 vector
parameter πj, i.e. f (zjk = 1) = πjk where the second letter in the subscript denotes the vector
component index. The πjk’s are called the mixing coefficients of GMM and they represent

the possibility that voxel j belongs to structure k a priori (by construction, ).
With the assumption of the independence of zj’s, we can write the prior on z = (z1, z2, …,
zN) as:

(1)

In [20], it was assumed that the observations xj’s are independent, hence the conditional
distribution of the complete data y = (x1, x2, …, xN, z1, z2, …, zN) is given by:

(2)

where Ψ = (π1, π2, …, πK, θ1, θ2, …, θK) and G(,; θk) is a Gaussian distribution with
parameter θk. Sanjay-Gopal and Hebert derived an EM algorithm for ML estimation of the
Gaussian parameters θk’s and πjk’s in (2):

(3)

(4)

The posterior probabilities given by (3) are used to associate each voxel to one of the
structures by choosing the one that has the largest posterior probability wjk.

It is worth mentioning here that the two other common assumptions on πjk’s are:

i. πjk = πk, ∀j, which is the classical mixture model approach.
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ii.
πjk = pjk, where pjk is given by a statistical atlas and .

2.2 GMM with adaptive atlases
A major drawback of using (2) in the segmentation of the brain structures is the
insufficiency of this model in distinguishing structures with similar intensities from one
another. Assumption (ii) in the previous section resolves this problem to some extent.
However, if the underlying image largely differs from the subjects used in the construction
of the atlas, this assumption hinders the correct segmentation of the image. Here we describe
a MAP framework to solve this limitation of atlas-based segmentation algorithms.

To incorporate a statistical atlas within a framework that estimates the mixing coefficients
based on the subject data, we treat πj as a random vector with a distribution whose
parameters are derived from the statistical atlas. As the vector πj lives on a K-dimensional
simplex, we should choose a distribution with simplex support as a prior on πj. The natural
choice for such a distribution is a Dirichlet distribution:

(5)

where B(·) is a Beta function and αj is the Kx1 vector parameter of the distribution. In our
model, we have a statistical atlas generated from training data pjk, that provides us the a
priori probability of a structure j occurring at voxel k in a healthy population (as will be
described later in Sec 2.4). We therefore employ a Dirichlet prior with parameter αjk = 1 +
δpjk, ∀k. The parameter δ is non-negative and we describe its selection later in this section.
For the case of δ = 1, the values pj = (pj,1, pj;2, …, pj,K) represent the mode of the Dirichlet
prior probability function.

As the brain structures often form a connected region, we incorporate a Markov Random
Field (MRF) as a prior on zj’s. In this work, we utilize a model similar to the one employed
in [22, 16], which yields the following prior on z:

(6)

where π = (π1, π2, …, πN), Nj is the 6-connected neighborhood of voxel j, β is the
parameter controlling the effect of the prior, and ZMRF is the normalizing factor. It is worth
mentioning that we assume uniform prior on θk’s.

With these assumptions, the conditional distribution of the complete data in our model is
given by:

(7)

2.3 Estimation Algorithm
In this section we derive the estimation algorithm for the parameters in (7) using a
generalized EM algorithm. The EM algorithm is an iterative approach for the estimation of
model parameters that involves two steps: (i) an E-step in which, given the parameter
estimates from the previous iteration, the conditional expectation of the complete data
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likelihood function is computed; and (ii) a M-step in which the new estimate of the model
parameters is computed to increase or maximize the conditional expectation computed in E-
step [6]. We provide here the E-step and M-step for (7). If Ψ(t) is the set of estimated
parameters from iteration t, then we have:

E-Step

(8)

The main component in (8) is computing . Due to the MRF prior on z,

computing  analytically is computationally intractable. Using a mean field approximation
yields (see [16]):

(9)

M-step—In this step, we want to find the set of parameters Ψ(t+1) that maximizes (8). This

can be done independently for  and . For , we first derive the equation for

 and then for . As we assume uniform priors on θk’s, the solution for is
similar to (4):

(10)

Because of the constraint on πjk’s, we use Lagrange multiplier to maximize (8) with respect
to πjk:

(11)

Hence:

(12)

Using the constraint on πjk’s and pjk’s and (9) λ is given by:

(13)

Therefore the update for  is given by:
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(14)

The statistical atlas, by construction, should be a smooth probability map that represents the
population under study. Although pjk’s are given by a smooth statistical atlas, wjk’s do not
have this desirable smooth property. To enforce the spatial smoothness on wjk’s and make
the mixing coefficients reffective of a population that the subject is drawn from, we
convolve wjk’s with a spatial Gaussian kernel in (14):

(15)

where G is a Gaussian kernel (we used a kernel size of 2.5 mm in all our experiments). This
provides our model for generating the adaptive atlas. Although the Gaussian filtering
deviates from our statistical framework, simple smoothing of parameter estimates has
previously been shown to offer good convergence properties and computational advantages
over explicit smoothing priors when used within the EM algorithm [14].

Eq. (15) has an intuitive interpretation of being a weighted average of the original atlas with
the subject atlas. We call  in (15) the adaptation factor, which controls the influence of
the image on the adaptive atlas. For instance, k = 0 results in case (ii) of Sec 2.1 (a non-
adapted statistical atlas), whereas k = 1 results in a smooth version of (4) (no influence from
the statistical atlas). In particular, k = 0.5, which we used in all our experiments, enforces the
mode of the Dirichlet prior on πj to be equal to pj. Fig. 2 shows how the adaptive atlas
changes during the segmentation algorithm.

2.4 Implementation Details
Statistical atlas—The statistical atlas we used in this work is built from a set of 18
manual delineations of the structures of interest, based on the IBSR data set [23]. For each
image in the atlas, the delineation is rigidly aligned with the current atlas image, and a
smooth approximation of the probabilities is accumulated. The smoothing replaces the step
edge at the boundary of each structure in their binary delineation by a linear ramp over a
band of size ε (which we set to 10 mm in our work) [2]. In this work, the statistical atlas
contains prior information for sulcal-CSF, ventricles, GM, and WM, however it can be
easily extended to more structures.

Atlas registration—The statistical atlas needs to be registered to the image space for the
segmentation task. We used a joint segmentation and registration technique that alternates
between estimating the segmentation given the current atlas position, and then updating the
transformation given the current segmentation. The registration maximizes the correlation of
the mixing coefficients with the posterior probabilities. The transformation is updated at
each iteration of the algorithm. We used affine transformations in this work.

Initializing the EM algorithm—To initialize the intensity centroids of the different
structures, we first estimate the robust minimum and maximum of the intensity (the intensity
values at 5% and 95% of the histogram, respectively), and normalize the profiles such that 0
corresponds to the minimum and 1 to the maximum. We then initialized the centroids to
empirically determined values stemming from the expected intensities of the tissue classes
for the appropriate pulse sequence.
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Convergence criteria—We used the maximum amount of change in posterior
probabilities as the measure of convergence of the EM algorithm. We set a threshold of 0.01
on this maximum in our work.

3 Experiments
We evaluated the performance of the introduced method on both brains with healthy
anatomy and hydrocephalus brains which suffer from ventriculomegaly. We compared the
performance of our method to an in-house implementation of a standard atlas-based EM
segmentation algorithm (which we refer to as the atlas EM segmentation algorithm in this
section). The only difference between this implementation and our proposed method lies in
the use of a conventional statistical atlas instead of the introduced adaptive atlas. Brain
images were preprocessed to extract the brain and correct for inhomogeneities. Some
manual refinement of the brain mask was necessary on some cases. We also compared the
performance of our method in the segmentation of the ventricles of hydrocephalus brains
with the Freesurfer software [8], which employs a nonstationary MRF model and a
probabilistic atlas updated using nonlinear registration. Finally we compared our method to
a registration based segmentation algorithm which uses Hammer [21], a state-of-the-art
deformable registration algorithm, to label the ventricles. We used Dice overlap coefficient
[7] and false negative ratio (for the ventricle segmentation experiment) between the
automated segmentation and the ground truth as the accuracy measures.

3.1 Normal Brains
To study the performance of the algorithm on brains with normal anatomy, we used both
simulated and real data sets. In our first experiment, we used the simulated T1 brain from
the Brainweb phantom [5] with 3% noise and no inhomogeneity. As Brainweb truth model
does not have a separate segmentation for the ventricles, we manually separated the sulcal-
CSF from the ventricles on the ground truth image. As Table 1 demonstrates, our method
has slightly better overall accuracy in segmenting the simulated brain in comparison to the
non-adaptive EM segmentation algorithm.

In the second experiment, we used the IBSR database [23] which contains MR brain images
of 18 real subjects. As we also use this database to create our statistical atlas, we separated
the subjects to two non-overlapping groups of 8 and 10 subjects. We used the first group to
create the statistical atlas and then used that atlas to validate the algorithms on the 10 other
subjects. As the manual segmentation of this data set does not contain sulcal-CSF and
includes it inside the GM segmentation, we combined the sulcal-CSF and GM labels in the
automated segmentation results before comparing to the manual segmentation. The accuracy
of our method and the non-adaptive atlas EM segmentation algorithm in the segmentation of
this data set are very similar (Table 1).

3.2 Brains with ventriculomegaly
The main advantage of our approach using the adaptive atlases over other atlas-based
segmentation algorithms is its ability in the segmentation of images that largely deviate from
the atlas population. To study this unique aspect of our adaptive method, we evaluated the
performance of the proposed method, the atlas EM segmentation algorithm, Freesurfer, and
Hammer on the segmentation of ventricles of 14 patients with hydrocephalus. Our data set
has 9 subjects with moderate and 5 subjects with marked ventricular dilatation, as diagnosed
by a neuroradiologist. This allows us to be able to study the effect of large deviations from
the atlas population on the performance of each algorithm more thoroughly. Also, in

addition to Dice overlap coefficient, we computed the false negative ratio ( )
between the automatically segmented ventricles (Seg) and the manual delineation by an
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expert (Ref) for each method. We found FNR very informative in our validation, as the
errors in the segmentation of the ventricles in this data set are mostly due to a
misclassification as other structures.

The validation results (Table 2) show that our method has superior accuracy on all the
subjects in comparison to other methods. As expected, the atlas EM segmentation algorithm,
Freesurfer, and the Hammer based segmentation perform significantly worse on subjects
with marked ventriculomegaly, whereas the performance of our approach is not altered
significantly by the amount of the dilatation. Freesurfer failed (did not complete or resulted
in a nearly empty image) in the processing of 3 subjects with severe structural anomalies due
to problems in its brain extraction step. We also note that Freesurfer attempts to segment a
much larger number of structures and is therefore at a disadvantage trying to solve a more
difficult problem. Also it is worth mentioning that for the approach based on Hammer, we
first used FANTASM [15] to classify the image voxels as CSF, GM, or WM. We then used
the atlas provided with the Hammer software [9] to segment the ventricles. Although this
atlas contains 101 regions of interest, we grouped all of these regions into sulcal-CSF,
ventricles, GM, and WM in our experiments.

Fig. 3 shows that even in the cases of moderate ventriculomegaly, the atlas EM
segmentation algorithm, Freesurfer and Hammer are not able to segment the ventricles as
accurately as the adaptive approach.

4 Discussion
We have presented a new statistical framework for the atlas based segmentation of MR brain
images based on adaptive atlases. Our approach addresses the segmentation of images that
deviate from the atlas population to a great extent. The validation results confirm that our
algorithm has a superior performance in the segmentation of such subjects, while
maintaining high level of accuracy in the segmentation of brains with healthy anatomy. On
the hydrocephalus data, our

method was shown to have some advantages when compared to a deformable registration
approach (Hammer), as well as an atlas-based approach that employs deformable
registration to update its atlas (Freesurfer). Deformable registration approaches are prone to
local optima when the target is highly dissimilar from the template. Furthermore, the
proposed approach leads to computationally e3-cient atlas updating (a Gaussian filter and
simple averaging) when compared to deformable registration. The introduced adaptive atlas
provides a general model for the computation of the mixing coefficients of a GMM model;
for instance the conventional approach of using a statistical atlas as the mixing coefficients
is a special case of this model. Although we described the adaptive atlas concept as part of a
GMM model, our approach can be easily incorporated in other atlas-based probabilistic
segmentation methods.

In computing the adaptive atlas, we included a smoothing step within EM iterations to make
the adaptive atlas reffective of a population that the subject is drawn from. We will
investigate explicitly modeling this property as a hierarchical prior on the mixing
coefficients.
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Fig. 1.
Results of an atlas-based GMM segmentation algorithm on a subject with large ventricles
(sulcal-CSF, ventricles, GM, and WM are represented by dark red, light red, orange, and
white, respectively).
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Fig. 2.
Evolution of the adaptive atlas from the initial statistical atlas. It originally is biased by the
training data but eventually converges to the subject’s geometry.
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Fig. 3.
Comparison of the adaptive atlas approach and three other atlas-based segmentation
algorithms on hydrocephalus subjects with moderate (top row) and marked (bottom row)
ventriculomegaly(sulcal-CSF, ventricles, GM, and WM are represented by dark red, light
red, orange, and white, respectively. Yellow represents WM-hypointenisty in Freesurfer
segmentation).
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