Skip to main content

Parameterization-Invariant Shape Statistics and Probabilistic Classification of Anatomical Surfaces

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6801))

Abstract

We consider the task of computing shape statistics and classification of 3D anatomical structures (as continuous, parameterized surfaces). This requires a Riemannian metric that allows re-parameterizations of surfaces by isometries, and computations of geodesics. This allows computing Karcher means and covariances of surfaces, which involves optimal re-parameterizations of surfaces and results in a superior alignment of geometric features across surfaces. The resulting means and covariances are better representatives of the original data and lead to parsimonious shape models. These two moments specify a normal probability model on shape classes, which are used for classifying test shapes into control and disease groups. We demonstrate the success of this model through improved random sampling and a higher classification performance. We study brain structures and present classification results for Attention Deficit Hyperactivity Disorder. Using the mean and covariance structure of the data, we are able to attain an 88% classification rate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almhdie, A., Léger, C., Deriche, M., Lédée, R.: 3D registration using a new implementation of the ICP algorithm based on a comprehensive lookup matrix: Application to medical imaging. Pattern Recognition Letters 28(12), 1523–1533 (2007)

    Article  Google Scholar 

  2. Bouix, S., Pruessner, J.C., Collins, D.L., Siddiqi, K.: Hippocampal shape analysis using medial surfaces. Neuroimage 25, 1077–1089 (2001)

    Article  MATH  Google Scholar 

  3. Brechbühler, C., Gerig, G., Kübler, O.: Parameterization of closed surfaces for 3D shape description. Computer Vision and Image Understanding 61(2), 154–170 (1995)

    Article  Google Scholar 

  4. Cates, J., Meyer, M., Fletcher, P., Whitaker, R.: Entropy-based particle systems for shape correspondence. In: MICCAI Mathematical Foundations of Computational Anatomy, pp. 90–99 (2006)

    Google Scholar 

  5. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  6. Davies, R., Twining, C., Cootes, T., Taylor, C.: Building 3-d statistical shape models by direct optimization. IEEE Medical Imaging 29(4), 961–981 (2010)

    Article  Google Scholar 

  7. Dryden, I.L., Mardia, K.: Statistical Shape Analysis. John Wiley & Son, Chichester (1998)

    MATH  Google Scholar 

  8. Gorczowski, K., Styner, M., Jeong, J., Marron, J., Piven, J., Hazlett, H., Pizer, S., Gerig, G.: Multi-object analysis of volume, pose, and shape using statistical discrimination. IEEE Pattern Analysis and Machine Intelligence 32(4), 652–666 (2010)

    Article  Google Scholar 

  9. Grenander, U., Miller, M.I.: Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics LVI(4), 617–694 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gu, X., Wang, S., Kim, J., Zeng, Y., Wang, Y., Qin, H., Samaras, D.: Ricci flow for 3D shape analysis. In: IEEE International Conference on Computer Vision (2007)

    Google Scholar 

  11. Joshi, S., Miller, M., Grenander, U.: On the geometry and shape of brain sub-manifolds. Pattern Recognition and Artificial Intelligence 11, 1317–1343 (1997)

    Article  Google Scholar 

  12. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Eurographics State-of-the-Art Report (2010)

    Google Scholar 

  13. Kurtek, S., Klassen, E., Ding, Z., Jacobson, S., Jacobson, J., Avison, M., Srivastava, A.: Parameterization-invariant shape comparisons of anatomical surfaces. IEEE Medical Imaging 30(3), 849–858 (2011)

    Article  Google Scholar 

  14. Kurtek, S., Klassen, E., Ding, Z., Srivastava, A.: A novel Riemannian framework for shape analysis of 3D objects. In: IEEE Computer Vision and Pattern Recognition, pp. 1625–1632 (2010)

    Google Scholar 

  15. Kurtek, S., Klassen, E., Gore, J., Ding, Z., Srivastava, A.: Elastic geodesic paths in shape space of parametrized surfaces. IEEE Pattern Analysis and Machine Intelligence In Review (2010)

    Google Scholar 

  16. Malladi, R., Sethian, J., Vemuri, B.: A fast level set based algorithm for topology-independent shape modeling. J. of Math. Imaging and Vision 6, 269–290 (1996)

    Article  MathSciNet  Google Scholar 

  17. Qiu, A., Crocetti, D., Adler, M., Mahone, E.M., Denckla, M.B., Miller, M.I., Mostofsky, S.H.: Basal ganglia volume and shape in children with attention deficit hyperactivity disorder. Am. J. Psychiatry 166(1), 74–82 (2009)

    Article  Google Scholar 

  18. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in Euclidean spaces. IEEE Pattern Analysis and Machine Intelligence 99(PrePrints) (2010)

    Google Scholar 

  19. Styner, M., Oguz, I., Xu, S., Brechbuhler, C., Pantazis, D., Levitt, J., Shenton, M., Gerig, G.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. In: MICCAI Open Science Workshop (2006)

    Google Scholar 

  20. Teicher, M., Anderson, C., Polcari, A., Glod, C., Mass, L., Renshaw, P.: Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imagery relaxometry. Nature Medicine 6(4), 470–473 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurtek, S., Klassen, E., Ding, Z., Avison, M.J., Srivastava, A. (2011). Parameterization-Invariant Shape Statistics and Probabilistic Classification of Anatomical Surfaces. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics