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Abstract
This paper proposes a method for the registration of white matter tract bundles traced from
diffusion images and its extension to atlas generation. Our framework is based on a Gaussian
process representation of tract density maps. Such a representation avoids the need for point-to-
point correspondences, is robust to tract interruptions and reconnections and seamlessly handles
the comparison and combination of white matter tract bundles. Moreover, being a parametric
model, this approach has the potential to be defined in the Gaussian processes’ parameter space,
without the need for resampling the fiber bundles during the registration process. We use the
similarity measure of our Gaussian process framework, which is in fact an inner product, to drive a
diffeomorphic registration algorithm between two sets of homologous bundles which is not biased
by point-to-point correspondences or the parametrization of the tracts. We estimate a dense
deformation of the underlying white matter using the bundles as anatomical landmarks and obtain
a population atlas of those fiber bundles. Finally we test our results in several different bundles
obtained from in-vivo data.
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1 Introduction
The analysis of inter-population brain variability through imaging is an area of extensive
study. Within this area, generating a common coordinate space for analyzing several
subjects is one of the main issues to be solved. The development of algorithms capable of
registering scalar images, like those obtained from anatomical MRI, and volumes, like sub-
cortical structures such as the hippocampus, yielded several effective techniques which
enabled a wide range of statistical studies. However, existing tools for the registration of
curve sets, such as white matter tract bundles obtained from diffusion MRI (dMRI), are still
in need of development.

Current approaches to the registration of cerebral white matter tract bundles can be divided
in two families: indirect and direct algorithms. The family of indirect methods starts by
performing a full-brain registration. Then, the tract bundles are warped using the resulting
deformation field obtained from this registration process. These methods use scalar images
like the fractional anisotropy (FA) to obtain the deformation fields [18, 10]. A second set of
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methods within this family use directional information, such as the principal diffusion
direction of the estimated tensors, to obtain the displacement vectors [22, 21, 6]. There are
two main issues with this kind of registration when applied to the warping of tracts bundles.
First, the continuity of tracts is not explicitly enforced resulting in tracts being cut or warped
into unusual shapes. Second, if the continuity is enforced at a voxel (or supra voxel) level,
the directional uncertainties within these voxels, produced by partial voluming or limitations
of the diffusivity model will lead to a predominance of the most voluminous tracts, like the
corona radiata, sectioning or eliminating the small ones like short cortico-cortical fasciculi.

The family of direct methods registers the tracts explicitly. Of these methods, some
algorithms require fiber-to-fiber and point-to-point matching between the tracts [16, 8].
These approaches are subject to tractography artifacts like discontinuities on tracts and
parametrization differences. Other methods register volumetric representations of tracts.
Ziyan et al. [23] model the white matter bundles as a voxelized mixture of spatial density
functions, bounding his approach to an explicit resolution. Moreover, while registering
several clusters of tracts, they only account for an affine transformation per cluster
considering each cluster as a geometrical landmark to be affinely registered. This does not
account for anatomical variability as in several cases, like uncinate fasciculi, the shape of the
tract is largely variable between subjects [15]. Durrleman et al. [9] propose a sound
diffeomorphic approach based on currents and LLDDM registration [5] and they incorporate
a statistical analysis model. However, their approach strongly relies on the orientation of the
tract parametrization. This notion of orientation introduced in their distance metric imposes
a constraint to the model which is artefactual: diffusion imaging does not provide
information about the orientation of the tracts, only their direction. It is not possible to
distinguish between the case of an axonal package going from A to B or from B to A.
Hence, it is not possible to calculate the orientation of the tracts, the need for an orientation
[9] requires the user to reorient all the tracts to be registered consistently, a task which is not
at all trivial.

In this work we propose a new approach to the direct diffeomorphic registration of white
matter bundles. Our method has four main advantages: we register tract bundles directly; it
does not rely on point-to-point nor fiber-to-fiber correspondences as [16, 8]; it is not
sensitive to inter-subject total density variations; and it does not depend on the fiber
parametrization as [9]. We start by representing the white matter tracts as Gaussian
processes (GPs) [20]. This representation associates each tract and each bundle of tracts with
a GP mapping each point in space to the density of tracts crossing that point, a tract density
map (TDM). It provides a framework where the similarity between two bundles is measured
in terms of the mass of common density areas. This metric does not depend on point-to-
point correspondences nor on the orientation of the tract parametrization. Moreover, it is
calculated from the parameters of the GP without the need for explicit sampling the TDM.
We use this similarity to derive a diffeomorphic registration algorithm based on the Log-
Euclidean poly-affine framework [3]. Then we use this pairwise registration algorithm along
with several desirable properties of our GP framework in order to develop a template
estimation algorithm along with a methodology to analyze the characteristic anatomical
variations of a population. Finally, we test our algorithms on two different sets of white
matter bundles in order illustrate its efficacy.

2 Methods
In this section we introduce our new registration and template estimation methods for white
matter bundles. We start by presenting the Gaussian Process-based representation of bundles
and their properties which are useful to the development of our algorithms. Then, we
develop our registration by using the inner product on our GP-space in combination with a
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variant of the polyaffine registration algorithm [3]. Finally, we present our template
estimation algorithm based on our pairwise registration method and the work of [2].

2.1 Representation of WM Bundles as Tract Density Maps
As emphasized in [7, 12, 20] a normalized tract density map (TDM) is a convenient non-
parametric way to model white matter fiber bundles. For WM tract bundle composed of N
tracts, the TDM is a function y(p) ≜ #t/N that associates each point  with the ratio of
number of tracts #t that are likely to traverse that point over the total number of tracts in the
bundle, N. We show examples of TDMs for WM tracts in fig. 1.

In order to calculate TDMs for WM tracts [4], we use a Gaussian Process (GP) framework
[20]. The advantages of this representation are three-fold: first, the TDMs calculated using
GPs are continuous functions which can be sampled at any desired resolution; second, being
a parametric representation, the GP framework allows us to work robustly on its parameter
space instead of performing operations in image space; third, this representation provides us
with a vector space of TDMs which we use in order to derive a tract registration algorithm.
In the remainder of this section we detail the calculation of TDM for a WM tract: we start by
describing the representation of a trajectory within the GP framework; next, we show how to
go from the GP representation of a single trajectory to the representation of a bundle of
trajectories; and finally, using the GP framework, we describe the calculation of the TDM
for a bundle of trajectories.

We model the TDM of an individual trajectory  as a tract density map y(·), such that, for
any point , y(p) = 1 and it decays to 0 for points far away from  at a speed
modulated by a parameter R. This smooth TDM y(.) of a single trajectory  can be written
as a GP, , [20] where y*(·) is the most probable TDM for trajectory , or

 and c(·, ·) is derived from the hypotheses on the shape and smoothness of the
TDM and characterizes the variability of suitable TDMs for . Then, using the properties of
the GPs, the value of y(·) for a trajectory can be characterized at each point in space p as an

univariate Gaussian: . Particularly, sampling a set of points f = {f1, … ,
fN} from the trajectory , the mean and the variance of this univariate Gaussian are inferred
as

(1)

where

and

The covariance function used to characterize this GP, c(·, ·), has two important properties
[20]: first, it ensures that the most probable TDM representing a given fiber minimizes the
curvature; second, the resulting TDM has finite support of radius R around each point4.
Later, we will take advantage of the finite support property to specify a finite block coverage
of the TDM.
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This GP framework constitutes a vector space where (y1+y2)(p) = y1(p)+y2(p) and (λy1)(p)
= λy1(p). Using these operations, obtaining the representation for a bundle of trajectories

 is straightforward: we calculate the mean y* and variance σ of the Gaussian
distribution characterizing the TDM for the bundle  at a point p as [20]

The result of the combination of the density functions representing various trajectories into a
bundle is illustrated in fig. 2(e).

We quantify the similarity between two WM bundles by using the deterministic inner
product of this vector space,

(2)

which represents the overlap between the TDMs of the two tracts. Using eq. (1), we
calculate 〈y1 , y2〉 without point-to-point matching between bundles [20]

(3)

where f1 and f2 are the points of to the two bundles. Also, 〈., .〉 induces the norm ∥y∥2 = 〈y,
y〉 representing the mass of the tract. Current literature in Gaussian processes [1, 14] shows
that the inner product space we just presented is, in fact, a reproducible kernel Hilbert
space (RKHS), allowing to define a set of basis functions whose linear combination spans
all TDMs. Later in this paper, we use this RKHS property to characterize the deformation
modes of a particular population of WM tracts.

In the above, we have presented a GP-based framework for representing white matter fiber
bundles and three operations: the calculation of the normalized tract density map,
combination of fibers into a bundle and the quantification of the similarity between two
bundles. These tools are fundamental to performing white matter bundle registration, which
we develop in the next section.

2.2 Diffeomorphic Bundle Registration with GP-represented TDMs
Our goal is to align two WM bundles obtained from two different subjects. In other words,
given the two bundles  and their corresponding GP-represented TDMs y1, y2, we are
looking for a dense transformation s : p ↦ s(p) such that it minimizes

(4)

where Sim(s) is the TDM similarity measure and Reg(s) is a regularization term. In this
equation, the transport of the TDM y2 by the transformation s, y2 ○ s, is carried by the
operation (y2 ○ s)(p) = y2(s(p)) jac s(p)|. Equation (4) can be regarded as equivalent

4We take as 2 times the maximum distance between two consecutive points in the tract.
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minimizing the widely used normalized cross-correlation metric [11] between the images of
two TDMs.

In order to develop a diffeomorphic registration algorithm with a reduced number of
parameters, we use a variant of the LogEuclidean polyaffine technique [3] to minimize eq.
(4) and obtain the desired registration. We start by dividing the domain of y1, y2 in a lattice
of cubic blocks of volume W. Since y1 and y2 are of finite support (section 2.1), it is possible
to define a finite set Γ of non-intersecting blocks of volume W which is a total coverage of
the two TDMs: . Figure 3(a) illustrates a TDM along with its lattice Γ.
Using this set, we define a block-based registration energy which is an upper bound
approximation for eq. (4) as

(5)

where we define the block-inner product and its induced norm as

(6)

The block-based formulation of the registration energy, eq. (5), enables us solve our
registration problem using a block-based polyaffine framework. Let M and t be the linear
and translation components of the affine transform A. Defining the affine transformation of a
TDM (y2 ○ A) ≜ y2(M · p + t) renders possible to obtain an affine registration inside of the
block γ by minimizing

(7)

Then, using the LogEuclidean polyaffine framework [3] we calculate the dense
diffeomorphic transform s from a set of affine transforms: we compute the velocity field u
associated with the affine transforms Aγ1 , … , AγN, as

(8)

where

and wγ(p) is a smooth weighting function which quantifies the influence that the transform
found at block γ has on p and log is the matrix logarithm. Particularly, we define
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where  is the center of block γ and σ controls the rigidity of the global transformation.

We can now present our TDM-based polyaffine white matter bundle registration algorithm:
Given two white matter bundles as their TDMs, y1, y2 and a block volume W,

1. Calculate the non intersecting block-coverage of y1 and y2: Γ = {γ1, ⋯ , γN}

2. Set the initial transform s0 = Id

3. repeat

4. sprev ← s

5. Find the set of affine transforms Aγi , i = 1 … N, minimizing SimΓ (sk) (eq. (5))

6. Calculate the velocity field u using eq. (8)

7. Compose the transforms c ← sprev ○ exp(u)

8. For a diffusion-like regularization s ← Kdiff ⋆ c, else s ← c

9. until EΓ(sprev) − EΓ (s) < threshold

where exp is the exponential of a vector field as defined by [3] and Kdiff ⋆ c is the
convolution of the velocity field c with the Gaussian kernel Kdiff. Figure 3 depicts a step of
the algorithm presented above. Two things should be noted in this algorithm: first, we are
using a two-step optimization process as in Vercauteren et al [19]; second, we want to
highlight that a multiscale version of this algorithm is easily implementable by adding an
outer loop which varies the volume of the blocks in a monotonic decreasing manner.

2.3 Template Construction and Population Analysis
We now extend our pairwise registration algorithm to groupwise registration in order to
generate an unbiased template[13, 2].

We consider having M analogous bundles  extracted from rigidly co-registered
images of M subjects. Following Allassonniere [2] and Durrleman [9], we consider the
bundles the result of a diffeomorphic deformation of a prototype bundle plus a residual.
Letting yi be the GP-based TDM representation associated with bundle , we formulate the
TDM of each bundle in terms of the template as

where ωi(p) is an image of uncorrelated white noise represented by a zero mean Gaussian
process with diagonal covariance function, cω(p, p′) = δ(∥p − p′∥), where δ(·) is the Dirac
delta function. This covariance function stands for absence of correlation between the points
in the image or white noise. Then we estimate the template, the deformations and the
residues as:

(9)

We minimize the criterion in eq. (9) using alternate minimization: initially we set si = Id and

we obtain a first estimate of the template ; then we register  to every bundle yi,
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and we re-estimate the template ; finally, we iterate these steps until
convergence.

This algorithm eventually yields an unbiased template  and the deformations si. Taking
advantage of the RKHS property of the TDMs yi and its residuals ωi represented as GPs,
section 2.1, we perform PCA analysis of the residuals in order to characterize the non-
diffeomorphic deformations of each bundle. We start by estimating the residual for each
bundle  as . Then, we calculate the first mode of residual variations on the

template at ±θ, as  where v1 is the eigenvector corresponding to the
largest eigenvalue of the covariance matrix [〈ωi , ωj]ij (see example in Results section).

We have formulated the necessary tools to perform pairwise registration between white
matter bundles represented as TDMs in the GP space; to estimate a template from a
population and to characterize its residual variation modes. Our model represents the
bundles in a population as a diffeomorphic deformation of a template plus a non-
diffeomorphic residual as done by Durrleman et al [9]. These tools to perform statistical
analysis of the WM bundles are not biased by point-to-point or fiber-to-fiber
correspondences. In addition, it is not biased by differences in the orientation of fiber
parametrizations as [9]. The separation between the diffeomorphic and residual part is
regulated by the tradeoff between the similarity between bundles and the regularization term
used in order to find the diffeomorphic transforms in eq. (4). This allows to adjust the
deformation and to capture subject-specific anatomical variations. We are now in position to
apply all these tools to a bundle population and analyze it.

3 Results
Diffusion-weighted images (DWI) from 43 subjects were acquired on a GE Signa HDxt
3.0T scanner using an echo planar imaging sequence with a double echo option, an 8
Channel coil and ASSET with a SENSE-factor of 2. The acquisition consisted in 51
directions with b=900 s/mm2, and 8 images with b=0 s/mm2, with scan parameters
TR=17000 ms, TE=78 ms, FOV=24 cm, 144×144 encoding steps, 1.7 mm slice thickness.
85 axial slices covering the whole brain were acquired. DWI images were linearly
registered. The left uncinate and fronto-occipital fasciculi ROI’s were manually drawn by
experts using 3D Slicer (www.slicer.org) and fiber tracts were obtained using two-tensor
tractography [17].

3.1 Pairwise Registration
In order to test the efficacy of our pairwise registration algorithm, introduce in section 2.2,
we randomly picked one sample from each bundle population and registered all others to it.
We applied a multiresolution scheme where the cubes of the latices were 100, 50, 20, 10 and
5mm3 each and we set rigidity parmeter σ to 1/2 of the cube width. For the uncinate fasciculi
the dice coefficient of the registered TDMs to the fixed TDM was .93(±03) and for the
fronto-occipital bundles .81(±07). We applied the transformation si to each moving bundle

, and the results for one example of each bundle class are shown in fig. 4. In this figure we
show, from left to right, the progress of the registration of two uncinate fasciculi and two
fronto-occipital bundles, red indicates the moving bundle and green the fixed one.

3.2 Template Estimation
We applied the template estimation algorithm presented in section 2.3 to both populations of
white matter bundles. In fig. 6, we show the convergence of the template estimation
algorithm. The algorithm starts from a set of bundles extracted from rigidly registered DT
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images and converges to an unbiased template. After the template estimation, we assessed
the quality of the results by calculating the Dice coefficient of the population of uncinate
fasciculi with the estimated template: 0.97(±0.015); the same analysis for the occipito-
frontal dataset had a Dice coefficient of 0.85(±0.075). To compare our approach with
indirect image-based registration, we applied the warps generated from a DWI-based
template estimation algorithm [6] to the uncinate fasciculi and we compared them with the
results of our bundle-based registration. We extracted two bundles and show the results
obtained by applying both methods in fig. 5. Then, we calculated the residuals and their
variation modes from the template. In fig. 7 we show the first mode of variation for the
uncinate bundle.

4 Discussion and Conclusion
In this paper, we introduced a new approach to the direct registration of white matter tract
bundles obtained through diffusion MRI tractography. Our method does not rely on point-to-
point correspondences nor on the orientation of tract parametrization. Moreover, the GP-
based mathematical framework we used enables us to analyze the characteristic
deformations of a population. At the heart of our method is the similarity calculation
between two bundles which is independent of point-to-point correspondences or orientation
of the tract parametrization. Moreover, we parametrically represent these bundles as
Gaussian processes, which has several advantages: 1) the similarity is calculated from the
parameters of the GP without the need of explicitly sampling the TDM; 2) the vector space
of GPs enables us to seamlessly combine bundles, in the intrasubject case where single tracts
form a fascicle or the intersubject case where several bundles are combined to form a
template 3) The RKHS space in which these GPs are embedded provides us with the tools
to perform population studies such as PCA. All of these advantages led us to a combined
registration and template estimation and population analysis framework.

The results on pairwise registration show that our algorithm effectively produces a
deformable registration which puts priority in areas of high fiber density allowing sparse
radiations to variate between subjects. This characteristic is important as it enables us to
achieve a registration on the main trunk of the tract bundle and leave a degree of freedom for
inter subject anatomical variations as those shown by Bürgel et al [7]. When we compared
the outcome of our template estimation algorithm with a DWI-based one, ours showed a
higher overlap in the bundles. Particularly, we illustrated this by extracting two bundles of
the population and showing their overlap. The statistical analysis was evaluated on fibers
obtained from 43 subjects. The characteristic deformation shows variability in the
innervations of the orbital cortex and the temporal pole which is coherent with histological
studies [7].

The method however, raises a main question: how much are we losing by not taking
explicitly in account the orientation of the tracts. According to the experiments we
performed in this paper, our registration algorithm yields good results even in the absence of
orientation features in our model. Since our model based on the density of tracts at each
point, the continuity of the density map and the diffeomorphic transforms lead to a
registration algorithm which results in the alignment of the most dense areas of the tracts.
When the tract has several diverging fibers like the occipito-frontal fasciculi these are
allowed to vary between subjects and considered by the template estimation algorithm as
non-diffeomorphic transforms. Hence, even if orientation information is not taken in
account, our algorithm registers the most dense areas of the tracts effectively.

Further work will focus on the development of discriminative statistics and correlation
analyses. Discriminative statistics are fundamental when studying pathologies and
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comparing populations, the development of a suitable hypothesis testing scheme is then of
the utmost importance. Along the same lines, correlation analyses, for instance with scalar
indices, will enable to characterize the cognitive or pathological consequences of the
anatomical variations unveiled by our population analysis tools.
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Fig. 1.
Tract density map for the fornix and inferio-longitudinal fasiculus. The density scales from
blue (maximum density) to red (minimum density).
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Fig. 2.
Tract density map for four fiber tracts (a-d) and for the bundle formed by averaging them
according to our framework (e). Color code ranges from blue when it is likely that a voxel
belongs to the bundle of fibres to red when it does not belong. Image reproduced from [20].
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Fig. 3.
Illustration of a registration step. Figures (a-b) show the TDMs corresponding to 2 uncinate
fasciculi along with their common lattice Γ, each square indicates a block γi. We calculate
the affine transforms to take each block of the moving image to the fixed one and integrate
them into a deformation (c). Finally, the deformation is applied to the moving image (d).
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Fig. 4.
Result of the pairwise registration of two uncinate fasciculi and two fronto-occipital bundles.
Green indicates the fixed bundle and red the moving one. The registration progress is shown
from left two right
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Fig. 5.
Comparison of registration methods: two uncinate fasciculi after volumetric registration
their DWI images with a state-of-the-art method [6]: (a) and after applying our bundle-based
registration (b) . Overlap is better using our TDM-GP approach than by registering the DWI
images.

Wassermann et al. Page 15

Inf Process Med Imaging. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Template estimation: several steps of the template estimation algorithm presented in section
2.3. The iterations start from a template generated by linear registartion of the DWI images
and converge to unbiased template generated by our algorithm.
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Fig. 7.
First mode of the residual variations on the template. We show the mode on the range −θ …
θ where 0 is the actual template. We show the iso-density level at 0.01 from a superior point
of view on the top and the maximum intensity projection from a lateral point of view on the
bottom. The first mode of variation shows a dispersion on the innervations of the uncinate
fasciculus at the orbital cortex and the temporal pole.
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