Skip to main content

Fast Brain Matching with Spectral Correspondence

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6801))

Abstract

Brain matching is an important problem in neuroimaging studies. Current surface-based methods for cortex matching and atlasing, although quite accurate, can require long computation times. Here we propose an approach based on spectral correspondence, where spectra of graphs derived from the surface model meshes are matched. Cerebral cortex matching problems can thus benefit from the tremendous speed advantage of spectral methods, which are able to calculate a cortex matching in seconds rather than hours. Moreover, spectral methods are extended in order to use additional information that can improve matching. Additional information, such as sulcal depth, surface curvature, and cortical thickness can be represented in a flexible way into graph node weights (rather than only into graph edge weights) and as extra embedded coordinates. In control experiments, cortex matching becomes almost perfect when using additional information. With real data from 12 subjects, the results of 288 correspondence maps are 88% equivalent to (and strongly correlated with) the correspondences computed with FreeSurfer, a leading computational tool used for cerebral cortex matching. Our fast and flexible spectral correspondence method could open new possibilities for brain studies that involve different types of information and that were previously limited by the computational burden.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., Zilles, K.: Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? NeuroImage 11(1) (2000)

    Google Scholar 

  2. Anqi, Q., Bitouk, D., Miller, M.: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator. Trans. Med. Im. 25(10) (2006)

    Google Scholar 

  3. Chung, F.: Spectral Graph Theory (CBMS Conf. in Math., No. 92). AMS, Providence (1997)

    Google Scholar 

  4. Drury, H.A., Van Essen, D.C., Joshi, S.C., Miller, M.I.: Analysis and comparison of areal partitioning schemes using 2-D fluid deformations. NeuroImage 3 (1996)

    Google Scholar 

  5. Fischl, B., Rajendran, N., Busa, E., Augustinack, J., Hinds, O., Yeo, B.T.T., Mohlberg, H., Amunts, K., Zilles, K.: Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18(8) (2007)

    Google Scholar 

  6. Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping 8(4) (1999)

    Google Scholar 

  7. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D.H., Busa, E., Seidman, L.J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., Dale, A.M.: Automatically parcellating the human cerebral cortex. Cereb. Cortex 14(1) (2004)

    Google Scholar 

  8. Grady, L., Polimeni, J.R.: Discrete Calculus: Applied Analysis on Graphs for Computational Science. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  9. Hinds, O.P., Rajendran, N., Polimeni, J.R., Augustinack, J.C., Wiggins, G., Wald, L.L., Rosas, D.H., Potthast, A., Schwartz, E.L., Fischl, B.: Accurate prediction of V1 location from cortical folds in a surface coordinate system. NeuroImage 39(4) (2008)

    Google Scholar 

  10. Jain, V., Zhang, H.: Robust 3D shape correspondence in the spectral domain. In: Int. Conf. on Shape Mod. and App. (2006)

    Google Scholar 

  11. Lohmann, G., von Cramon, D.Y., Colchester, A.C.: Deep sulcal landmarks provide an organizing framework for human cortical folding. Cereb Cortex 18(6) (2008), bhm174 [pii] 10.1093/cercor/bhm174 [doi]

    Google Scholar 

  12. Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: CVPR (2008)

    Google Scholar 

  13. Myronenko, A., Song, X.: Point-set registration: Coherent point drift. PAMI (2009)

    Google Scholar 

  14. Niethammer, M., Reuter, M., Wolter, F.-E., Bouix, S., Peinecke, N., Koo, M.-S., Shenton, M.E.: Global Medical Shape Analysis Using the Laplace-Beltrami Spectrum. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 850–857. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions. Int. Journal Comp. Vis. (2009)

    Google Scholar 

  16. Reuter, M., Wolter, F.E., Shenton, M., Niethammer, M.: Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Comput. Aided Des. 41(10) (2009)

    Google Scholar 

  17. Scott, G.L., Longuet-Higgins, H.C.: An algorithm for associating the features of two images. Proc. Bio. Sc. 244(1309) (1991)

    Google Scholar 

  18. Shapiro, L.S., Brady, J.M.: Feature-based correspondence: an eigenvector approach. Image Vis. Comp. 10(5) (1992)

    Google Scholar 

  19. Talairach, J., Szikla, G., Tournoux, P., Prosalentis, A., Bordas-Ferrier, M., Covello, L., Iacob, M., Mempel, E.: Atlas d’anatomie stereotaxique du telencephale, Masson, Paris (1967)

    Google Scholar 

  20. Thompson, P., Toga, A.W.: A surface-based technique for warping three-dimensional images of the brain. Trans. on Med. Im. 15(4) (1996)

    Google Scholar 

  21. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. PAMI 10(5) (1988)

    Google Scholar 

  22. Van Essen, D.C., Drury, H.A.: Structural and functional analyses of human cerebral cortex using a surface-based atlas. J. Neurosci. 17(18) (1997)

    Google Scholar 

  23. Zheng, Y., Doermann, D.: Robust point matching for nonrigid shapes by preserving local neighborhood structures. PAMI 28(4) (April 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lombaert, H., Grady, L., Polimeni, J.R., Cheriet, F. (2011). Fast Brain Matching with Spectral Correspondence. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics