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Abstract. Partial differential equations have been successfully used for
fibre tractography and for mapping connectivity indices in the brain.
However, the current implementation of methods which require 3D ori-
entation to be tracked can suffer from serious shortcomings when in-
variance to 3D rotation is desired. In this paper we focus on the 3D
stochastic completion field and introduce a new methodology to solve
the underlying PDE in a manner that achieves rotation invariance. The
key idea is to use spherical harmonics to solve the Fokker-Planck equa-
tion representing the evolution of the probability density function of a
3D directional random walk. We validate the new approach by presenting
improved connectivity indices on synthetic data, on the MICCAI 2009
Fibre Cup phantom and on a biological phantom comprised of two rat
spinal chords in a crossing configuration.

Keywords: Diffusion MRI, Completion fields, Connectivity, Spherical
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1 Introduction

Partial differential equations (PDEs) have been used extensively for white matter
tractography in diffusion magnetic resonance imaging (Diffusion MRI) [1], [2], [3],
[4]. These methods offer the advantage that a theoretically well-grounded mea-
sure of connectivity between two regions can be found via a direct computation
of a connectivity map, represented by the steady state solution to the PDE. Ad-
ditionally, the minimum cost pathways can be easily found via a post-processing
step. A further advantage is that they can incorporate relevant information from
all directions, not just the maxima of the fibre orientation distributions (FODs),
into the framework.

Among the PDE-based tractography/connectivity methods, some try to find
the steady state solution of variations of the diffusion equation in an anisotropic
medium. O’Donnell et al. [1] work directly with the diffusion equation in an
anisotropic medium, using 3-dimensional tensors as conductivity tensors. The
degree of connectivity is approximated by the steady state flow along any path.
Batchelor et al. [2] modify this algorithm by adding a convection term to the
PDE, integrating a measure of anisotropy into the concentration flow. In [3],
Hageman et al. extend the probabilistic first-order PDE methods using a model
based on fluid-mechanics. A fluid flow is simulated through a diffusion tensor
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field such that local anisotropy values are encompassed in the PDE via a viscos-
ity term. In a related approach, Fletcher et al. propose a front evolution scheme
to compute the minimal cost of connecting two regions of interest [5]. Pichon et
al. [6] have generalized PDE methods to the case of high angular resolution dif-
fusion imaging (HARDI) by solving the Hamilton-Jacobi-Bellman equation for
minimum cost curves. Motivated by Williams and Jacobs’ 2D completion field
model in computer vision [7], Momayyez et al. [4] propose a somewhat different
computational model, where the probability density of water molecules in a 3D
directional random walk is described by the underlying Fokker-Planck equation.
Their approach distinguishes itself from the other PDE-based methods by de-
veloping a computational model that is fundamentally linked to the underlying
physical process, i.e., the diffusion of water molecules in an anisotropic medium.

Although the algorithm suggested in [4] is numerically stable and offers a
convenient way to incorporate local diffusion data by setting diffusion and decay
parameters based on the FOD computed at each voxel, the uniform sampling of
0 and ¢ (the colatitude and azimuth in spherical coordinates) leads to rotation
variance. Rotation variance implies that the computed connectivity indices de-
pend on the orientation of the diffusion weighted image (DWTI) in a given global
coordinate system, which is clearly unacceptable. The underlying uniform sam-
pling of # and ¢ introduces singularities at § = 0,7 and also contributes to a
nonuniform sampling of the spherical surface such that the density of samples
on the sphere varies with the distance from the poles. One might be tempted to
simply use a near-uniform sampling scheme on a spherical shell, but this compli-
cates the numerical method since the notion of the nearest neighbour in 6 and ¢
coordinates, which plays a role in the discretized PDE;, is no longer well-defined.

In the present article we introduce a new methodology for achieving rota-
tion invariance in the solution of the PDE underlying the stochastic completion
field algorithm. The key idea is to use a spherical harmonics (SPH) basis to
provide a rotation invariant numerical estimation of the evolution of the prob-
ability density function associated with a 3D directional random walk. While
the development in this paper is tailored to a specific PDE, the basic idea of
solving PDEs on domains with a spherical topology has been of significant in-
terest in the fields of astronomy, geophysics, and nuclear physics [8] and can
find applications in a wide variety of medical imaging and computer vision ap-
plications where 3D orientation data is involved. We show that the proposed
framework can be formulated in a manner that is independent of the sampling
scheme used for ¢ and 6. Therefore, using a near-uniform sampling on the spher-
ical shell together with the SPH-based algorithm achieves the desired rotation
invariance. A second contribution of this article is the modification of the 3D di-
rectional random walk such that the Fokker-Planck equation has two additional
drift terms, which improve the coherence of the simulated trajectories by better
exploiting local fiber orientations. We validate this new approach by comparing
the obtained connectivity indices with those computed by the method of [4] on
synthetic data. Further results are presented on a rat spinal cord phantom [9]
and on the MICCAT 2009 Fibre Cup phantom [10].
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2 Background: 3D Stochastic Completion Fields

In the 3D stochastic completion field model introduced in [4] a 3D directional
random walk is used to model the Brownian motion of water molecules. The
state of a particle (z,y, 2,0, ¢) in R3 x S? is updated according to the following
set of differential equations:

dxr =sinfcos¢dt; dy =sinfsinodt; dz = cosfdt

df = o¢dB (0); do =04dB(¢); dB(0),dB(¢)~ N(0,dt).
Under this model particles tend to travel in a straight line along the direction
of their current orientation followed by a slight change in the orientation at

each step. The deviations in orientation are controlled by the Brownian motion
terms B (¢) and B (6) and are proportional to the diffusion parameters ai and

(1)

o2. Additionally, an average lifetime ( is associated with each particle, thus
favouring shorter paths over longer ones. Under this model, the probability of
passing through a particular state while bridging the gap between a source and
a sink region is given by the product of a stochastic source field and a stochastic
sink field [7], [4]. Furthermore, the Fokker-Planck equation describing the time
evolution of the probability density of a particle in the course of its 3D directional
random walk [11] is given as:
2 92 2 92

%—f = —sin@cosqbg—:—sin@sirub%—cos@%—f—k%%—i—%’%—%R (2)
The results presented in [4] demonstrate the ability of a Lax-Wendroff scheme for
discretizing the advection terms coupled with a Crank-Nicholson scheme for the
diffusion terms to achieve numerically stable connectivity measures between two
seed regions. However, this implementation suffers from the serious limitation
of having singularities at the poles due to the uniform sampling of ¢ and 6,
and of being rotationally variant due to the subsequent nonuniform density of
spherical samples. In the following we overcome this limitation by using a SPH
formulation of the PDE in the spherical domain to achieve rotation invariance,
which is the main contribution of this article. This strategy can be applied in
other medical imaging settings where 3D orientations have to be tracked and
updated in a PDE.

We also suggest two modifications of the above model to yield improved
performance. The first one has to do with the use of the Lax-Wendroff scheme
for the advective part of Equation 2. Using the Lax method, e.g., for %—f =
—sin 6 cos (;S%, a change in the probability value of a voxel (z,y,z) at time ¢
is propagated to voxels (x 4+ 1,y,2) and (x — 1,y,2) at time ¢ + 1. In fact, if
sinf cos ¢ > 0, then only the value of the voxel (z + 1,y, z) must be updated. A
similar effect occurs for negative values of sin # cos ¢. In the current implemen-
tation, we use an upwind differencing method for the advection terms to resolve
this issue. The second modification is the addition of two extra angular advection
steps to the algorithm, as described in the following section, to exploit the local
fibre orientations at each voxel more carefully. This in turn reduces the penalty
for highly curved tracts, when the underlying data supports such pathways.
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3 Angular Constraints on 3D Directional Random Walk

In a directional random walk, as described in [4], the stochastic component of
the particle’s motion is constrained to the orientation change which is entirely
Brownian. Adhering to this original definition, the probability of aligning the
particle’s orientation with an FOD maximum is inversely related to the expo-
nential of the angular difference between the incoming direction and the maxima.
Due to this characteristic a lower probability value will be associated with curved
fibre tracts compared to straight ones. While this can be a desirable property
in situations where one attempts to bridge the gap between two edge segments
with no other informative features in between, one would want to remove this
bias when the underlying data supports larger orientation changes.

To resolve this issue and to remove the bias towards straight fibre tracts, we
propose a variation of the 3D directional random walk where a particle’s state
is updated according to the following steps:

1. The particle moves in 3D in the direction of its current orientation:
dr = sinfcos ¢dt; dy =sinfsinpdt; dz = cosfdt. (3)

2. The particle’s orientation is changed according to two deviations in the os-
culating and the binormal planes incorporating the stochastic motion of the
random walk. Unlike the original directional random walk, a drift term is
added to the orientation changes df and d¢ at each step proportional to pg
and (s which are set based on the angular difference between the current
orientation and the FOD maximum. The diffusion terms oi and o3, on the
other hand, govern the amount of diffusion allowed at each step contributing
to the Brownian component of the directional random walk as before.

df = pedt+ogdB (8); do = pedt+o,dB(¢); dB(0),dB(¢p) ~ N (0,dt).

(4)

The stochastic differential equations given in Eq. 4 push the incoming direc-

tion towards the most likely orientation at each voxel (when available) through

the associated nonzero drift terms. This encourages the particles to follow the

closest FOD maxima in the course of their directional random walk, while the

nonzero diffusion coefficients allow the particles to follow other directions as well
to compensate for noise, data and other model-dependent inaccuracies.

Modified Fokker-Planck Equation The introduction of the drift terms into
the orientation changes at each step leads to the modification of the underlying

Fokker-Planck equation by the addition of extra angular advection terms to the
PDE:

opP . orP . . 0P oP
F i smé)cosgi)% — Smé’smqba—y — cos@a
oP 9P 030°P  030°P 1

TP M0 T2 e T2 ¢
In the rest of this paper, the Fokker-Planck equation will refer to Equation 5.

()
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4 Rotation Invariant Computation

In [4], the solution to the diffusion terms of Eq. 5 is computed using the implicit
Crank-Nicholson numerical scheme. The numerical estimation is based upon
uniform sampling of ¢ and 6 on the spherical surface, which suffers from the
inherent problem of rotation variance. Rotation invariant computation of the
Fokker-Planck equation requires a uniform sampling of the spherical surface, but
this makes the application of finite differencing methods in the spherical domain
challenging. Whereas there is no known point set on a spherical surface which
can be realized as the analog of uniform sampling in Euclidean space, our goal
is to minimize the error associated with the global properties of the sampling
points. To accomplish this, we use a quasi-uniform point set obtained by an
electrostatic repulsion approach on the sphere, known as the minimum energy
point distribution (ME) [9]. A numerical solution based on the SPH expansion of
the probability function on the spherical shell is consequently devised. This SPH-
based formulation is not linked to any particular sampling scheme, providing the
appropriate framework for employing a quasi-uniform spherical point set.

4.1 Spherical Harmonics Based Formulation

Spherical harmonics (SPH), normally denoted by Y;”, are the spherical analog
of the Fourier transform basis defined for complex functions on the unit sphere.
These functions form a complete orthonormal system of the space of square
integrable functions on the sphere L? (SQ) and are given as:

V" (0,0) = | 2i S B (cos) xp imo), (©

where P/ is an associated Legendre polynomial '. SPHs provide a natural frame-
work to work with functions living on the sphere and as such, they have been
used widely in different application areas dealing with data on sphere. Many al-
gorithms have also been introduced in the diffusion-MRI community which have
adapted spherical harmonics basis to model the diffusion signal [12], [13].
Forming an orthonormal basis on the spherical shell, any spherical func-
tion can be written as P (6,¢) = Y72, Zlm:—l 'Y ™ (0, ¢) where the expan-
sion is usually truncated at some order L. Given N data points on the sphere
P = {P,..., Py} and choosing an approximation order of L, a linear least-
squares scheme can be used to solve for the unknown SPH coefficients ¢ =
{d,ert Y, cl. .. ck} [14]. The linear least-squares approach seeks to solve the

! In this work, we use the real form of the spherical harmonics since the function to
be expanded is a real-valued probability density function.
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following linear system of equations using the pseudo-inverse of the SPH matrix:

1/00(017¢1) Ylil (617(251) Yf (alvd)l) 68 Pl

YO (On.68) Y (On o) .. YEOxaon) | Lek]  |pv] 9

Yc=P, c=Y'P=(YTY) Y'P.

The SPH expansion together with the above equation is next used to develop
an algorithm to solve the spherical part of the PDE given in Eq. 5:

P(t,0,¢) = ZZCZ 0,9)

=0 m=—1
OP 9P 9P  038°P 03 9P
E__“¢67¢_Meﬁ+28¢2+2892 -
SEe Y™ (6,9) Y™ (6, 9)
= ;m;lcz (t) (—ho (6, 0) R P (0,9) 0
LSO PN (6,9) | 05(6,9) 9V (6,9),
2 952 ) o002

Note that in Eq. 8 the x—,y—, z— dependence of P is implicit since the
spherical PDE is solved locally for each voxel independent of the neighbouring
voxels. The partial derivatives of Y, with respect to # and ¢ at a point can
be expressed as the combination of SPHs of different phase factors m (but the
same order [) at the given point. Using this property, Eq. 8 can be written
simultaneously for all the sample points in matrix form leading to a linear system
of ordinary differential equations (ODEs):

opP

8t ( M¢Y¢ —MpYy + E¢Y¢2 —+ Engz)

9)
= (—M¢Y¢ —MyYy + 2¢Y¢2 + Z@Ygz) YTP = DP,

where:

M¢' = diag [Md) (017¢1) PRy 1 (eNad)N)} M9 = diag [HG (917¢1)7' Ry 74 (9N7¢N)]7
Yy =diaglog (01,01),...,04 (On,0n)] Yo = diaglog (01, ¢1),...,00 (On, ON)],

[ OYR(01,91) Y[ (01,41) YL (01,61) OYE(61,¢1)
¢ U ¢ 00 e 00
Yy = : : Yy = : : )
Yy (On,6n) Y (On,6N) YL (On,0n) Y (On,6N)
L 96 cee B 00 s a0
r 02Y2(61,91) %Y E (01,41) %YL (61,41) O2YE(01,41)
552 552 o2 50
Yo = SR Vg = : L
2’YP (On,6n) 62YL (On,9N) 2’°YY (0w, o) *YE(On,0n)
L BrX o g2 002 e 002

(10)
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It is important to emphasize that the spherical harmonic formulation still
allows for local specification of the angular diffusion o3, o7 and advection pi4, g
coefficients. These parameters are selected locally based on the diffusion-MRI
data available throughout the volume. In order to avoid too large or too small
time steps, an adaptive step size numerical algorithm, the Runge-Kutta-Fehlberg
(RKF45) method, is used to advance the solution of Eq. 9 in time.

5 The Complete Computational Model

A summary of the overall computational method is provided in the following
set of equations where, similar to [4], a time splitting approach has been em-
ployed. As mentioned in Section 1, we replace the Lax-Wendroff scheme in [4]
by an upwind differencing scheme to solve the PDE along the x—,y—, and z—
coordinates. The SPH formulation is also used to solve the PDE in the spherical
domain:

t t . .
pitt  _ pt —sinfcosed Trwzo ™ Footyz0 il sinfcos o >0
zy,2,0,¢ — Lwyz0,¢ " SMUCOS ¢ _pt if sinfcosé < 0
T4+1,y,2,0,¢ L wy,z,0,6 11 SILUCOS
i+ i+ P .
t42 R _ sinfsiné Px,y,z,e,qs — Px7y_17z79,¢ if sinfsing >0
©,y,2,0,0 — © 2,,2,0,¢ t+1 t+i i sinfsi 3
1,206 Duyzo. i sinfsing <0
t+2 t+2 .
Pt _pttt gl Pruze ™ Poyiore it cosf >0
z,y,2,0,0 — © 2,y,2,0,¢ PH_% Pt+§ i 0 <0 )
vy2+1,0,6 ~ Lozl COSO<
t+5  _ pptti
P$7y7279,¢ =DPs,
t+1 _ —1lptts
Py =€ ‘Poylog

(11)

Both the source field and the sink field are computed by time integration
of the above probability density function representing a particle’s state in the
course of its directional random walk:

¢

Pas0.0) = [P e s0.0)dix Y P @s0.0). (2

0

The angular advection and diffusion coefficients pg, f1¢, 09,04 and the life time
coefficient ( are set locally for each state using the fibre orientation distribution
(FOD) calculated at each voxel. For all orientations within a certain angular
difference from the FOD maxima, g and g are equal to the angular difference
between the closest FOD maximum and the current orientation. oy and oy are
set to some fixed value to take the effect of the underlying noise and inaccuracies
into account. Finally, the particle’s life time ( for each state is also set based on
the angular difference, i.e.,  is chosen to be very small for orientations far from
the FOD maxima, and it diminishes linearly with increasing angular difference
for the rest of the orientations.
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6 Experimental Results

In this section, we evaluate the performance of our algorithm by running a
series of validation experiments. Qualitative and quantitative validation of our
method is provided using synthetic multi-tensor data, a biological phantom and
the MICCAI 2009 Fibre Cup phantom made of small-diameter acrylic fibres. We
also provide comparative results between the connectivity measures provided by
the 3D completion field algorithm and a standard probabilistic fibre tractography
algorithm, similar to that of [15].

6.1 Validation on Synthetic Data

To investigate the rotation invariant property of our new computational model,
we generate synthetic data using the multi-tensor model of [14]. For our ex-
periments, a quasi-uniform ME point set of 100 directions on the hemisphere is
chosen for diffusion encoding directions. The synthetic data is created by placing
diffusion tensors (DTs) along the fibre pathways where the major eigenvector
of a DT aligns with the tangent vector of the curves. Partial volume averaging
is also considered for voxels with more than one curve passing through them.
Background voxels are filled with isotropic tensors with eigenvalues equal to
600 = lO*GmeQ. The eigenvalues for the anisotropic voxels are chosen based
on the desired fractional anisotropy. Finally, we simulate the effect of noise by
adding complex Gaussian noise to the raw signal.

0 o (1] (]

(a) Numerical method of [4] (b) SPH-based algorithm

Fig. 1. Visualizing the effect of rotation on the performance of the SPH-based algo-
rithm and the numerical method of [4]

Figure 1 shows the probability distributions obtained for a synthetic curved
tract in two perpendicular spatial orientations, using the numerical method given
in [4] and the new rotation invariant method?. It is clear that the SPH formula-

2 For the purpose of visualization, all results are projected onto the 2D plane. The
reader is also encouraged to zoom-in on the figures in the electronic version for a
better view of the orientations and the transparency values.
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tion recovers the underlying connection more accurately. More significant though
is the difference between the probability distributions obtained by the algorithm
of [4] for the two spatial orientations. The algorithm even fails to completely re-
cover the connectivity pattern for one of the spatial orientations (Fig. 1(a) left).
Conversely, the probability distributions obtained by the SPH-based algorithm
clearly demonstrate the robustness of the algorithm to rotation in space. The
same conclusion can be drawn from the connectivity measures summarized in
Table 1. The small difference still observed for the rotation invariant method
is due to the errors introduced by the time splitting approach, which updates
the probability distribution function for x—, y— and z— coordinates in separate
steps. The effect is more severe for our synthetically generated data with clear
jumps from voxel to voxel. We expect this effect to be milder for less coarse real
data. The connectivity measures, as described in [4], are computed by taking
the average of the probability values of the voxels contained in the source and
sink region pairs.

Table 1. Connectivity indices obtained for two spatial orientations of the same syn-
thetic fibre tract

Algorithm Hlst Configuration 2nd Configuration
numerical method of [4] 0.0332511 0.271475
SPH-based Algorithm 0.154295 0.197969

6.2 Validation on Phantom Data

Fiber Cup Phantom Data The new SPH-based algorithm was also tested on
the MICCAI 2009 Fibre cup phantom [10], with known ground truth. For our
experiments, we used the DWIs with a spatial resolution of 3x3x3mm? and a
b-value of 1500 s/mm?.

Figure 2 provides a probabilistic view of the connectivity patterns obtained
for different sink and source region pairs, using our SPH-based algorithm. We
have used the same pairs of sink and source regions as in [4], where the first four
are associated with true fibre tracts while the last two are not. The connectivity
measures provided by the algorithm are also summarized in Table 2 and are
compared to the measures obtained by the numerical method of [4] and those of
a probabilistic tractography approach similar to [15]. The probabilistic method
uses the uncertainty computed from a residual bootstrapping approach to run
many iterations of a streamline tractography technique, where the weakest link
along the reconstructed fibre tracts represents the connectivity strength from
the seed region to every voxel.

Similar to [4], one major observation is the failure of the weakest link mea-
sure to provide a consistent connectivity index for true connections. While the
algorithm correctly assigns zero connectivity to the connections (e) and (f), no
connection is found for the straight connection of (d). Moreover, the connectiv-
ity measures for the other three true connections extend over a wide range of
values, making any kind of inference based on these measures inaccurate. More
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(b) (c) (d) (f)

Fig. 2. Results of the SPH-based model. The darker the vectors, the higher the asso-
ciated probabilities. Top-Left: Mean diffusivity image and the ROIs used

significant though is the improvement gained by using our new SPH-based al-
gorithm over the numerical method of [4]. Tt should be noted that since this
phantom is almost planar, the results obtained mainly show the effect of adding
the angular advection terms to the Fokker-Planck equation. While the previous
method assigns almost similar measures to the cases (¢) and (f), where the first
is a true connection and the second is not, the connectivity measure provided
by the new algorithm is very low for both cases (e) and (f) and much higher for
the other cases which represent true connections. The fact that the connectivity
indices of cases (c) and (d) are an order of magnitude lower than those of cases
(a) and (b), is mainly due to the complex configuration of fibre tracts at the top
part of the phantom, causing the connectivity measure to drop as expected.

Table 2. Connectivity indices obtained for six different seed region pairs

Algorithm || (a) (b) (c) (d) (e) (f)
SPH CF 0.327592 0.258567 0.0614615 0.0947138 0.000047583 0.000594305
Num. Mth of [4]|| 0.17152 0.22445 0.04716  0.24342 0.00551 0.07559
Probabilistic || 0.00041 0.239901 0.00792 0 0 0

Biological Phantom Data We also evaluated the performance of our algo-
rithm on a physical phantom with known connectivity built from excised rat
spinal cords [9]. The cords were scanned to acquire 90 DWIs as well as 10 T2-
weighted images. Unlike the physical phantom used in the experiments of the
previous section, the biological phantom is not planar and thus this experiment
better explores the 3D performance of our algorithm.
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Figure 3 (left) shows the anisotropy image of the phantom and the seed
regions used. The table on the right summarizes the connectivity measures ob-
tained between different sink and source regions for our method and the proba-
bilistic tractography algorithm. Based on the ground truth, it is known that ROI
(a) is connected to ROI (b) and (c) is connected to (d). The biological phantom
has a complex crossing section and low anisotropy values, which make tracking
within the phantom a difficult task. However, from the connectivity measures
provided by the SPH-based algorithm, it is clear that our algorithm does a bet-
ter job in distinguishing true connections from false connections when compared
to the probabilistic algorithm. The probabilistic tractography approach fails to
reconstruct the pathway from ROI (c) to (d). In fact, either starting from ROI
(c) or (d), the algorithm cannot pass through the crossing region, providing no
connectivity for any of the (cd), (ac) and (bd) ROI pairs. In contrast, the SPH-
based completion field algorithm provides us with connectivity measures that
are an order of magnitude higher for the true connections.

Algorithm||SPH-Based CF Probabilistic

ab 0.353533 0.201719
cd 0.174609 0
ac 0.057683 0
bd 0.028613 0

Fig. 3. Anisotropy image and connectivity indices obtained for the biological phantom

7 Conclusion

This paper introduces a mathematical formulation to achieve rotation invariant
solutions for partial differential equations where 3D orientation data is involved.
The method has been applied to the specific problem of diffusion MRI connectiv-
ity measurements using 3D stochastic completion fields. In addition, to make the
application of 3D stochastic completion fields more appropriate for brain connec-
tivity measurement in the presence of dense orientation information, additional
angular advection terms are incorporated into the 3D directional random walk,
leading to a modified Fokker-Planck equation. Using synthetic diffusion MRI
data, we have demonstrated that our SPH-based method is more robust to rota-
tion in space. Further experiments on two physical and biological phantoms show
that the new formulation outperforms some existing tractography algorithms, a
standard probabilistic tractography method and the rotation variant implemen-
tation of the stochastic completion field, by providing more reliable connectivity
measures across the phantoms and by distinguishing true connections from false
connections. In future, we plan to further explore the performance of our algo-
rithm by performing experiments on human brain data and also by setting the
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diffusion parameters in a more systematic way, i.e., based on measurements of
the underlying noise and data uncertainty.
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