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Abstract. Many recent works aim at developing methods and tools for the 

processing of semantic Web services. In order to be properly tested, these tools 

must be applied to an appropriate benchmark, taking the form of a collection of 

semantic WS descriptions. However, all of the existing publicly available 

collections are limited by their size or their realism (use of randomly generated 

or resampled descriptions). Larger and realistic syntactic (WSDL) collections 

exist, but their semantic annotation requires a certain level of automation, due 

to the number of operations to be processed. In this article, we propose a fully 

automatic method to semantically annotate such large WS collections. Our 

approach is multimodal, in the sense it takes advantage of the latent semantics 

present not only in the parameter names, but also in the type names and 

structures. Concept-to-word association is performed by using Sigma, a 

mapping of WordNet to the SUMO ontology. After having described in details 

our annotation method, we apply it to the larger collection of real-world 

syntactic WS descriptions we could find, and assess its efficiency. 

Keywords: Web Service, Semantic Web, Semantic Annotation, Ontology, 

WSDL, OWL-S. 

1 Introduction 

The semantic Web encompasses technologies which can make possible the generation 

of the kind of intelligent documents imagined ten years ago [1]. It proposes to 

associate semantic metadata taking the form of concepts with Web resources. The 

goal is to give a formal representation of the meaning of these resources, in order to 

allow their automatic processing. The process of defining such associations is known 

as semantic annotation (or annotation for short), and generally relies on libraries of 

concepts collectively described and structured under the form of ontologies. The 

result is Web documents with machine interpretable mark-up that provide the source 

material for software agents to operate. The annotation of Web resources is obviously 

fundamental to the building of the semantic Web. 

mailto:caksoy@uekae.tubitak.gov.tr


 

According to Nagarajan and Uren et al., in order to properly treat documents, 

annotating systems must follow a generic process [2] and meet seven different 

requirements [3]. The annotation process is composed of three primary steps that are 

the identification of the entity to be annotated, its possible disambiguation and its 

association to a concept. The requirements are as follow. The first one is to use 

standard formats (R1). Indeed, they provide a bridging mechanism that allows the 

access to heterogeneous resources and collaborating users and organizations to share 

annotations. The second one is to provide a single point of entry interface (R2), so 

that the environment in which users annotate documents is integrated with the one in 

which they create, read, share and edit them. The third one is to support multiple 

ontologies and to cope with changes made to ontologies (R3). This last point ensures 

consistency between ontologies and annotations with respect to ontology changes. 

The fourth and the fifth requirements are related to the document to be annotated. An 

annotating system must support heterogeneous input formats (R4), and be able to 

manage the annotation consistency when the document evolves (R5). The sixth 

requirement is about the annotation storage (R6), for which two models are proposed: 

the annotations can be stored separately from the original document or as an integral 

part of the document. Seventh, and finally, as manual semantic annotation leads to a 

knowledge acquisition bottleneck, the last requirement deals with the automation of 

the annotating process (R7). Automated annotation provides the scalability needed to 

annotate existing documents on the Web, and reduces the burden of annotating new 

documents. 

Besides static Web content such as textual or multimedia documents, semantic 

annotation also concerns dynamic content, and more particularly Web Services (WS). 

WS are non-static in nature; they allow carrying out some task with effects on the 

Web or the real-world, such as the purchase of a product. The semantic Web should 

enable users and agents to discover, use, compose, and monitor them automatically. 

As Web resources, classic WS descriptions such as WSDL files can be semantically 

enhanced using the annotation principle we previously described, i.e. by the 

association of various ontological concepts. However, due to the particular structure 

of WS descriptions, these associations must comply with very specific constraints, 

which are different from those encountered for other kinds of Web resources such as 

Web pages. [2]. Indeed, the semantics associated with WS need to be formulated in a 

way that makes them useful to the application of WS. Sheth presents four types of 

semantics for the complete life cycle of a Web process: data, functional, non-

functional and execution [4]. Data semantics is related to the formal definition of data 

input and output messages. Functional semantics is related to the formal definition of 

WS capabilities. Non-functional semantics is related to the formal definition of 

constraints like QoS. Execution semantics is related to the formal definition of 

execution flows at the level of a process or within a WS. Semantically annotating a 

WS implies describing the exact semantics of the WS data and functionality elements, 

which are crucial for the use of the WS, as well as its non-functional and execution 

elements.  

Efforts for WS annotation include WS semantic languages as well as tools to 

annotate legacy WSDL files. The most prominent semantic languages are OWL-S [5], 



 

WSMO [6], WSDL-S [7] and SAWSDL [8]. While OWL-S and WSMO define their 

own rich semantic models for WS, WSDL-S and SAWSDL work in a bottom-up 

fashion by preserving the information already present in WSDL. Those description 

languages are used in many research projects focusing on various semantic-related 

applications like automatic discovery and composition. In order to test these 

applications, one needs a benchmark, i.e. a large collection of annotated WS [9]. Such 

collections exist, but are limited in terms of size, realism, and representativity. These 

limitations are due to the fact the annotation process is generally performed manually, 

and is therefore costly. The use of an appropriate annotation tool can help decrease 

this cost, especially if it is automated. However, because of the specific structure of 

this kind of document, automatically annotating a WS description is much different, 

from the natural language processing perspective, than annotating other Web 

documents such as plain text. It consequently requires to perform a particular form of 

text mining, leading to dedicated tools such as ASSAM [10] or MWSAF [11]. But 

those tools also have their own limitations, the main one being they are only partially 

automated and require human intervention, which is a problem when annotating a 

large collection of WS descriptions. 

In this paper we present the first version of MATAWS (Multimodal Automatic 

Tool for the Annotation of WS), a new semantic WS annotator, whose purpose is to 

solve some of these limitations. MATAWS was designed with the objective of batch 

annotating a large collection of syntactic descriptions and generating a benchmark 

usable to test semantic-related approaches. It focuses on data semantics (i.e. the 

annotation of input and output parameters) contained in WSDL files, and currently 

generates OWL-S files (other output formats will shortly be included). Our main 

contributions are: 1) a full automation of the annotation process and 2) the use of a 

multimodal approach. We consider not only the parameter names, but also the names 

present in the XSD types used in the WSDL descriptions: type names, and names of 

the fields defined in complex types. 

The rest of this paper is organized as follows. Section 2 presents both existing 

ways of retrieving a collection of semantic WS descriptions: recover a publicly 

available collection and annotate a syntactic collection using one of the existing 

annotation tools. In section 3, we introduce MATAWS and describe our multimodal 

approach. In section 4 we apply MATAWS to the annotation of a publicly available 

collection of syntactic WS descriptions. Finally, in section 5 we discuss the 

limitations of our tool and explain how we plan to solve them. 

2 Solutions to Access an Annotated Collection 

When looking for a collection of semantic WS descriptions, one can consider two 

possibilities: either using a predefined collection, or creating his own one. In this 

section, we first review the main existing collections and their properties. The 

creation of a collection can be performed either by using a random model to generate 

artificial descriptions, or by semantically annotating a collection of real-world 

syntactical descriptions. The usual goal when looking for a semantic collection is to 



 

test WS-related tools on realistic data. To our opinion, the WS collections properties 

are not known well enough to allow the definition of a realistic generative model, 

which is why we favor the second solution. For this reason, in the second part of this 

section, we also review the main tools allowing to annotate WS descriptions. 

2.1 Collections of Semantic Descriptions 

The main publicly available collections of semantic WS are those provided by the 

ASSAM WSDL Annotator project, SemWebCentral and OPOSSum. Their major 

features are gathered in Table 1.  

The ASSAM WSDL Annotator project (Automated Semantic Service Annotation 

with Machine learning) [12] includes two collections of WS descriptions named Full 

Dataset and Dataset2. Full Dataset is a collection of categorized WSDL files, which 

contains 816 WSDL files describing real-world WS. Dataset2 is a collection of OWL-

S files, obtained by annotating a subset of the WSDL files using the ASSAM 

Annotator (cf. section 2.2). 164 descriptions were fully labeled, assigning ontology 

references to the WS itself, its operations and their inputs and outputs.  

Table 1.  Collections of semantic WS descriptions: main features. 

Name Dataset2 OWLS-TC3 SAWSDL-TC SWS-TC 

Source ASSAM project SemWeb Central SemWeb Central SemWeb Central 

Type Real-world 

descriptions 

Real-world 

descriptions, 

partially resampled 

Real-world 

descriptions, 

partially resampled 

N/A 

Language OWL-S OWL-S SAWSDL OWL-S 

Annotated 

Type 

Data, 

Functional 

Data Data Data 

Size 164 1007 894 241 

Particular 

features 

Processed using 

Assam 

annotator 

Single interface, 

one operation per 

service 

Single interface, 

one operation per 

service 

N/A 

 

SemWebCentral [13] is a community whose purpose is to gather efforts from 

people working in the semantic Web area. Three semantic collections are available: 

OWLS-TC (OWL-S Test Collection), SAWSDL-TC (SAWSDL Test Collection) and 

SWS-TC (Semantic WS Test Collection). OWLS-TC3 is the third version of this test 

collection. It provides 1007 semantic descriptions written in OWL-S from seven 

different domains. Part of the descriptions were retrieved from public IBM UDDI 

registries, and semi-automatically transformed from WSDL to OWL-S. SAWSDL-TC 

originates in the OWLS-TC collection. It was subsequently resampled to increase its 

size, and converted to SAWSDL. The collection provides 894 semantic WS 

descriptions. The descriptions are distributed over the same seven thematic domains 

than OWLS-TC. SWS-TC is a collection of 241 OWL-S descriptions. There is not 

much information about this collection. 



 

OPOSSum (Online POrtal for Semantic Services) [14] is a joint community 

initiative for developing a large collection of real-world WS with semantic 

descriptions. Its aim is to create a suitable test bed for semantically enabled WS 

technologies. OPOSSum gathered the three semantic collections of SemWebCentral, 

plus the Jena Geography Dataset collection, explicitly collected within OPOSSum. 

The collection contains 201 real-world WS descriptions retrieved from public. All the 

described WS belong to the domains of geography and geocoding. Unfortunately, for 

now, no semantic descriptions are available for the services of the Jena Geography 

Dataset, which is why this collection is absent from Table 1. 

These collections have been widely used in semantic WS-related works [15, 16]. 

As shown in Table 1, they all focus on the annotation of the data elements, which 

corresponds to our objective. However, one can notice some limitations. SWS-TC 

description is insufficient, it is not even clear if the WS descriptions are real-world. 

Dataset2 contains only real-world WS descriptions but it is very small, which can 

raise questions about its representativity. On the contrary, OWLS-TC3 and 

SAWSDL-TC contain a substantial number of descriptions. Nevertheless, these have 

been partially resampled in an undocumented way, which raises important questions 

concerning their realism. 

2.2 Annotation Tools 

From our point of view, WS annotation is considered as a one-time task, aiming at 

annotating legacy WS, which are described only syntactically. Newly created or 

modified WS should be (re)annotated manually by their authors, which is much 

preferable in terms of quality than any automatic processing. For this reason, and due 

to the specific nature of WS annotation, we are not concerned by all the 7 

requirements stated by Uren et al. [3] for general annotation tools. It is of course 

necessary to use standard formats for input and output (R1). A polyvalent 

environment is not necessary, since we do not want to modify existing descriptions or 

create any new ones (R2). The support of multiple or changing ontologies is relevant 

(R3), but it is not the most important point, so we chose to ignore it in this first work. 

The input format is constrained to WSDL (R4), since it is the de facto standard for 

syntactical WS description. As stated before, we do not plan to maintain annotations 

if WS are modified (R5). The model of annotation storage (R6) is constrained by the 

output format: separate form for OWL-S and integrated for WSDL-S and SAWSDL. 

Finally, the level of automation is of great interest to us, given our context (R7). 

Only a few publicly available tools exist to semantically annotate WS descriptions. 

Table 2 presents the main ones and summarizes their properties. They all take a set of 

WSDL files as input (R1 and R4), but differ on several properties such as their level 

of automation (R7) and the language used to output the semantic descriptions (R1). 

The tools are described in details in the rest of this subsection. 

Radiant is an open source tool created at the Georgia University [17]. It takes the 

form of an Eclipse plug-in and can output both SAWSDL and WSDL-S files. It 

provides a GUI which presents the elements constituting the WS description and 

allows to select the concepts one wants to associate to parameters or operations, by 



 

browsing in the selected ontologies. This interface makes the annotation process 

easier, but the annotation is nevertheless fully manual.  

ASSAM is an open source Java program developed at the University College 

Dublin [12], able to output OWL-S files. It provides assistance during the annotation 

process. First, the user starts manually annotating parameters and/or operations using 

an existing ontology. Meanwhile, ASSAM identifies the most appropriate concepts 

using machine learning methods. After enough information has been provided, the 

software is able to propose a few selected and supposedly relevant concepts when the 

user annotates a new WS.  

MWSAF is another open source Java tool created at the Georgia University [11]. It 

outputs WSDL-S files, and like ASSAM it has a machine learning capability allowing 

it to assist the user during the annotation process. It is able to annotate not only 

parameters and operations, but also non-functional elements. 

WSMO Studio is an Eclipse plug-in initially designed to edit semantic WS based 

on the WSMO model. An extension allows annotating WS parameters and operations, 

and outputting the result under the form of SAWSDL files [18]. However, the tool 

does not provide any assistance to the user and the process is fully manual. 

Table 2.  WS Semantic annotation tools and their properties. 

Name Output Format Annotated Type Automation Last Update 

Radiant SAWSDL, 

WSDL-S 

Data, Functional Fully manual May 2007 

ASSAM OWL-S Data, Functional Assisted May 2005 

MWSAF WSDL-S Data, Functional, 

Non-Functional 

Assisted July 2004 

WSMO Studio SAWSDL Data, Functional Fully manual Sept. 2007 

 

Besides these annotation tools, several softwares allow to convert WSDL files to 

OWL-S files, but without performing any semantic annotation: they only apply a 

syntactic transformation and present the information contained in the original WSDL 

file under a form compatible with the OWL-S recommendation. WSDL2OWLS is an 

open source Java application created at the Carnegie Mellon University [19]. OWL-S 

Editor is a plug-in for Protégé (itself an ontology development environment) created 

at SRI [20]. Another software performing the same task is also called OWL-S Editor, 

but was developed at Malta University [21]. 

From this review, we can conclude the existing annotation tools present various 

limitations relatively to our goals. First, from a practical perspective, some of these 

tools are old and not supported anymore, which can cause installation and/or use 

problems. For instance, Radiant and ASAM are not compatible anymore with the 

current versions of some of the Eclipse plug-ins, libraries or API they rely on; 

meanwhile MWSAF installs and runs fine, but generates files without any of the 

annotations defined by the user. More importantly, these tools require important 

human intervention: Radiant and WSMO Studio are fully manual, whereas ASSAM 

and MWSAF only assist the user, after a compulsory learning phase. This justifies the 

development of our own tool, which we present in the next section. 



 

3 Proposed Annotation Method 

The absence of an existing solution fulfilling our needs compelled us to develop 

our own tool to semantically annotate WS descriptions. The main differences with the 

other annotation tools are the exploitation of several sources of information and the 

automation of the annotation process. In this section, we first describe the general 

architecture of our tool, which is made up of several independent components. We 

then focus separately on the components of interest, explaining their design and 

functioning. 

3.1 General Architecture 

MATAWS takes a collection of WSDL files as input and generates a collection of 

OWL-S files as output. Fig. 1 gives an insight of its modular structure, which includes 

five different components. Among these components, two are using external APIs 

(Associator and Output Component), whereas the three remaining ones were 

developed by us in Java. The Input and Output components are not of great interest 

with regards to the topic of this article, which is why we describe them shortly here. 

The other components are described in details in the following subsections. 

 

Fig. 1. Architecture of MATAWS. 

The Input Component is in charge for extracting the set of all operation parameters 

defined in the considered collection of WSDL files. We designed a parser able 

(among other things) to retrieve the parameter names, type names and type structures 

(in the case of complex types) [22]. The Output Component is used after the 

annotation process to generate a collection of OWL-S files corresponding to 

annotated versions of the input WSDL files. For this purpose, we selected the Java 

OWL-S API, which provides a programmatic read/write access to OWL-S service 

descriptions [5]. Note we plan to add support for WSDL-S and SAWSDL by using 

other appropriate APIs. 

The three remaining components correspond to the core of the annotation process. 

After the input component has parsed the WSDL files, it fetches parameters 

information to the Preprocessor. This one originally focuses on the parameter names, 

decomposing, normalizing and cleaning them so that they can be treated by the 

Associator. This component is based on the inference engine Sigma [23], whose role 
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is to associate an ontological concept to a word. If Sigma is successful and manages 

to return a concept, this one is associated to the considered parameter. After all the 

parameters of a WS have been annotated, the Output Component is used to generate 

an OWL-S file with both the information contained in the original WSDL file and the 

selected concepts. However, for various reason explained later, it is not always 

possible for Sigma to find a suitable concept for every parameter. In this case, the 

Type Explorer accesses some properties related to the parameter data type, to obtain 

what we call subparameters. These are then fetched to the Preprocessor and the core 

processing starts again. In case of repeated annotation failure, this process can be 

repeated recursively until success or lack of subparameters. 

3.2 Preprocessor 

In order to work properly and propose a suitable concept, the Associator needs to 

process clear and normalized words. However, the names defined in real-world WS 

certainly do not meet this criterion. First, the meaning of an operation, parameter or 

type can hardly be described using a single word. For this reason, most names are 

made up of several concatenated words, separated either by alternating upper and 

lower cases or by using special characters such as dots, underscores, hyphens, etc. 

Second, sometimes the result is too long and abbreviations are used instead of the 

complete words. Finally, an analysis of any collection quickly shows different 

additional characters such as digits or seemingly useless separators can also appear. 

Of course, there is no way to define an exhaustive list of the various forms a name 

can take in a WS description, but WS programmers actually follow only a few 

conventions, which allows performing very efficient preprocessing by applying a set 

of simple transformations to break a name into usable words. We distinguish three 

steps during name preprocessing: decomposition, normalization and filtering. 

Table 3.  Preprocessing examples. 

Transformation Original Name Extracted Words 

Decomposition WhiteMovesNext White, Moves, Next 

Decomposition Number3Format Number, Format  

Decomposition AUsername Username 

Decomposition User_name User, name 

Normalization no number 

Normalization Password password 

Filtering Parameter - 

Filtering Body - 

 

The decomposition consists in taking advantage of the different types of 

concatenations we identified to break a name into several parts. It also involves some 

cleaning, in the sense all characters which are not letters are removed and diacritical 

marks are deleted. Table 3 shows some examples involving case alternation, and digit 

and underscore used as separators. 



 

The normalization role is first to provide the Associator a clean version of the 

word, typographically speaking, by setting each word to lower case. Moreover, the 

normalization handles abbreviations, by replacing them with the corresponding full-

length words. Table 3 gives an example of the name no being replaced by the word 

number. However, this last task is very context-dependent, because some strings are 

both full words and common abbreviations. For instance, no could simply mean the 

opposite of “yes”, used to negate the following concatenated word, e.g. no_limit. 

For this reason, human intervention can be necessary to set up this preprocessing, and 

adapt it to the considered collection. We chose to allow the user to define a list of 

common abbreviations. 

Finally, we added a filtering step to deal with stop-words, i.e. words with no 

particular semantic information relatively to their context. For instance, the string 

parameter commonly appears in parameter names, without bringing any significant 

information, since the syntax of the WSDL file already allows to know if a certain 

name points out at a parameter. For this reason, it can be considered as noise and 

ignored.  Even more than before, the nature of the stop-words is closely linked to the 

domain of application, and requires human intervention to adapt the list of stop-words 

we defined. 

Let us consider as an example the preprocessing of the name ASessionId_02. 

First it will be broken down to the words A, Session and Id while the numeric end of 

the name (02) will be ignored. The normalization step will transform them in a, 

session (lowercase) and identity (replacing an abbreviation). Finally, the filter will 

remove the article a, because it is a stop-word. Eventually, for this name 

ASessionId_02, the Preprocessor will output the two words session and identity. 

3.3 Associator 

As mentioned before, we use an existing tool called Sigma to associate a concept to a 

word. It is written in Java and allows to create, test, modify and infer ontologies [23]. 

It is provided with the Suggested Upper Merged Ontology (SUMO), which (unlike its 

name suggests) contains also mid-level and domain ontologies [24]. SUMO is free, 

covers a wide range of fields, and it has been mapped to the whole WordNet lexicon 

[25]. It was initially defined using the SUO-KIF language [26], and it is currently 

being converted in OWL [27]. 

Table 4.  Concept association examples. 

Word SUMO Concept associated by Sigma 

buffalo HoofedMammal 

school EducationalProcess 

talk Communication 

 

Although its main purpose is to work on ontologies, Sigma also offers a 

programmatic access to this mapping under the form of a method taking an English 

word as input and outputting a SUMO concept. Table 4 gives a few examples of such 



 

associations. The names we processed are most of the time not plain English words, 

which justifies our preprocessing.  

3.4 Type Explorer 

Although our focus is primarily on parameter names, we described the two previous 

components in general terms, because they can be applied to any kind of names. 

Indeed, different difficulties can arise, making it impossible to associate a concept to a 

parameter name. First, the Preprocessor might fail to break the name down to relevant 

words, hence fetching the Associator strings it cannot map to appropriate concepts. 

Second, the Preprocessor might filter all the words resulting from the name 

decomposition, meaning it will not be able to provide the Associator any word to 

process. This can be the case, for instance, when a name is composed of a single stop-

word or several concatenated ones (e.g.: SomeParameter_08). Third, even if at least 

one correct English word can be fetched to the Associator, it is possible this one 

simply does not find any associated concept. 

All three cases, or any combination of these three cases, result in the fact no 

concept could be associated to the considered parameter. To overcome this problem, 

we propose a multimodal approach taking advantage of latent semantics contained in 

the data type information available through WSDL files. First, in real-world WS, a 

large proportion of types have a user-defined name, whose meaning can be considered 

as complementary to the parameter name. Additionally, many of these custom types 

are complex in the XSD sense, i.e. they can be compared to the structured data types 

used in programming languages. A parameter whose type is complex is made up of 

several subparameters, which can recursively be composed themselves of other 

subparameters, if they have a complex type too. Therefore, by taking advantage of the 

data types, one can access the semantic information implicitly contained in the type 

names and subparameter names and types. 

 

Fig. 2. Excerpt from a real-world WSDL file: parameter with a complex XSD type. 

Fig. 2 gives an example of a complex type extracted from a real-world WSDL file. 

A parameter named category has a complex type called categoryDetail, defined 

as a sequence of two strings: a singer and a composer. If we suppose the word 

<message name="GetCategories"> 

    <part name="category" type="categoryDetail" /> 

</message> 

... 

<complexType name="categoryDetail"> 

    <sequence> 

        <element name="singer" type="xsd:string" /> 

        <element name="composer" type="xsd:string" /> 

    </sequence> 

</complexType> 

... 

... 



 

category is a stop-word, the Associator will not be able to provide any concept for 

this parameter. However, considering the words singer and composer gives access to 

additional information usable by the Associator. 

The principle of our Type Explorer component is as follows. It is activated when 

the processing of the parameter name could not be used to successfully identify any 

concept. We start with the type name: if it is custom, we process it exactly like the 

parameter name, going through the preprocessing and association steps. In case of 

failure to associate any concept, we go further and consider the type structure. If it is 

complex, we access the first level of subparameters. For now, we only consider XSD 

sequences, because these are the most widespread, however the same approach can be 

extended to the other kinds of XSD types. We first focus on the subparameter names, 

and if the association is inconclusive, on their type names. In case of failure, the 

process recursively goes on by analyzing the structure of the subparameter types to 

access the second level of subparameters. The recursion stops when there is no more 

level to process (permanent failure) or as soon as concept can be associated (success). 

4 Application to Real-World Descriptions 

To assess its performance, we applied MATAWS to a collection of syntactic WS 

descriptions. We wanted to use a large collection of real-world descriptions, in order 

to avoid specific cases and to get consistent results. Given these criteria, the best 

collection we could found is the Full Dataset collection from the ASSAM project 

[12], previously mentioned in our review of WS descriptions collections (section 2.1). 

It contains 7877 operation distributed over 816 real-world WS descriptions. In this 

section, we present the results we obtained on this collection. First we adopt a 

quantitative point of view and distinguish parameters only in terms of annotated or 

non-annotated. Second, we analyze the results qualitatively and discuss the relevance 

of the concept associated to the parameters.  

4.1 Quantitative Aspect 

We first focus on the proportion of parameters from the Full Dataset collection which 

could be automatically annotated by MATAWS. In this section, we consider a 

parameter to be successfully annotated if our tool was able to associate it to at least 

one concept. Table 5 displays several values, corresponding to the progressive use of 

the different components described in section 3. Each row represents the performance 

obtained when using simultaneously the specified functionality and those mentioned 

in the previous rows. 

The first line corresponds to the direct application of the Associator, with no 

significant preprocessing. The only transformation consists in setting parameter 

names to lowercase, which is compulsory to apply Sigma. Under these conditions, 

MATAWS can propose a concept for 39.63% of the parameters. This means close to 

40% of the parameters names are single words, which can be retrieved directly in 

WordNet. The rest needs more preprocessing to be successfully annotated. 



 

The second row corresponds to the introduction of the decomposition step. The 

small improvement in the success rate (around +2%) allows us to think compound 

names do not contain directly recognizable words. By adding the normalization step, 

the improvement is extremely large (almost +48%). Further analysis shows this is 

only marginally caused by the replacement of abbreviations by full words. Among the 

remaining 10%, one can found specific parameter forms we plan to introduce in our 

preprocessing, and word variations such as plural forms, also easily integrable in our 

approach. 

Table 5.  Success rates obtained by using the different functionalities of MATAWS. 

Added Modification Proportion of Annotated Parameters 

No preprocessing 39,63% 

Decomposition 41,94% 

Normalization 90,01% 

Filtering 69,06% 

Type Explorer 72,04% 

 

A strong decrease (–21%) can be observed when introducing the filtering step. 

This means that, among the associated words, many correspond to stop-words, or 

concatenations of stop-words. In this case, the Annotator might be able to retrieve a 

concept, but this one is useless in this context (e.g. parameter). The introduction of the 

Type Explorer allows improving slightly our success rate (+3%), but its effect is not 

as strong as we expected. This can be justified by the fact most parameters with a 

custom type where annotated using only their names. Moreover, the type structure is 

difficult to exploit in this collection, because some types defined as complex 

surprisingly do not actually have any content (i.e. no subparameters at all). 

4.2 Qualitative Aspect 

The quantitative analysis reflects the fact a large proportion of parameters could be 

associated to a concept. The question is now to know if these associations, which 

were automatically retrieved, are relevant relatively to the context.  For this matter, 

we isolated all the words detected in the whole set of parameters, thanks to our 

Preprocessor and Type Explorer. Table 6 shows the first most frequent words with 

their associated concept.  

Overall, most of the annotated words are associated to relevant concepts, leading to 

an approximate success rate of 83%. Words like computer, month, numeric, 

password, customer are perfectly recognized, but this is not the case of several 

widespread words such as name, user, address or value.  

Irrelevant concepts are due to the fact some words have several meanings and can 

therefore be associated to several concepts. Such ambiguity can be raised directly 

when the considered word has most probably a unique meaning in the context of WS. 

For instance, when the word user is submitted to Sigma, it outputs three concepts, 

including the one expected in this case, i.e. “someone employing something”. 



 

However, the top result corresponds to “someone who does drugs”, which explains 

the associated concept (DiseaseOrSyndrome). Similarly, the appropriate concept for 

name is among the concepts returned by Sigma, but the top result correspond to its 

meaning in the expression “in the name of the law”, hence the concept 

(HoldsRight). The quality of the annotation could be improved for such common 

words by simply selecting a priori the appropriate concepts, like we defined lists of 

stop-words and abbreviations.  

Table 6.  List of the most frequent words, with their associated concept. Bold rows represent 

semantically irrelevant concepts. 

Word Occurrences Associated Concept 

identity 1255 TraitAttribute 

key 548 Key 

name 470 HoldsRight 

user 424 DiseaseOrSyndrome 

code 295 Procedure 

number 294 Object 

address 258 SubjectiveAssessmentAttribute 

date 203 DateFruit 

city 168 City 

amount 135 ConstantQuantity 

administrator 128 Position 

message 115 Text 

value 106 ColorAttribute 

password 98 LinguisticExpression 

pass  70  ContestAttribute 

customer  52  Customer 

company  51  Corporation 

phone  41  Device 

electronic  35  ElectricDevice 

computer  33  Computer 

mailing  33  Transfer 

month  32  Month  

numeric  32  Number  

 

The selection of an accurate concept can also be context dependent, which makes it 

impossible or difficult to perform it a priori. For instance, the word value corresponds 

to many concepts equally likely to appear in a WS description: quantity, monetary 

value, time duration, etc. Regarding this problem, the quality of the automatic 

annotation can be improved by deriving concepts from several words, when they are 

available. For instance, if the parameter name is value01 and its type is 

myCurrencyType, then we have enough information to infer the most relevant 

concept. This can be done, for example, by taking advantage of the WordNet textual 

definitions. 



 

5 Conclusion 

In this article, we presented our tool MATAWS, which implements a new method to 

semantically annotate WS descriptions. It focuses on WS parameters, i.e. on the Data 

semantics [4], and implements most of the requirements defined by Uren et al. [3] and 

relevant to our context: it processes WSDL files and produces OWL-S files (R1 & 

R4), and is fully automated (R7). This automation level is enforced through the use of 

both an ontological mapping of the WordNet lexicon, and a multimodal approach 

consisting in using not only parameter names, but also data type names and structures 

to identify appropriate ontological concepts. When compared to existing annotation 

tools such as ASSAM [12] and MWSAF [11], it is important to notice that MATAWS 

is much less flexible, because it does not include any machine learning abilities. This 

is due to the fact our goal is different: we want to batch annotate a large collection of 

WS descriptions without any human intervention, whereas the cited works aim at 

helping human users to annotate individual WS descriptions. Moreover, we tested 

MATAWS on a large collection of syntactic real-world WS descriptions, and despite 

its simplicity, it obtained very promising results, with 72% of the parameters 

annotated.  

The version presented in this article constitutes a first step in the development of 

our tool. Although some parameters could not be associated with relevant concepts, it 

is clear that we reduced the manual labor required for the annotation of WS. 

However, for now this reduction is not important enough to spare human intervention, 

which is needed at least to control the result of the annotation process. To get around 

this limitation, we plan to improve our tool on several points. First, in order to lower 

the proportion of parameters we failed to annotate, we can use other sources of latent 

semantics present in the WSDL descriptions: natural language descriptions and names 

of messages and operations. Second, the association step can be improved in two 

ways. We can complete the Associator by including more tools able to map a lexicon 

to an ontology, such as DBPedia [28]. This would complete and enhance the results 

already obtained through Sigma. Also, by taking advantage of our multimodal 

approach, we can retrieve all the words related to a given parameter through its data 

type, in order to compare them with concept definitions expressed in natural language 

(as found in a dictionary). 
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