
ar
X

iv
:1

20
3.

65
77

v1
 [

m
at

h.
O

C
]

 2
9

M
ar

 2
01

2

Accelerated Particle Swarm Optimization and Support Vector

Machine for Business Optimization and Applications

Xin-She Yang1, Suash Deb2 and Simon Fong3

1) Department of Engineering, University of Cambridge,
Trumpinton Street, Cambridge CB2 1PZ, UK.

2) Department of Computer Science & Engineering,
C. V. Raman College of Engineering,

Bidyanagar, Mahura, Janla, Bhubaneswar 752054, INDIA.

3) Department of Computer and Information Science,
Faculty of Science and Technology,
University of Macau, Taipa, Macau.

Abstract

Business optimization is becoming increasingly important because all business activities aim
to maximize the profit and performance of products and services, under limited resources and
appropriate constraints. Recent developments in support vector machine and metaheuristics
show many advantages of these techniques. In particular, particle swarm optimization is now
widely used in solving tough optimization problems. In this paper, we use a combination of a
recently developed Accelerated PSO and a nonlinear support vector machine to form a frame-
work for solving business optimization problems. We first apply the proposed APSO-SVM to
production optimization, and then use it for income prediction and project scheduling. We also
carry out some parametric studies and discuss the advantages of the proposed metaheuristic
SVM.

Keywords: Accelerated PSO, business optimization, metaheuristics, PSO, support vector
machine, project scheduling.

Reference to this paper should be made as follows:

Yang, X. S., Deb, S., and Fong, S., (2011), Accelerated Particle Swarm Optimization and
Support Vector Machine for Business Optimization and Applications, in: Networked Digital
Technologies (NDT2011), Communications in Computer and Information Science, Vol. 136,
Springer, pp. 53-66 (2011).

1 Introduction

Many business activities often have to deal with large, complex databases. This is partly driven by
information technology, especially the Internet, and partly driven by the need to extract meaningful
knowledge by data mining. To extract useful information among a huge amount of data requires
efficient tools for processing vast data sets. This is equivalent to trying to find an optimal solution
to a highly nonlinear problem with multiple, complex constraints, which is a challenging task.
Various techniques for such data mining and optimization have been developed over the past few
decades. Among these techniques, support vector machine is one of the best techniques for regression,
classification and data mining [5, 9, 16, 19, 20, 24].

1

http://arxiv.org/abs/1203.6577v1

On the other hand, metaheuristic algorithms also become powerful for solving tough nonlinear
optimization problems [1, 7, 8, 27, 32]. Modern metaheuristic algorithms have been developed
with an aim to carry out global search, typical examples are genetic algorithms [6], particle swarm
optimisation (PSO) [7], and Cuckoo Search [29, 30]. The efficiency of metaheuristic algorithms can
be attributed to the fact that they imitate the best features in nature, especially the selection of the
fittest in biological systems which have evolved by natural selection over millions of years. Since most
data have noise or associated randomness, most these algorithms cannot be used directly. In this
case, some form of averaging or reformulation of the problem often helps. Even so, most algorithms
become difficult to implement for such type of optimization.

In addition to the above challenges, business optimization often concerns with a large amount
but often incomplete data, evolving dynamically over time. Certain tasks cannot start before other
required tasks are completed, such complex scheduling is often NP-hard and no universally efficient
tool exists. Recent trends indicate that metaheuristics can be very promising, in combination with
other tools such as neural networks and support vector machines [5, 9, 15, 21].

In this paper, we intend to present a simple framework of business optimization using a combi-
nation of support vector machine with accelerated PSO. The paper is organized as follows: We first
will briefly review particle swarm optimization and accelerated PSO, and then introduce the basics
of support vector machines (SVM). We then use three case studies to test the proposed framework.
Finally, we discussion its implications and possible extension for further research.

2 Accelerated Particle Swarm Optimization

2.1 PSO

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in 1995 [7, 8], based on
the swarm behaviour such as fish and bird schooling in nature. Since then, PSO has generated much
wider interests, and forms an exciting, ever-expanding research subject, called swarm intelligence.
PSO has been applied to almost every area in optimization, computational intelligence, and de-
sign/scheduling applications. There are at least two dozens of PSO variants, and hybrid algorithms
by combining PSO with other existing algorithms are also increasingly popular.

PSO searches the space of an objective function by adjusting the trajectories of individual agents,
called particles, as the piecewise paths formed by positional vectors in a quasi-stochastic manner.
The movement of a swarming particle consists of two major components: a stochastic component
and a deterministic component. Each particle is attracted toward the position of the current global
best g∗ and its own best location x∗

i in history, while at the same time it has a tendency to move
randomly.

Let xi and vi be the position vector and velocity for particle i, respectively. The new velocity
vector is determined by the following formula

vt+1

i = vt
i + αǫ1[g

∗ − xt
i] + βǫ2[x

∗
i − xt

i]. (1)

where ǫ1 and ǫ2 are two random vectors, and each entry taking the values between 0 and 1. The
parameters α and β are the learning parameters or acceleration constants, which can typically be
taken as, say, α ≈ β ≈ 2.

There are many variants which extend the standard PSO algorithm, and the most noticeable
improvement is probably to use an inertia function θ(t) so that vt

i is replaced by θ(t)vt
i

vt+1

i = θvt
i + αǫ1[g

∗ − xt
i] + βǫ2[x

∗
i − xt

i], (2)

where θ ∈ (0, 1) [2, 3]. In the simplest case, the inertia function can be taken as a constant, typically
θ ≈ 0.5 ∼ 0.9. This is equivalent to introducing a virtual mass to stabilize the motion of the particles,
and thus the algorithm is expected to converge more quickly.

2

2.2 Accelerated PSO

The standard particle swarm optimization uses both the current global best g∗ and the individual
best x∗

i . The reason of using the individual best is primarily to increase the diversity in the quality
solutions, however, this diversity can be simulated using some randomness. Subsequently, there is
no compelling reason for using the individual best, unless the optimization problem of interest is
highly nonlinear and multimodal.

A simplified version which could accelerate the convergence of the algorithm is to use the global
best only. Thus, in the accelerated particle swarm optimization (APSO) [27, 32], the velocity vector
is generated by a simpler formula

vt+1

i = vt
i + αǫn + β(g∗ − xt

i), (3)

where ǫn is drawn from N(0, 1) to replace the second term. The update of the position is simply

xt+1

i = xt
i + vt+1

i . (4)

In order to increase the convergence even further, we can also write the update of the location in a
single step

xt+1

i = (1 − β)xt
i + βg∗ + αǫn. (5)

This simpler version will give the same order of convergence. Typically, α = 0.1L ∼ 0.5L where L is
the scale of each variable, while β = 0.1 ∼ 0.7 is sufficient for most applications. It is worth pointing
out that velocity does not appear in equation (5), and there is no need to deal with initialization
of velocity vectors. Therefore, APSO is much simpler. Comparing with many PSO variants, APSO
uses only two parameters, and the mechanism is simple to understand.

A further improvement to the accelerated PSO is to reduce the randomness as iterations proceed.
This means that we can use a monotonically decreasing function such as

α = α0e
−γt, (6)

or
α = α0γ

t, (0 < γ < 1), (7)

where α0 ≈ 0.5 ∼ 1 is the initial value of the randomness parameter. Here t is the number of
iterations or time steps. 0 < γ < 1 is a control parameter [32]. For example, in our implementation,
we will use

α = 0.7t, (8)

where t ∈ [0, tmax] and tmax is the maximum of iterations.

3 Support Vector Machine

Support vector machine (SVM) is an efficient tool for data mining and classification [25, 26]. Due to
the vast volumes of data in business, especially e-commerce, efficient use of data mining techniques
becomes a necessity. In fact, SVM can also be considered as an optimization tool, as its objective
is to maximize the separation margins between data sets. The proper combination of SVM with
metaheuristics could be advantageous.

3.1 Support Vector Machine

A support vector machine essentially transforms a set of data into a significantly higher-dimensional
space by nonlinear transformations so that regression and data fitting can be carried out in this
high-dimensional space. This methodology can be used for data classification, pattern recognition,
and regression, and its theory was based on statistical machine learning theory [21, 24, 25].

For classifications with the learning examples or data (xi, yi) where i = 1, 2, ..., n and yi ∈
{−1,+1}, the aim of the learning is to find a function φα(x) from allowable functions {φα : α ∈ Ω}

3

such that φα(xi) 7→ yi for (i = 1, 2, ..., n) and that the expected risk E(α) is minimal. That is the
minimization of the risk

E(α) =
1

2

∫

|φα(x)− y|dQ(x, y), (9)

where Q(x, y) is an unknown probability distribution, which makes it impossible to calculate E(α)
directly. A simple approach is to use the so-called empirical risk

Ep(α) ≈
1

2n

n
∑

i=1

∣

∣φα(xi)− yi
∣

∣. (10)

However, the main flaw of this approach is that a small risk or error on the training set does not
necessarily guarantee a small error on prediction if the number n of training data is small [26].

For a given probability of at least 1− p, the Vapnik bound for the errors can be written as

E(α) ≤ Rp(α) + Ψ
(h

n
,
log(p)

n

)

, (11)

where

Ψ
(h

n
,
log(p)

n

)

=

√

1

n

[

h(log
2n

h
+ 1)− log(

p

4
)
]

. (12)

Here h is a parameter, often referred to as the Vapnik-Chervonenskis dimension or simply VC-
dimension [24], which describes the capacity for prediction of the function set φα.

In essence, a linear support vector machine is to construct two hyperplanes as far away as
possible and no samples should be between these two planes. Mathematically, this is equivalent to
two equations

w · x+ b = ±1, (13)

and a main objective of constructing these two hyperplanes is to maximize the distance (between
the two planes)

d =
2

||w||
. (14)

Such maximization of d is equivalent to the minimization of ||w|| or more conveniently ||w||2. From
the optimization point of view, the maximization of margins can be written as

minimize
1

2
||w||2 =

1

2
(w ·w). (15)

This essentially becomes an optimization problem

minimize Ψ =
1

2
||w||2 + λ

n
∑

i=1

ηi, (16)

subject to yi(w · xi + b) ≥ 1− ηi, (17)

ηi ≥ 0, (i = 1, 2, ..., n), (18)

where λ > 0 is a parameter to be chosen appropriately. Here, the term
∑n

i=1
ηi is essentially a

measure of the upper bound of the number of misclassifications on the training data.

3.2 Nonlinear SVM and Kernel Tricks

The so-called kernel trick is an important technique, transforming data dimensions while simpli-
fying computation. By using Lagrange multipliers αi ≥ 0, we can rewrite the above constrained
optimization into an unconstrained version, and we have

L =
1

2
||w||2 + λ

n
∑

i=1

ηi −
n
∑

i=1

αi[yi(w · xi + b)− (1− ηi)]. (19)

4

From this, we can write the Karush-Kuhn-Tucker conditions

∂L

∂w
= w −

n
∑

i=1

αiyixi = 0, (20)

∂L

∂b
= −

n
∑

i=1

αiyi = 0, (21)

yi(w · xi + b)− (1− ηi) ≥ 0, (22)

αi[yi(w · xi + b)− (1 − ηi)] = 0, (i = 1, 2, ..., n), (23)

αi ≥ 0, ηi ≥ 0, (i = 1, 2, ..., n). (24)

From the first KKT condition, we get

w =
n
∑

i=1

yiαixi. (25)

It is worth pointing out here that only the nonzero αi contribute to overall solution. This comes
from the KKT condition (23), which implies that when αi 6= 0, the inequality (17) must be satisfied
exactly, while α0 = 0 means the inequality is automatically met. In this latter case, ηi = 0.
Therefore, only the corresponding training data (xi, yi) with αi > 0 can contribute to the solution,
and thus such xi form the support vectors (hence, the name support vector machine). All the other
data with αi = 0 become irrelevant.

It has been shown that the solution for αi can be found by solving the following quadratic
programming [24, 26]

maximize

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyj(xi · xj), (26)

subject to
n
∑

i=1

αiyi = 0, 0 ≤ αi ≤ λ, (i = 1, 2, ..., n). (27)

From the coefficients αi, we can write the final classification or decision function as

f(x) = sgn
[

n
∑

i=1

αiyi(x · xi) + b
]

, (28)

where sgn is the classic sign function.
As most problems are nonlinear in business applications, and the above linear SVM cannot be

used. Ideally, we should find some nonlinear transformation φ so that the data can be mapped onto a
high-dimensional space where the classification becomes linear. The transformation should be chosen
in a certain way so that their dot product leads to a kernel-style function K(x,xi) = φ(x) ·φ(xi). In
fact, we do not need to know such transformations, we can directly use the kernel functions K(x,xi)
to complete this task. This is the so-called kernel function trick. Now the main task is to chose a
suitable kernel function for a given, specific problem.

For most problems in nonlinear support vector machines, we can use K(x,xi) = (x · xi)
d for

polynomial classifiers, K(x,xi) = tanh[k(x·xi)+Θ)] for neural networks, and by far the most widely
used kernel is the Gaussian radial basis function (RBF)

K(x,xi) = exp
[

−
||x− xi||

2

(2σ2)

]

= exp
[

− γ||x− xi||
2
]

, (29)

for the nonlinear classifiers. This kernel can easily be extended to any high dimensions. Here σ2 is
the variance and γ = 1/2σ2 is a constant. In general, a simple bound of 0 < γ ≤ C is used, and
here C is a constant.

5

Following the similar procedure as discussed earlier for linear SVM, we can obtain the coefficients
αi by solving the following optimization problem

maximize
n
∑

i=1

αi −
1

2
αiαjyiyjK(xi,xj). (30)

It is worth pointing out under Mercer’s conditions for the kernel function, the matrixA = yiyjK(xi,xj)
is a symmetric positive definite matrix [26], which implies that the above maximization is a quadratic
programming problem, and can thus be solved efficiently by standard QP techniques [21].

4 Metaheuristic Support Vector Machine with APSO

4.1 Metaheuristics

There are many metaheuristic algorithms for optimization and most these algorithms are inspired
by nature [27]. Metaheuristic algorithms such as genetic algorithms and simulated annealing are
widely used, almost routinely, in many applications, while relatively new algorithms such as particle
swarm optimization [7], firefly algorithm and cuckoo search are becoming more and more popular
[27, 32]. Hybridization of these algorithms with existing algorithms are also emerging.

The advantage of such a combination is to use a balanced tradeoff between global search which
is often slow and a fast local search. Such a balance is important, as highlighted by the analysis by
Blum and Roli [1]. Another advantage of this method is that we can use any algorithms we like at
different stages of the search or even at different stage of iterations. This makes it easy to combine
the advantages of various algorithms so as to produce better results.

Others have attempted to carry out parameter optimization associated with neural networks and
SVM. For example, Liu et al. have used SVM optimized by PSO for tax forecasting [13]. Lu et al.
proposed a model for finding optimal parameters in SVM by PSO optimization [14]. However, here
we intend to propose a generic framework for combining efficient APSO with SVM, which can be
extended to other algorithms such as firefly algorithm [28, 31].

4.2 APSO-SVM

Support vector machine has a major advantage, that is, it is less likely to overfit, compared with
other methods such as regression and neural networks. In addition, efficient quadratic programming
can be used for training support vector machines. However, when there is noise in the data, such
algorithms are not quite suitable. In this case, the learning or training to estimate the parameters
in the SVM becomes difficult or inefficient.

Another issue is that the choice of the values of kernel parameters C and σ2 in the kernel
functions; however, there is no agreed guideline on how to choose them, though the choice of their
values should make the SVM as efficiently as possible. This itself is essentially an optimization
problem.

Taking this idea further, we first use an educated guess set of values and use the metaheuristic
algorithms such as accelerated PSO or cuckoo search to find the best kernel parameters such as C
and σ2 [27, 29]. Then, we used these parameters to construct the support vector machines which
are then used for solving the problem of interest. During the iterations and optimization, we can
also modify kernel parameters and evolve the SVM accordingly. This framework can be called a
metaheuristic support vector machine. Schematically, this Accelerated PSO-SVM can be represented
as shown in Fig. 1.

For the optimization of parameters and business applications discussed below, APSO is used for
both local and global search [27, 32].

6

begin

Define the objective;
Choose kernel functions;
Initialize various parameters;
while (criterion)

Find optimal kernel parameters by APSO;
Construct the support vector machine;
Search for the optimal solution by APSO-SVM;
Increase the iteration counter;

end

Post-processing the results;
end

Figure 1: Metaheuristic APSO-SVM.

5 Business Optimization Benchmarks

Using the framework discussed earlier, we can easily implement it in any programming language,
though we have implemented using Matlab. We have validated our implementation using the stan-
dard test functions, which confirms the correctness of the implementation. Now we apply it to carry
out case studies with known analytical solution or the known optimal solutions. The Cobb-Douglas
production optimization has an analytical solution which can be used for comparison, while the
second case is a standard benchmark in resource-constrained project scheduling [11].

5.1 Production Optimization

Let us first use the proposed approach to study the classical Cobb-Douglas production optimization.
For a production of a series of products and the labour costs, the utility function can be written

q =

n
∏

j=1

u
αj

j = uα1

1 uα2

2 · · ·uαn

n , (31)

where all exponents αj are non-negative, satisfying

n
∑

j=1

αj = 1. (32)

The optimization is the minimization of the utility

minimize q (33)

subject to

n
∑

j=1

wjuj = K, (34)

where wj(j = 1, 2, ..., n) are known weights.
This problem can be solved using the Lagrange multiplier method as an unconstrained problem

ψ =

n
∏

j=1

u
αj

j + λ(

n
∑

j=1

wjuj −K), (35)

whose optimality conditions are

∂ψ

∂uj
= αju

−1

j

n
∏

j=1

u
αj

j + λwj = 0, (j = 1, 2, ..., n), (36)

7

∂ψ

∂λ
=

n
∑

j=1

wjuj −K = 0. (37)

The solutions are

u1 =
K

w1[1 +
1

α1

∑n

j=2
αj]

, uj =
w1αj

wjα1

u1, (38)

where (j = 2, 3, ..., n). For example, in a special case of n = 2, α1 = 2/3, α2 = 1/3, w1 = 5, w2 = 2
and K = 300, we have

u1 =
Q

w1(1 + α2/α1)
= 40, u2 =

Kα2

w2α1(1 + α2/α1)
= 50.

As most real-world problem has some uncertainty, we can now add some noise to the above
problem. For simplicity, we just modify the constraint as

n
∑

j=1

wjuj = K(1 + βǫ), (39)

where ǫ is a random number drawn from a Gaussian distribution with a zero mean and a unity
variance, and 0 ≤ β ≪ 1 is a small positive number.

We now solve this problem as an optimization problem by the proposed APSO-SVM. In the
case of β = 0.01, the results have been summarized in Table 1 where the values are provided with
different problem size n with different numbers of iterations. We can see that the results converge
at the optimal solution very quickly.

Table 1: Mean deviations from the optimal solutions.

size n Iterations deviations
10 1000 0.014
20 5000 0.037
50 5000 0.040
50 15000 0.009

6 Income Prediction

Studies to improve the accuracy of classifications are extensive. For example, Kohavi proposed a
decision-tree hybrid in 1996 [10]. Furthermore, an efficient training algorithm for support vector
machines was proposed by Platt in 1998 [17, 18], and it has some significant impact on machine
learning, regression and data mining.

A well-known benchmark for classification and regression is the income prediction using the data
sets from a selected 14 attributes of a household from a sensus form [10, 17]. We use the same
data sets at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult for this case study. There
are 32561 samples in the training set with 16281 for testing. The aim is to predict if an individual’s
income is above or below 50K ?

Among the 14 attributes, a subset can be selected, and a subset such as age, education level,
occupation, gender and working hours are commonly used.

Using the proposed APSO-SVM and choosing the limit value of C as 1.25, the best error of
17.23% is obtained (see Table 2), which is comparable with most accurate predictions reported in
[10, 17].

6.1 Project Scheduling

Scheduling is an important class of discrete optimization with a wider range of applications in
business intelligence. For resource-constrained project scheduling problems, there exists a standard

8

Table 2: Income prediction using APSO-SVM.

Train set (size) Prediction set Errors (%)
512 256 24.9
1024 256 20.4
16400 8200 17.23

benchmark library by Kolisch and Sprecher [11, 12]. The basic model consists of J activities/tasks,
and some activities cannot start before all its predecessors h are completed. In addition, each activity
j = 1, 2, ..., J can be carried out, without interruption, in one of the Mj modes, and performing any
activity j in any chosen mode m takes djm periods, which is supported by a set of renewable resource
R and non-renewable resources N . The project’s makespan or upper bound is T, and the overall
capacity of non-renewable resources is Kν

r where r ∈ N . For an activity j scheduled in mode
m, it uses kρjmr units of renewable resources and kνjmr units of non-renewable resources in period
t = 1, 2, ..., T .

For activity j, the shortest duration is fit into the time windows [EFj , LFj] where EFj is the
earliest finish times, and LFj is the latest finish times. Mathematically, this model can be written
as [11]

Minimize Ψ(x)

Mj
∑

m=1

LFj
∑

t=EFj

t · xjmt, (40)

subject to
Mh
∑

m=1

LFj
∑

t=EFj

t xhmt ≤

Mj
∑

m=1

LFj
∑

t=EFj

(t− djm)xjmt, (j = 2, ..., J),

J
∑

j=1

Mj
∑

m=1

kρjmr

min{t+djm−1,LFj}
∑

q=max{t,EFj}

xjmq ≤ Kρ
r , (r ∈ R),

J
∑

j=1

Mj
∑

m=1

kνjmr

LFj
∑

t=EFj

xjmt ≤ Kν
r , (r ∈ N), (41)

and
Mj
∑

j=1

∑

t = EFj
LFj = 1, j = 1, 2, ..., J, (42)

where xjmt ∈ {0, 1} and t = 1, ..., T . As xjmt only takes two values 0 or 1, this problem can be
considered as a classification problem, and metaheuristic support vector machine can be applied
naturally.

Table 3: Kernel parameters used in SVM.

Number of iterations SVM kernel parameters
1000 C = 149.2, σ2 = 67.9
5000 C = 127.9, σ2 = 64.0

Using the online benchmark library [12], we have solved this type of problem with J = 30
activities (the standard test set j30). The run time on a modern desktop computer is about 2.2
seconds forN = 1000 iterations to 15.4 seconds forN = 5000 iterations. We have run the simulations
for 50 times so as to obtain meaningful statistics.

The optimal kernel parameters found for the support vector machines are listed in Table 3, while
the deviations from the known best solution are given in Table 4 where the results by other methods
are also compared.

9

Table 4: Mean deviations from the optimal solution (J=30).

Algorithm Authors N = 1000 5000
PSO [22] Kemmoe et al. (2007) 0.26 0.21
hybribd GA [23] Valls eta al. (2007) 0.27 0.06
Tabu search [15] Nonobe & Ibaraki (2002) 0.46 0.16
Adapting GA [4] Hartmann (2002) 0.38 0.22
Meta APSO-SVM this paper 0.19 0.025

From these tables, we can see that the proposed metaheuristic support vector machine starts
very well, and results are comparable with those by other methods such as hybrid genetic algorithm.
In addition, it converges more quickly, as the number of iterations increases. With the same amount
of function evaluations involved, much better results are obtained, which implies that APSO is very
efficient, and subsequently the APSO-SVM is also efficient in this context. In addition, this also
suggests that this proposed framework is appropriate for automatically choosing the right parameters
for SVM and solving nonlinear optimization problems.

7 Conclusions

Both PSO and support vector machines are now widely used as optimization techniques in business
intelligence. They can also be used for data mining to extract useful information efficiently. SVM can
also be considered as an optimization technique in many applications including business optimization.
When there is noise in data, some averaging or reformulation may lead to better performance. In
addition, metaheuristic algorithms can be used to find the optimal kernel parameters for a support
vector machine and also to search for the optimal solutions. We have used three very different case
studies to demonstrate such a metaheuristic SVM framework works.

Automatic parameter tuning and efficiency improvement will be an important topic for further
research. It can be expected that this framework can be used for other applications. Furthermore,
APSO can also be used to combine with other algorithms such as neutral networks to produce more
efficient algorithms [13, 14]. More studies in this area are highly needed.

References

[1] Blum C. and Roli A., Metaheuristics in combinatorial optimization: Overview and conceptural
comparision, ACM Comput. Surv., 35, 268-308 (2003).

[2] A. Chatterjee and P. Siarry, Nonlinear inertia variation for dynamic adaptation in particle
swarm optimization, Comp. Oper. Research, 33, 859-871 (2006).

[3] M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidi-
mensional complex space, IEEE Trans. Evolutionary Computation, 6, 58-73 (2002).

[4] Hartmann S., A self-adapting genetic algorithm for project scheduling under resource con-
straints, Naval Res. Log., 49, 433-448 (2002).

[5] Howley T. and Madden M. G., The genetic kernel support vector machine: description and
evaluation, Artificial Intelligence Review, 24, 379-395 (2005).

[6] Goldberg D. E., Genetic Algorithms in Search, Optimisation and Machine Learning, Reading,
Mass.: Addison Wesley (1989).

[7] J. Kennedy and R. C. Eberhart, Particle swarm optimization, in: Proc. of IEEE International

Conference on Neural Networks, Piscataway, NJ. pp. 1942-1948 (1995).

[8] J. Kennedy, R. C. Eberhart, Swarm intelligence, Academic Press, 2001.

10

[9] Kim K., Financial forecasting using support vector machines, Neurocomputing, 55, 307-319
(2003).

[10] Kohavi R., Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid, Proc.

2nd Int. Conf. on Knowledge Discovery and Data Mining, pp. 202-207, AAAI Press, (1996).
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult

[11] Kolisch R. and Sprecher A., PSPLIB - a project scdeluing problem library, OR Software-ORSEP
(operations research software exchange prorgam) by H. W. Hamacher, Euro. J. Oper. Res., 96,
205-216 (1996).

[12] Kolisch R. and Sprecher A., The Library PSBLIB, http://129.187.106.231/psplib/

[13] Liu L.-X., Zhuang Y. and Liu X. Y., Tax forecasting theory and model based on SVM optimized
by PSO, Expert Systems with Applications, 38, January 2011, pp. 116-120 (2011).

[14] Lu N., Zhou J. Z., He Y., Y., Liu Y., Particle Swarm Optimization for Parameter Optimiza-
tion of Support Vector Machine Model, 2009 Second International Conference on Intelligent

Computation Technology and Automation, IEEE publications, pp. 283-284 (2009).

[15] Nonobe K. and Ibaraki T., Formulation and tabu search algorithm for the resource constrained
project scheduling problem (RCPSP), in: Essays and Surveys in Metaheuristics (Eds. Ribeiro
C. C. and Hansen P.), pp. 557-588 (2002).

[16] Pai P. F. and Hong W. C., Forecasting regional electricity load based on recurrent support
vector machines with genetic algorithms, Electric Power Sys. Res., 74, 417-425 (2005).

[17] Platt J. C., Sequential minimal optimization: a fast algorithm for training support vector
machines, Techical report MSR-TR-98014, Microsoft Research, (1998).

[18] Plate J. C., Fast training of support vector machines using sequential minimal optimization, in:
Advances in Kernel Methods – Support Vector Learning (Eds. B. Scholkopf, C. J. Burges and
A. J. Smola), MIT Press, pp. 185-208 (1999).

[19] Shi G. R., The use of support vector machine for oil and gas identification in low-porosity
and low-permeability reservoirs, Int. J. Mathematical Modelling and Numerical Optimisation,
1, 75-87 (2009).

[20] Shi G. R. and Yang X.-S., Optimization and data mining for fracture prediction in geosciences,
Procedia Computer Science, 1, 1353-1360 (2010).

[21] Smola A. J. and Schölkopf B., A tutorial on support vector regression, (1998).
http://www.svms.org/regression/

[22] Tchomté S. K., Gourgand M. and Quilliot A., Solving resource-constrained project scheduling
problem with particle swarm optimization, in: Proceeding of 3rd Multidsciplinary Int. Schedul-
ing Conference (MISTA 2007), 28 - 31 Aug 2007, Paris, pp. 251-258 (2007).

[23] Valls V., Ballestin F. and Quintanilla S., A hybrid genetic algorithm for the resource-constrained
project scheduling problem, Euro. J. Oper. Res., doi:10.1016/j.ejor.2006.12.033, (2007).

[24] Vapnik V., Estimation of Dependences Based on Empirical Data (in Russian), Moscow, 1979.
[English translation published by Springer-Verlag, New York, 1982]

[25] Vapnik V., The nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

[26] Scholkopf B., Sung K., Burges C., Girosi F., Niyogi P., Poggio T. and Vapnik V., Comparing
support vector machine with Gaussian kernels to radial basis function classifiers, IEEE Trans.

Signal Processing, 45, 2758-2765 (1997).

[27] Yang X. S., Nature-Inspired Metaheuristic Algorithms, Luniver Press, (2008).

11

[28] Yang X. S., Firefly algorithms for multimodal optimization, in: Stochastic Algorithms: Foun-

dations and Applications, SAGA 2009, Lecture Notes in Computer Sciences, 5792, pp. 169-178
(2009).

[29] Yang X.-S. and Deb, S., Cuckoo search via Lévy flights, in: Proceeings of World Congress on

Nature & Biologically Inspired Computing (NaBIC 2009, India), IEEE Publications, USA, pp.
210-214 (2009).

[30] Yang X. S. and Deb S., Engineering optimization by cuckoo search, Int. J. Mathematical Mod-

elling and Numerical Optimisation, 1, 330-343 (2010).

[31] Yang X. S., Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio-
inspired Computation, 2, 78-84 (2010).

[32] Yang X. S., Engineering Optimization: An Introduction with Metaheuristic Applications, John
Wiley & Sons, (2010).

12

