Skip to main content

Random Walks, Interacting Particles, Dynamic Networks: Randomness Can Be Helpful

  • Conference paper
Book cover Structural Information and Communication Complexity (SIROCCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6796))

Abstract

The aim of this article is to discuss some applications of random processes in searching and reaching consensus on finite graphs. The topics covered are: Why random walks?, Speeding up random walks, Random and deterministic walks, Interacting particles and voting, Searching changing graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, M., Halperin, E., Karp, R.M., Vazirani, V.V.: A stochastic process on the hypercube with applications to peer-to-peer networks. In: Proc. of STOC 2003, pp. 575–584 (2003)

    Google Scholar 

  2. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs (2001), http://stat-www.berkeley.edu/users/aldous/RWG/book.html

  3. Aldous, D.: Meeting times for independent Markov chains. Stochastic Processes and their Applications 38, 185–193 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. In: Proc. of FOCS 1979, pp. 218–223 (1979)

    Google Scholar 

  5. Alon, N., Avin, C., Kouchý, M., Kozma, G., Lotker, Z., Tuttle, M.: Many random walks are faster than one. In: Proc. of SPAA 2008, pp. 119–128 (2008)

    Google Scholar 

  6. Alon, N., Benjamini, I., Lubetzky, E., Sodin, S.: Non-backtracking random walks mix faster. Communications in Contemporary Mathematics 9, 585–603 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aspnes, J.: Randomized protocols for asynchronous consensus. Distributed Computing 16, 165–176 (2003)

    Article  Google Scholar 

  8. Avin, C., Koucḱy, M., Lotker, Z.: How to Explore a Fast-Changing World (Cover Time of a Simple Random Walk on Evolving Graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Avin, C., Krishnamachari, B.: The Power of Choice in Random Walks: An Empirical Study. In: Proc. of MSWiM 2006, pp. 219–228 (2006)

    Google Scholar 

  10. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious Flooding in Dynamic Graphs. In: Proc. of PODC 2009, pp. 260–269 (2009)

    Google Scholar 

  11. Bhatt, S.N., Even, S., Greenberg, D.S., Tayar, R.: Traversing directed Eulerian mazes. Journal of Graph Algorithms and Applications 6(2), 157–173 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Berenbrink, P., Cooper, C., Elsässer, R., Radzik, T., Sauerwald, T.: Speeding up random walks with neighborhood exploration. In: Proc. of SODA 2010, pp. 1422–1435 (2010)

    Google Scholar 

  13. Berenbrink, P., Cooper, C., Friedetzky, T.: Random walks which prefer unexplored edges can cover in linear time (preprint, 2011)

    Google Scholar 

  14. Broder, A., Karlin, A., Raghavan, A., Upfal, E.: Trading space for time in undirected s−t connectivity. In: Proc of STOC 1989, pp. 543–549 (1989)

    Google Scholar 

  15. Clementi, A., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding Time in Edge- Markovian Dynamic Graphs. In: Proc. of PODC 2008, pp. 213–222 (2008)

    Google Scholar 

  16. Cooper, C., Frieze, A.: Crawling on simple models of web-graphs. Internet Mathematics 1, 57–90 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cooper, C., Frieze, A.: The cover time of random regular graphs. SIAM Journal on Discrete Mathematics 18, 728–740 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cooper, C., Frieze, A.M., Radzik, T.: Multiple Random Walks in Random Regular Graphs. SIAM J. Discrete Math. 23(4), 1738–1761 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cox, J.T.: Coalescing random walks and voter model consensus times on the torus in ℤd. The Annals of Probability 17(4), 1333–1366 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Czyzowicz, J., Dobrev, S., Gasieniec, L., Ilcinkas, D., Jansson, J., Klasing, R., Lignos, I., Martin, R., Sadakane, K., Sung, W.: More Efficient Periodic Traversal in Anonymous Undirected Graphs. In: Proceedings of the Sixteenth International Colloquium on Structural Information and Communication Complexity, pp. 167–181 (2009)

    Google Scholar 

  21. Ding, J., Lee, J., Peres, Y.: Cover times, blanket times, and majorizing measures http://arxiv.org/abs/1004.4371v3

  22. Doerr, B., Goldberg, L.A., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing Consensus with the Power of Two Choices (2010); full version available at www.upb.de/cs/scheideler (manuscript)

  23. Dimitriou, T., Nikoletseas, S., Spirakis, P.: The infection time of graphs. Discrete Applied Mathematics 154, 2577–2589 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Donnelly, P., Welsh, D.: Finite particle systems and infection models. Math. Proc. Camb. Phil. Soc. 94, 167–182 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Efremenko, K., Reingold, O.: How well do random walks parallelize? In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 376–389. Springer, Heidelberg (2009)

    Google Scholar 

  26. Elsässer, R., Sauerwald, T.: Tight Bounds for the Cover Time of Multiple Random Walks. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 415–426. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Feige, U.: A tight upper bound for the cover time of random walks on graphs. Random Structures and Algorithms 6, 51–54 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Feige, U.: A tight lower bound for the cover time of random walks on graphs. Random Structures and Algorithms 6, 433–438 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks: algorithms and evaluation. Perform. Eval. 63(3), 241–263 (2006)

    Article  Google Scholar 

  30. Gasieniec, L., Radzik, T.: Memory Efficient Anonymous Graph Exploration. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 14–29. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  31. Hassin, Y., Peleg, D.: Distributed probabilistic polling and applications to proportionate agreement. Information & Computation 171, 248–268 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hoory, S., Linial, N., Wigderson, A.: Expander Graphs and their Applications. Bulletin of the American Mathematical Society 43, 439–561 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ikeda, S., Kubo, I., Okumoto, N., Yamashita, M.: Fair circulation of a token. IEEE Transactions on Parallel and Distributed Systems 13(4) (2002)

    Google Scholar 

  34. Ikeda, S., Kubo, I., Okumoto, N., Yamashita, M.: Impact of Local Topological Information on Random Walks on Finite Graphs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1054–1067. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  35. Israeli, A., Jalfon, M.: Token management schemes and random walks yeild self stabilizing mutual exclusion. In: Proc. of PODC 1990, pp. 119–131 (1990)

    Google Scholar 

  36. Kahn, J., Kim, J.H., Lovasz, L., Vu, V.H.: The cover time, the blanket time, and the Matthews bound. In: Proc. of FOCS 2000, pp. 467–475 (2000)

    Google Scholar 

  37. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proc. of FOCS 2003, pp. 482–491 (2003)

    Google Scholar 

  38. Koba, K., Kijima, S., Yamashita, M.: Random walks on dynamic graphs. preprint (2010) (in Japanese)

    Google Scholar 

  39. Kuhn, F., Locher, T., Wattenhofer, R.: Tight bounds for distributed selection. In: Proc. of SPAA 2007, pp. 145–153 (2007)

    Google Scholar 

  40. Lovász, L.: Random walks on graphs: A survey. Bolyai Society Mathematical Studies 2, 353–397 (1996)

    MATH  MathSciNet  Google Scholar 

  41. Nakata, T., Imahayashi, H., Yamashita, M.: Probabilistic local majority voting for the agreement problem on finite graphs. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 330–338. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  42. Pettarin, A., Pietracaprina, A., Pucci, G., Upfal, E.: Infectious Random Walks, http://arxiv.org/abs/1007.1604v2

  43. Priezzhev, V.B., Dhar, D., Dhar, A., Krishnamurthy, S.: Eulerian walkers as a model of self organized criticality. Physics Review Letters 77, 5079–5082 (1996)

    Article  Google Scholar 

  44. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Distributed Covering by Ant-Robots Using Evaporating Traces. IEEE Transactions on Robotics and Automation 15(5), 918–933 (1999)

    Article  Google Scholar 

  45. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A Distributed Ant Algorithm for Efficiently Patrolling a Network. Algorithmica 37, 165–186 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cooper, C. (2011). Random Walks, Interacting Particles, Dynamic Networks: Randomness Can Be Helpful. In: Kosowski, A., Yamashita, M. (eds) Structural Information and Communication Complexity. SIROCCO 2011. Lecture Notes in Computer Science, vol 6796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22212-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22212-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22211-5

  • Online ISBN: 978-3-642-22212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics